Abaqus 中显示动力学分析步骤
abaqus中显示动力学分析步骤

abaqus中显示动力学分析步骤准静态分析——ABAQUS/Explicit准静态过程(guasi-static process )在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt 内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit 准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
abaqus第九讲:显式动力学问题

t ) 2
u|
(t
t ) 2
( t t )
(t )
2
u |(t )
u |(t t ) u |(t ) t |(t t ) u |
(t
t ) 2
这样,在增量步开始时提供了满足动力学平衡条件的加速度。得到了加速度,在时 间上“显式地”前推速度和位移。所谓“显式”是指在增量步结束时的状态仅依赖 于该增量步开始时的位移、速度和加速度。这种方法精确地积分常值的加速度。为 了使该方法产生精确的结果,时间增量必须相当小,这样在增量步中加速度几乎为 常数。由于时间增量步必须很小,一个典型的分析需要成千上万个增量步。幸运的 是,因为不必同时求解联立方程组,所以每一个增量步的计算成本很低。大部分的 计算成本消耗在单元的计算上,以此确定作用在节点上的单元内力。单元的计算包 括确定单元应变和应用材料本构关系(单元刚度)确定单元应力,从而进一步地计 算内力。
北京怡格明思工程技术有限公司
Innovating through simulation
显式动力学过程概述
• 应力波的传播 应力波传播的例子说明了显式 动力学方法的求解过程:没 有迭代,或求解线性方程组。 考虑应力波沿着三个杆单元传 播问题。在时间增加的过程 中,研究杆的状态。 • 质量被集中到节点。
Innovating through simulation
北京怡格明思工程技术有限公司
Innovating through simulation
显式动力学方法
北京怡格明思工程技术有限公司
Innovating through simulation
显式动力学过程概述
• 显式动力学求解器与隐式求解器,比如ABAQUS/Standard,是互为补充的。 从用户的角度出发,隐式与显式方法显著的区别为: 显式方法需要小的时间增量。 • 只与模型的最高自然频率相关。 • 与载荷类型和载荷持续时间无关。 • 一般的,增量步的数量级为10,000到1,000,000个增量,但是每个增 量步内的计算费用相对较小。
abaqus动力学分析

目 录第一章ABAQUS动力学问题概述 (1)§1-1 动力学问题 (1)§1-2 结构动力学研究的内容 (3)§1-3 振动的分类 (4)§1-4 结构动力学的研究方法 (5)§1-5 动力学问题的基本方程 (5)小结 (6)§1-6第2章结构特征值的提取 (7)§2-1 问题的产生 (7)§2-2 特征值的求解方法 (7)§2-3 特征值求解器的比较 (8)§2-4 重复的特征频率 (9)§2-5 征值频率的提取 (9)§2-6 频率输出 (12)§2-7 有预载结构的频率 (16)§2-8 复特征频率和刹车的啸声分析 (17)第3章模态叠加法 (22)§3-1 模态叠加法的基本概念 (22)§3-2 模态叠加法的应用 (24)第4章阻尼 (26)§4-1 引言 (26)§4-2 阻尼 (26)§4-3在ABAQUS中定义阻尼 (27)1§4-4 阻尼选择 (31)第5章稳态动力学分析 (33)§5-1 稳态动力学简介 (33)§5-2 分析方法 (35)§5-3 激励和输出 (36)§5-4 算例—轮胎的谐波激励稳态响应 (42)第6章瞬态动力学分析 (49)§6-1 引言 (49)§6-2 模态瞬态动力学简介 (49)§6-3 分析方法 (54)§6-4 载荷和输出 (55)§6-5 算例—货物吊车 (58)第7章基础运动 (64)§7-1 基础运动形式 (64)§7-2 初级基础运动 (65)§7-3 次级基础运动 (66)§7-4 在ABAQUS中定义基础运动 (66)§7-5 算例 (70)第8章加速度运动的基线校准 (73)§8-1 加速度基线调整和校准简介 (73)§8-2 基线校准方法 (74)§8-3 加速度基线校准步骤 (76)§8-4 考虑基线校准的悬臂梁算例分析 (77)234第1章ABAQUS 动力学问题概述§1-1 动力学问题的产生在现代结构和机械设计中,通常需要考虑两类荷载的作用——静力荷载(static loading)和动力荷载(dynamic loading),因此结构的设计也经常分为静力设计和动力设计两部分。
Abaqus中显示动力学分析报告步骤

准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt 内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
ABAQUS动力分析

ABAQUS动力分析1. 简介ABAQUS是由达索系统有限公司(Dassault Systemes SA)开发和销售的一款用于有限元分析(FEA)的商业软件。
它提供了完整的解决方案,包括建模、求解和后处理功能,广泛应用于工程和科学领域。
动力分析是ABAQUS中的一个重要应用领域,它用于研究结构或材料在受到外部载荷作用下的动态响应。
ABAQUS动力分析可以帮助工程师预测和评估结构的动态行为,以及优化设计,提高结构的可靠性和性能。
2. 动力分析的基本原理动力分析的基本原理是通过求解结构或材料的运动方程来研究动态响应。
在ABAQUS中,动力分析是基于有限元方法的,它将结构的连续域离散化为有限数量的子域,然后通过求解离散化系统的运动方程得到结构的运动情况。
动力分析的过程可以简要概括为以下几个步骤:2.1 建立几何模型在进行动力分析之前,需要准备好结构的几何模型。
ABAQUS提供了丰富的建模工具和操作,可帮助用户创建复杂的几何模型。
2.2 定义材料特性在进行动力分析之前,需要定义结构中所用材料的特性。
ABAQUS支持多种材料模型,如线性弹性模型、非线性弹性模型和塑性模型等。
用户可以根据实际需求选择适当的材料模型,并设置材料的参数。
2.3 网格生成在进行动力分析之前,需要将结构的几何模型离散化为有限元网格。
ABAQUS 提供了强大的网格生成工具,可以根据用户的需求自动生成合适的网格。
2.4 定义边界条件和加载在进行动力分析之前,需要定义结构的边界条件和加载。
边界条件包括约束条件和初始条件,加载包括外部载荷和初始速度等。
ABAQUS提供了灵活的边界条件和加载设置,用户可以根据需求自定义。
2.5 求解动力分析问题在完成前面的准备工作后,就可以使用ABAQUS进行动力分析了。
ABAQUS使用显式或隐式求解器来求解动力分析问题。
显式求解器适用于短时间内的动力响应,而隐式求解器适用于长时间内的动力响应。
2.6 后处理结果在求解动力分析问题后,还需要对结果进行后处理。
Abaqus 中显示动力学分析步骤【精选文档】

准静态分析—-ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响.ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用.当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易.此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟.但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
Abaqus-中显示动力学分析

准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
Abaqus中显示动力学分析步骤

准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
准静态分析——ABAQUS/Explicit准静态过程(guasi-static process)在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。
无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。
准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。
准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。
ABAQUS/Explicit准静态分析显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。
当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。
由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。
在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。
在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。
此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。
将显式动态过程应用于准静态问题需要一些特殊的考虑。
根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。
因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。
但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。
目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。
准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。
当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。
关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。
1. 显式动态问题类比假设两个载满了乘客的电梯。
在缓慢的情况下,门打开后你步入电梯。
为了腾出空间,邻近门口的人慢慢地推他身边的人,这些被推的人再去推他身边的人,如此继续下去。
这种扰动在电梯中传播,直到靠近墙边的人表示他们无法移动为止。
一系列的波在电梯中传播,直到每个人都到达了一个新的平衡位置。
如果你稍稍加快速度,你会比前面更用力地推动你身边的人,但是最终每个人都会停留在与缓慢的情况下相同的位置。
在快速情况下,门打开后你以很高的速度冲入电梯,电梯里的人没有时间挪动位置来重新安排他们自己以便容纳你。
你将会直接地撞伤在门口的两个人,而其他人则没有受到影响。
对于准静态分析,实际的道理是同样的。
分析的速度经常可以提高许多而不会严重地降低准静态求解的质量;缓慢情况下和有一些加速情况下的的最终结果几乎是一致的。
但是,如果分析的速度增加到一个点,使得惯性影响占主导地位时,解答就会趋向于局部化,而且结果与准静态的结果是有一定区别的。
2. 加载速率一个物理过程所占用的实际时间称其为它的固有时间(nature time)。
对于一个准静态过程在固有时间中进行分析,我们一般能得到准确的静态结果。
毕竟,如果实际事件真实地发生在其固有时间尺度内,并在结束时其速度为零,那么动态分析应该能够得到这样的事实,即分析实际上已经达到了稳态。
你可以提高加载速率使相同的物理事件在较短的时间内发生,只要解答保持与真实的静态解答几乎相同,而且动态效果保持是不明显的。
2.1 光滑幅值曲线对于准确和高效的准静态分析,要求施加的载荷尽可能地光滑。
突然、急促的运动会产生应力波,它将导致振荡或不准确的结果。
以可能最光滑的方式施加载荷要求加速度从一个增量步到下一个增量步只能改变一个小量。
如果加速度是光滑的,随其变化的速度和位移也是光滑的。
ABAQUS有一条简单、固定的光滑步骤(smooth step)幅值曲线,它自动地创建一条光滑的载荷幅值。
当你定义一个光滑步骤幅值曲线时,ABAQUS自动地用曲线连接每一组数据对,该曲线的一阶和二阶导数是光滑的,在每一组数据点上,它的斜率都为零。
由于这些一阶和二阶导数都是光滑的,你可以采用位移加载,应用一条光滑步骤幅值曲线,只用初始的和最终的数据点,而且中间的运动将是光滑的。
使用这种载荷幅值允许你进行准静态分析而不会产生由于加载速率不连续引起的波动。
2.2 结构问题在静态分析中,结构的最低模态通常控制着结构的响应。
如果已知最低模态的频率和相应的周期,你可以估计出得到适当的静态响应所需要的时间。
为了说明如何确定适当的加载速率,考虑在汽车门上的一根梁被一个刚性圆环从侧面侵入的变形,实际的实验是准静态的。
采用不同的加载速率,梁的响应变化很大。
以一个极高的碰撞速度为400m/s,在梁中的变形是高度局部化的。
为了得到一个更好的准静态解答,考虑最低阶的模态。
最低阶模态的频率大约为250Hz,它对应于4ms的周期。
应用在ABAQUS/Standard中的特征频率提取过程可以容易地计算自然频率。
为了使梁在4ms内发生所希望的0.2m的变形,圆环的速度为50m/s。
虽然50m/s似乎仍然像是一个高速碰撞速度,而惯性力相对于整个结构的刚度已经成为次要的了,变形形状显示了很好的准静态响应。
虽然整个结构的响应显示了我们所希望的准静态结果,但通常理想的是将加载时间增加到最低阶模态的周期的10倍以确保解答是真正的准静态。
为了更进一步地改进结果,刚环的速度可能会逐渐增大,例如应用一条光滑步骤幅值曲线,从而减缓初始的冲击。
2.3 金属成形问题为了获得低成本的求解过程,人为地提高成型问题的速度是必要的,但是,我们能够把速度提高多少仍可以获得可接受的静态解答呢?如果薄金属板毛坯的变形对应于其最低阶模态的变形形状,可以应用最低阶结构模态的时间周期来指导成型的速度。
然而在成型过程中,刚性的冲模和冲头能够以如此的方式约束冲压,使坯件的变形可能与结构的模态无关。
在这种情况下,一般性的建议是限制冲头的速度小于1%的薄金属板的波速。
对于典型的成型过程,冲头速度是在1m/s的量级上,而钢的波速大约为5000m/s。
因此根据这个建议,一个50的因数为冲头提高速度的上限。
为了确定一个可接受的冲压速度,建议的方法包括以各种变化的冲压速度运行一系列的分析,这些速度在3m/s至50m/s的范围内。
由于求解的时间与冲压的速度成反比,运行分析是以冲压速度从最快到最慢的顺序进行。
检查分析的结果,并感受变形形状、应力和应变是如何随冲压速度而改变的。
冲压速度过高的一些表现是与实际不符的、局部化的拉伸与变薄,以及对起皱的抑止。
如果你从一个冲压速度开始,例如50m/s,并从某处减速,在某点上从一个冲压速度到下一个冲压速度的解答将成为相似的,这说明解答开始收敛于一个准静态的解答。
当惯性的影响成为不明显时,在模拟结果之间的区别也是不明显的。
随着人为地增加加载速率,以逐渐和平滑的方式施加载荷成为越来越重要的方式。
例如,最简单的冲压加载方式是在整个成型过程中施加一个定常的速度。
在分析开始时,如此加载会对薄金属板坯引起突然的冲击载荷,在坯件中传播应力波并可能产生不希望的结果。
当加载速率增加时,任何冲击载荷对结果的影响将更加明显。
应用光滑步骤幅值曲线,使冲压速度从零逐渐增加可以使这些不利的影响最小化。
2.4 回弹回弹经常是成型分析的一个重要部分,因为回弹分析决定了卸载后部件的最终形状。
尽管ABAQUS/Explicit十分适合于成型模拟,对回弹分析却遇到某些特殊的困难。
在ABAQUS/Explicit中进行回弹模拟最主要的问题是需要大量的时间来获得稳态的结果。
特别是必须非常小心地卸载,并且必须引入阻尼以使得求解的时间比较合理。
幸运的是,在ABAQUS/Explicit和ABAQUS/Standard之间的紧密联系允许一种更有效的方法。
由于回弹过程不涉及接触,而且一般只包括中度的非线性,所以ABAQUS/Standard可以求解回弹问题,并且比ABAQUS/Explicit求解得更快。
因此,对于回弹分析更偏爱的方法是将完整的成型模型从ABAQUS/Explicit输入(import)到ABAQUS/Standard中进行。
3. 质量放大质量放大(mass scaling)可以在不需要人为提高加载速率的情况下降低运算的成本。
对于含有率相关材料或率相关阻尼(如减震器)的问题,质量放大是惟一能够节省求解时间的选择。
在这种模拟中,不要选择提高加载速度,因为材料的应变率会与加载速率同比例增加。
当模型的参数随应变率变化时,人为地提高加载速率会人为地改变了分析的过程。
人为地将材料密度增加因数倍,则波速就会降低因数f倍,从而稳定时间增量将提高因数f倍。
注意到当全局的稳定极限增加时,进行同样的分析所需要的增量步就会减少,而这正是质量放大的目的。
但是,放大质量对惯性效果与人为地提高加载速率恰好具有相同的影响。
因此,过度地质量放大,正像过度地加载速率,可能导致错误的结果。
为了确定一个可接受的质量放大因数,所建议的方法类似于确定一个可接受的加载速率放大因数。
两种方法的唯一区别是与质量放大相关的加速因子是质量放大因数的平方根,而与加载速率放大相关的加速因子是与加载速率放大因数成正比。
例如,一个为100倍的质量放大因数恰好对应于10倍的加载速率因数。
通过使用固定的或可变的质量放大,可以有多种方法来实现质量放大编程。
质量放大的定义也可以随着分析步而改变,允许有很大的灵活性。
详细的内容请参阅ABAQUAS分析用户手册第7.15.1节“Mass scaling”。
4. 能量平衡评估模拟是否产生了正确的准静态响应,最具有普遍意义的方式是研究模型中的各种能量。
下面是在ABAQUS/Explicit中的能量平衡方程:Etotal=EI+EV+EKE+EFD+EW式中,EI是内能(包括弹性和塑性应变能),EV是粘性耗散吸收的能量,EKE是动能,EFD是摩擦耗散吸收的能量,EW是外力所做的功,Etotal是在系统中的总能量。
如果模拟是准静态的,那么外力所做的功是几乎等于系统内部的能量。