2008“数学解题能力展示”读者评选活动高年级组复试题
2011年数学解题能力展示读者评选活动初一年级组复试试卷

2011年“数学解题能力展示”读者评选活动初一年级组复试试卷(测评时间:2011年1月30日14:00—15:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题Ⅰ(每题8分,共40分)1. 计算:()()()()432131 2.522430.25⎡⎤−−−−÷−+×−⎢⎥⎣⎦=−+. 2. 如图,已知60o AOF ∠=,那么A B C D E F∠+∠+∠+∠+∠+∠的值是 度.3. 设12,,,n x x x "可以取3,0,1−中的一个数,且22212279n x x x +++=",33312585n x x x +++=−". 则444123n x x x ++++"的值为 .4. 若一个整式中有n 个不同的字母,则称此整式为n 元整式,例如:23x y +为二元整式.那么,在所有三元二次整式中,项数最多有 项.5. 从1开始的连续自然数按如图所示的方式排列起来,如果表中某个数比它正上方那个数的2倍少26,就称这个数是“好数” .那么最小的“好数”是 .二、填空题Ⅱ(每题10分,共50分)6. 如图,在ABC Δ中,80A ∠=°,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,2A BC ∠的平分线与2A CD ∠的平分线交于点3A ,则3BA C ∠= .D1 2 3 4 561211 10 9 871314 15 16 1718…7. 方程123450x −−−−−=的所有解之和为 .8. 已知a ,b ,c ,d 都是不大于2010的非负数,A ,B ,C ,D 分别是第一个数、前两个数、前三个数、前四个数的平均数,那么()()a b c d A B C D +++−+++的最大值等于 .9. 已知12345,,,,x x x x x 是非负整数,且123452011x x x x x ++++=,若M 是12233445,,,x x x x x x x x ++++的最大值,则M 的最小值为 .10. 如图,大正方形被分成了面积相等的四块.若AB 长为3厘米,则大正方形的面积为 平方厘米.三、填空题Ⅲ(每题12分,共60分)11. 将1~1000中9的倍数排列成一个多位数,要使这个多位数尽可能大,那么从前往后看,它的第9位数字与第50位数字的和是 .12. 有一个整数,它恰好是它的正约数个数的25倍.则这个整数的最小值是 .13. 对于任意有理数,a b ,不等式max{||,|2|,|1000|}a b a b b c +−−≥恒成立,则常数c 的最大值是 .(max{,,}x y z 表示,,x y z 中的最大值)14. 一个微型机器人最开始在数轴上的原点,按如下规则运动:(1)每1步走整数个单位长,向左、向右任意选择; (2)第1步走1个单位长;(3)若前1步不动,则这1步走1个单位长;(4)若前1步向左走n 个单位长,则这1步走n -1个单位长; (5)若前1步向右走n 个单位长,则这1步走n +1个单位长.那么,当微型机器人走完2011步时,距离原点距离的最小值是 .15. 从1,2,3,…,2000中取出n 个数,若存在一个不大于1000的正整数m ,使得这n 个数中任意两个数差的绝对值都不等于m ,则n 的最大值为.。
2008年高考全国卷2理科数学(含解析)

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M【高考考点】集合的运算,整数集的符号识别。
【评注】历年来高考数学第一个小题一般都是集合问题,都超简单。
其实集合问题是可以出难题的,但高考中的集合问题比较简单。
需要注意的是:很多复习书都把集合作为高考数学复习的起点,我认为这是不妥当的,高中的集合问题涉及到的集合知识并不多(就是一种表达方式),其难度主要体现在知识的综合性上,学生应当先学习其他知识,再在集合中综合。
建议把“数学的基本运算”作为高考数学复习的起点,学生花1个月的时间温习、强化初等数学的基本运算是必要的,重要的,也是值得的。
数学的基本运算具体包括的内容可以参考本人编写的《高考数学复习专用教材》 2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223b a = B .223a b =C .229b a =D .229a b =【答案】A【解析】i b b a ab a i b ab bi a a bi a )3()3(33)(322332233-+-=--+=+,因是实数且0b ≠,所以2232303a b b b a =⇒=-【高考考点】复数的基本概念、基本运算,立方和公式(基本运算)【评注】很多学生没有学习过立方和公式,不会用立方和公式一步到位地展开,有人按32()()()a bi a bi a bi +=++进行展开,也有人按3()()()()a bi a bi a bi a bi +=+++进行展开,还有人用二项式定理进行展开,这都是可行的思路。
2008年江苏高考数学真题及答案

2008年江苏高考数学真题及答案本试卷分第I 卷(填空题)和第II 卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的 准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 参考公式:样本数据,,,的标准差1x 2x n xs =其中为样本平均数x 柱体体积公式V Sh =其中为底面积,为高S h一、填空题:本大题共1小题,每小题5分,共70分. 1.的最小正周期为,其中,则= ▲ .()cos 6f x x πω⎛⎫=-⎪⎝⎭5π0ω>ω2.一个骰子连续投2 次,点数和为4 的概率 ▲ . 3.表示为,则= ▲ . 11ii+-a bi +(),a b R ∈a b +=4.A=,则A Z 的元素的个数 ▲ . {()}2137x x x -<-5.,的夹角为,, 则 ▲ .a b120︒1a = 3b = 5a b -=6.在平面直角坐标系中,设D 是横坐标与纵坐标的绝对值均不大于2 的点构成的区域,xoy 锥体体积公式13V Sh=其中为底面积,为高S h 球的表面积、体积公式,24S R π=343V R π=其中R 为球的半径E 是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则所投的点落入E 中的概率是 ▲ .7.某地区为了解70-80岁老人的日平均睡眠时间(单位:h ),随即选择了50为老人进行调查,下表是这50为老人日睡眠时间的频率分布表。
2008年全国高中数学联赛一试二试试题整理详解汇编(一试+二试AB卷)(学生版)

2008年全国高中数学联赛受中国数学会委托,2008年全国高中数学联赛由重庆市数学会承办。
中国数学会普及工作委员会和重庆市数学会负责命题工作。
2008年全国高中数学联赛一试命题范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。
全卷包括6道选择题、6道填空题和3道大题,满分150分。
答卷时间为100分钟。
全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。
全卷包括3道大题,其中一道平面几何题,试卷满分150分。
答卷时问为120分钟。
一 试4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( )。
(A )764 cm 3或586 cm 3 (B ) 764 cm 3(C )586 cm 3或564 cm 3 (D ) 586 cm 3 5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( )。
(A ) 1 (B ) 2 (C ) 3 (D ) 46.设ABC ∆的内角A B C 、、所对的边a b c 、、成等比数列,则的取值范围是( )。
(A )(0,)+∞ (B ) 51+ (C )5151()-+ (D )51)-+∞ 二、填空题(每小题9分,共54分)11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f = .12.一个半径为1的小球在一个内壁棱长为46则该小球永远不可能接触到的容器内壁的面积是 .三、解答题(每小题20分,共60分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+. 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.加 试(A 卷)一、(本题满分50分)如图,给定凸四边形ABCD ,180B D ∠+∠<,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(1)求证:当()f P 达到最小值时,P A B C 、、、四点共圆;(2)设E 是ABC ∆外接圆O 的AB上一点,满足:32AE AB =,31BC EC=-,12ECB ECA ∠=∠,又,DA DC 是O 的切线,2AC =,求()f P 的最小值. 二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明:(1)若T 为有理数,则存在素数p ,使1p是()f x 的周期; (2)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>> (1,2,)n =⋅⋅⋅,且每个(1,2,)na n =⋅⋅⋅都是()f x 的周期.三、(本题满分50分)设0k a >,1,2,,2008k =.证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件: 答一图1(1)010n n x x x +=<<,1,2,3,n =;(2)lim n n x →∞存在; (3)200820071110n n k n k k n k k k x x a x a x -+++==-=-∑∑,1,2,3,n =.2008年全国高中数学联合竞赛加试(B 卷)试题参考答案说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分;2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次.一、(本题满分50分)如题一图,ABCD 是圆内接四边形.AC 与BD 的交点为P ,E 是弧AB 上一点,连接EP 并延长交DC 于点F ,点,G H分别在CE ,DE 的延长线上,满足EAG FAD ∠=∠,EBH FBC ∠=∠,求证:,,,C D G H 四点共圆.二、(本题满分50分)求满足下列关系式组 2222,50,x y z z y z ⎧+=⎨<≤+⎩的正整数解组(,,)x y z 的个数.三、(本题满分50分)设0k a >,1,2,,2008k =.证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件: (ⅰ)010n n x x x +=<<,1,2,3,n =;(ⅱ)lim n n x →∞存在; (ⅲ)200820071110n n k n k k n k k k x x a x a x -+++==-=-∑∑,1,2,3,n =.题一图。
2009“数学解题能力展示”读者评选活动中年级组复试题

2009“数学解题能力展示”读者评选活动中年级组复试题(活动时间:2009年2月4日11:00—12:00;满分120分)(请将答案填入答题卡中)一、填空题(每题8分)1. 200917123+⨯=_____________.2. 右图是体操运动员小燕倒立时看到镜子中另一正常站立的运动员小杰的号码,则小杰的号码是_____________.3. 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________. 4. 如图,有一张长为12厘米,宽为10厘米的长方形纸片,按照虚线将这个纸片剪为两部分,这两部分的周长之和是_____________厘米.二、填空题(每题10分)5. A,B,C,D,E,F 六个足球队进行单循环比赛,每两个队之间都要赛一场,且只赛一场.胜者得3分,负者得0分,平局每队各得1分.比赛结果,各队得分由高到低恰好为一个等差数列,获得第3名的队得了8分,那么这次比赛中共有 _____________场平局.6. 将1、2、3、4、5、6、7、8、9这九个数排成一行,使得第一个数是第二个数的整数倍,前两个数的和是第三个数的整数倍,前三个数的和是第四个数的整数倍,……,前八个数的和是第九个数的整数倍.如果第一个数是6,第四个数是2,第五个数是1,最后一个数是_____________.7. 过年了,妈妈买了7件不同的礼物,要送给亲朋好友的5个孩子每人一件。
其中姐姐的儿子小强想从智力拼图和遥控汽车中选一个,朋友的女儿小玉想从学习机和遥控汽车中选一件.那么妈妈送出这5件礼物共有____________种方法.8. 早上8点,小明和小强从甲、乙两地同时出发,以不变的速度相向而行.9点20时两人相距10千米,10点时,两人相距还是10千米.11点时小明到达乙地,这时小强距甲地_____________千米.三、填空题(每题12分)4厘米9.一个数列,从第3项起,每一项都等于其前面两项的和.这个数列的第2项为39,第10项为2009,那么前8项的和是_____________.10.幼儿园老师买了同样多的巧克力、奶糖和水果糖.她发给每个小朋友2块巧克力,7块奶糖和8块水果糖.发完后清点一下,水果糖还剩15块,而巧克力恰好是奶糖的3倍.那么共有_____________个小朋友.11.在下图中,在每个圆圈中填入一个数,使每条直线上所有圆圈中数的和都是234,那么标有★的圆圈中所填的数是_____________.12.某次武林大会有九个级别的高手参加,按级别从高到低分别是游侠、火枪手、骑士、剑客、武士、弓箭手、法师、猎人、牧师.为公平起见,分组比赛的规则是:两人或三人分为一组,若两人一组,则这两人级别必须相同;若三人一组,则这三名高手级别相同,或者是连续的三个级别各一名.现有13个人,其中有三名游侠、三名牧师,其它七类高手各一名.若此时再有一人加入,所有这些人共分为五组比赛,那么新加入这个人的级别可以有____________种选择.答案:⑴4100 ⑵5006 ⑶33 ⑷94 ⑸3 ⑹5 ⑺180 ⑻10 ⑼1970 ⑽10 ⑾78 ⑿9。
2008年全国高中数学联赛试题及答案详解

受中国数学会委托,2008年全国高中数学联赛由重庆市数学会承办。
中国数学会普及工作委员会和重庆市数学会负责命题工作。
2008年全国高中数学联赛一试命题范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。
全卷包括6道选择题、6道填空题和3道大题,满分150分。
答卷时间为100分钟。
全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。
全卷包括3道大题,其中一道平面几何题,试卷满分150分。
答卷时问为120分钟。
一 试4.若三个棱长均为整数(单位:cm)的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( )。
(A)764 cm 3或586 cm 3(B) 764 cm 3(C)586 cm 3或564 cm 3(D) 586 cm 35.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( )。
(A) 1 (B) 2 (C) 3 (D) 46.设ABC ∆的内角A B C 、、所对的边a b c 、、成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( )。
(A)(0,)+∞ (B) 12(C) (D))+∞二、填空题(每小题9分,共54分)11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f = .12.一个半径为1的小球在一个内壁棱长为的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是 . 三、解答题(每小题20分,共60分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+. 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.加 试一、(本题满分50分)如图,给定凸四边形ABCD ,180B D ∠+∠< ,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(1)求证:当()f P 达到最小值时,P A B C 、、、四点共圆;(2)设E 是ABC ∆外接圆O 的 AB上一点,满足:2AE AB =,1BC EC =,12ECB ECA ∠=∠,又,DA DC 是O的切线,AC ,求()f P 的最小值.二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明: (1)若T 为有理数,则存在素数p ,使1p是()f x 的周期; (2)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>>(1,2,)n =⋅⋅⋅,且每个(1,2,)na n =⋅⋅⋅都是()f x 的周期.三、(本题满分50分)设0k a >,1,2,,2008k = .证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件:(1)010n n x x x +=<<,1,2,3,n = ;答一图1(2)lim n n x →∞存在;(3)20082007111n n k n k k n k k k x x a x a x -+++==-=-∑∑,1,2,3,n = .1. 【答案】C 【解析】当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---2≥2=,当且仅当122x x=--时取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.故选C.3.【答案】B12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=, 1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164(()3381==,因此520162662469818181E ξ=⨯+⨯+⨯=.故选B。
2008年数学(理科)试卷(山东卷)(word版 详细解析)

中学学科网2008年普通高等学校招生全国统一考试(山东卷)理科数学全解全析解析作者:孙宜新第I 卷一、选择题:本大题共12小题,每小题5分,共60分。
(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是().1A ().2B ().3C ().4D2.设z 的共轭复数是z ,若4z z +=,8z z ⋅=,则zz等于 ().A i ().B i - ().1C ± ().D i ±【标准答案】:D 。
【试题分析】 可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===± 【高考考点】: 共轭复数的概念、复数的运算。
【易错提醒】: 可能在以下两个方面出错:一是不能依据共轭复数条件设2z bi =+简化运算;二是由248b +=只求得 2.b =【学科网备考提示】: 理解复数基本概念并进行复数代数形式的四则运算是复数内容的基本要求,另外待定系数法、分母实数化等解题技巧也要引起足够重视。
3函数ln cos ()22y x x ππ=-<<的图象是5.已知4cos()sin 365παα-+=,则7sin()6πα+的值是 23().5A -23().5B 4().5C - 4().5D 【标准答案】:C 。
【试题分析】:334cos()sin cos sin 36225παααα-+=+=,134cos sin 225αα+=, 7314sin()sin()sin cos .66225ππαααα⎛⎫+=-+=-+=- ⎪ ⎪⎝⎭【高考考点】: 三角函数变换与求值。
【易错提醒】: 不能由334cos()sin cos sin 36225παααα-+=+=得到134cos sin 225αα+=是思考受阻的重要体现。
第1-29届历届小学“迎春杯”真题word版

目录第1届“迎春杯”数学竞赛刊赛试题... .............................................................. . 1 第2届“迎春杯”数学竞赛决赛试题... .............................................................. . 5 第3届“迎春杯”数学竞赛决赛试题... .............................................................. . 8 第4届“迎春杯”数学竞赛决赛试题... ............................................................ .. 10 第5届“迎春杯”数学竞赛决赛试题... ............................................................ .. 11 第6届“迎春杯”数学竞赛决赛试题... ............................................................ .. 13 第7届“迎春杯”数学竞赛决赛试题... ............................................................ .. 16 第8届“迎春杯”数学竞赛决赛试题... ............................................................ .. 18 第9届“迎春杯”数学竞赛决赛试题... ............................................................ .. 20 第10 届“迎春杯”数学竞赛决赛试题... .......................................................... (23)第11 届“迎春杯”数学竞赛初赛试题... ........................................................... (25)第11 届“迎春杯”数学竞赛决赛试题... ........................................................... (27)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (29)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (31)第13 届“迎春杯”数学竞赛初赛试题... .......................................................... (33)第13 届“迎春杯”数学竞赛决赛试题... .......................................................... (35)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (37)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (39)第15 届“迎春杯”数学竞赛初赛试题... .......................................................... (41)第15 届“迎春杯”数学竞赛决赛试题... .......................................................... (43)第16 届“迎春杯”数学科普活动日区县邀请赛试题... .................................. (45)第17 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 47 第18 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 50 第19 届“迎春杯”数学科普活动日计机交流试题... ....................................... . 52 第19 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 54 第20 届“迎春杯”数学科普活动日试题... ....................................................... .. 55 第21 届“迎春杯”数学科普活动日解题能力展示初赛试题... ...................... (57)第21 届“迎春杯”数学解题能力展示读者评选活动复试计算机交流试题... (58)第22 届“迎春杯”数学解题能力展示读者评选活动中年级初试试题... ..... .. 60 第22 届“迎春杯”数学解题能力展示读者评选活动中年级复试试题... ..... .. 62 第22 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 64第22 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 66第23 届“迎春杯”数学解题能力展示评选活动中年级初试试题... .............. . 69第23 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 71第23 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 73第23 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 75第24 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 77第24 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 79第24 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 81第24 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 83第24 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 85第24 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 88第25 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 90第25 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 92第25 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 94第25 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 96第25 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 98第25 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 100 第26 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 102 第26 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 104 第26 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 106 第26 届“迎春杯”数学解题能力展示评选活动五年级初试试题... ........... .. 108 第26 届“迎春杯”数学解题能力展示评选活动六年级初试试题... ........... .. 110 第26 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 112 第27 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 114 第27 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 116 第27 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 118第 27届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 122 第 27届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 124 第 28届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 126 第 28届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 128 第 28届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 130 第 28届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 132 第 28届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 134 第 28届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 136 第 29届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 138 第 29届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 140 第 29届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 141 第 29届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 143 第 29届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 144 第 29届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 145第 1 届“迎春杯”数学竞赛刊赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
;.
2008“数学解题能力展示"读者评选活动
高年级组复试题
(活动时间:2008年2月4日9:O02-10:30;满分130分)
一、填空题(每小题l0分,共100分)
1. 将数字1至9分别填入右边竖式的方格内使算式成立(每个数字恰好使用一次),那么
加数中的四位数最小是 .
1
2008
2. 如果三位数m同时满足如下条件:⑴m的各位数字之和是7;⑵2m还是三位数,且
各位数字之和为5.那么这样的三位数m共有 个.
3. 爸爸买了三个不同的福娃送给三胞胎兄妹.打开包装前,哥哥猜:“一定有欢欢,而
没有晶晶”;弟弟猜:“晶晶和欢欢当中至少有一个,一定没有迎迎”;妹妹猜:“一定
有迎迎和妮妮,没有贝贝”;爸爸笑着回答:“你们每个人猜的两句话中,都恰好有一
句是对的,有一句是错的”,请你把三个福娃的名字写下来: , , .
4. 如果一些不同质数的平均数为21,那么它们中最大的一个数的最大可能值为 .
5. 计算:
11111
()1200722006(2008)2006220071nn
LL
20071111
()20081200622005(2007)20061nn
LL
.
6. 有四个非零自然数,,,abcd,其中cab, dbc.如果a能被2整除, b能被3
整除, c能被5整除, d能被7整除,那么d最小是 .
7. 在图的5×5的方格表中填入ABCD、、、四个字母,要求:每行每列中四个字母都恰
出现一次:如果菜行的左边标有字母,则它表示这行中第一个出现的字母;如果某行
的右边标有字母,则它表示这行中最后一个出现的字母;类似地,如果某列的上边(或
者下边)标有字母,则它表示该列的第一个(或者最后一个)出现的字母.那么
,,,ABCD
在第二行从左到右出现的次序是 .
8. 记四位数abcd为X,由它的四个数字,,,abcd组成的最小的四位数记为X,如果
*999XX
,那么这样的四位数X共有 个.
.
;.
9. 一堆火柴有20根,甲乙二人轮流从中取出一些火柴,要求每次取的根数是前一个人
所取根数的约数,谁取走最后一根谁就获胜.如果甲先取,并且第一次取的根数是一
位数,那么为了确保自己获胜,他第一次应该取 根.
10. 如图,已知4ABAEcm, BCDC,90BAEBCD, 10ACcm,则
SABCACECDESS
⊿⊿⊿
________2cm.
C
D
E
B
A
二、解答题(每小题l5分,共30分):
11. 若干个同学排成一列纵队购买电影票,如果你观察后发现:除了前面的5个同学外,
每个同学都要比从他往前数(不包括他)第5位的同学高:除了前面的3个同学外,每
个同学都要比从他往前数(不包括他)第3位的同学矮.请问这支队伍最多有几个人?
12. 如图,小明家和小强家相距10千米,小强家与公园相距25千米.小明9:20从家骑
车出发去公园,l0:40小强从家出发,步行去公园.当小明到达学校时,他立即弃车
步行;又过了一会儿,当小强到达学校时,他立即开始骑车.两人同时于下午2:00
到达公园.如果两人步行速度相同,骑车速度也相同,那么学校与公园相距多少千米?
公园学校小强家
小明家
答案:
(1)1125(2)6(3)欢欢、晶晶、迎迎(4)89(5)12015028(6)28(7)BCDA(8)
48(9)4(10)50(11)7(12)17512x千米