第三章45刚体运动方程与转动惯量

合集下载

第三章 刚体

第三章 刚体
刚体力学
刚体:在力的作用下,大小和形状都不改变 的物体。
刚体是特殊的质点系,其上各质点间的相对位置保 持不变。 理想化模型
质 点 力 学 刚 体 力 学
研究对象:质点(——质点系),忽略物体形 状、大小。 运动形式:以平动为主。
研究对象——刚体(物体形状、大小不能忽 略)
运动形式:平动、转动、平面运动。 研究物体运动状态,有刚体运动学;研究物体的 受力和运动状态关系,有刚体动力学。
(2)用 表示任意点的 v :

r r sin R

r 方向正好与 的速度相同 M
v r
例1 一电动机的电枢每分钟转1800圈,当切断电源后, 电枢经20s停下来,(已知r=10cm)求(1)在此时间 内电枢转了多少圈?(2)电枢在10s时角速度及周 边的线速度、at 、an 。 解(1) 0 3 rad/s2
gt 2 ,正确。
返回
§3 刚体定轴转动中功和能 z
O
d
r
dr
受力矩 加速转动 是因作功。
F
动能增加,
一、力矩的功(力矩的
空间积累效应) ds rd
d A F cos(90 ) r d
0
P
ω

F sin r d
F
d

M d
r
P
φ
力矩的功: A
2
法向力矩为零
切向力矩:
Fi ri f i ri mi ai ri mi ri
2
Fi ri sin i f i ri sin i mi ri
2
对于整个刚体:
F r sin

第三章 刚体力学

第三章 刚体力学
于原力,该力偶矩等于原力对o点之矩。 说明:该力和力偶矩对刚体的作用与原力等效。
(5) 空间力系向一点简化 力系中每一个力都向简化中心简化得一力和力偶矩, 这些共点力和诸力偶矩可合成为一个单力和一个单 力偶矩,其作用与原力系等效。
结论:作用在刚体上的任意空间力系 F1 , F2 ......Fn ) (
l sin 0 cos 0 f N2 h l sin 0 cos2 0
2
B C
l
说明:也可用二矩式和三矩式 平衡条件求解
l
A
例2:相同的两个均质光滑球悬在结于定点O的两根 绳子上,求两球同时又支撑一个等重的均质球,求: 角与 角之间的关系。 解:(1) 本题需求角与 角的关系,
①力偶矩等于力偶中两力对任意一点力矩的矢量 和,故力偶矩的量值与取矩点无关。
证明:o点任取
M o rA F1 rB F2 (rA rB ) F1 rAB F 1 M o
结论:力偶矩是自由矢量 力的作用面不能随意移动。
2
mxc Fx 即: myc Fy mzc Fz

由对质心的动量矩定理(平动质心系中): dJ cx dt M cx dJ c M c 即: dJ cy dt M cy dt dJ cz dt M cz
B C
l
l
A
(3) 本题为平面力系的平衡问题
平衡条件:Fx 0, Fy 0, M z 0
Fx 0 f N1 cos 90 0 0 f N1 sin 0 Fy 0 N 2 N1 sin 90 0 P 0 N 2 P N1 cos 0 M 0 Pl cos N h N Pl sin cos / h 0 1 1 0 0 Az sin 0

3_2转动定律 转动惯量 平行轴定理

3_2转动定律 转动惯量 平行轴定理

平行轴定理 质量为m的刚体,如果对 其质心轴的转动惯量为JC ,则 对任一与该轴平行,相距为d 的转轴的转动惯量
d
C
m
O
J O J C md
JP 1 2 mR mR
2 2
2
圆盘对P 轴的转动惯量 P
R
O m
四 转动定律应用举例 对平动的物体应用牛顿定律;对转动的物体应 用转动定律;建立平动与转动之间的关系。
对质量面分布的刚体: d m
dS


:质量面密度
对质量体分布的刚体:d m
dV
:质量体密度
第三章 刚体的转动
3 – 2 转动定律 转动惯量 平行轴定理
例3-1 一质量为m、长为l的均匀细长棒,求通 过棒中心并与棒垂直的轴的转动惯量。
O r
l 2
O
dr
l 2
r
dr
O

l
解: 设棒的线密度为,取一距离转轴 OO 为r 处的质量元dm=dr . d J r 2 d m r 2 d r
(m A m C 2)m B g mA mB mC 2
A
mA
FT1
C
F T1
F T2
mC F T2
mB B
如令 m C 0,可得
F T1 F T2
mAmBg mA mB
第三章 刚体的转动
3 – 2 转动定律 转动惯量 平行轴定理
F T1 F T2
3) 刚体内作用力和反作用力的力矩互相抵消
M ij
O
M
rj
j
d
ji
iF ri ij
F ji

刚体的运动方程

刚体的运动方程

(欧勒运动学方程)
若:已知 ω 1 , ω 2 , ω 3
& & & 则:计算 ϕ , ψ , θ
讨论:对于对称陀螺,两个主轴可在平面 x1 x 2 上任意 选取,则:取 ox1 沿oN方向 ⇒
& ψ =0& 于是有: ω Nhomakorabea = θ
& & & ω 2 = φ sin θ ω 3 = φ sin θ + ψ

rc
∑m r = ∑m
a a a
a a
=0
⇒ 则
∑m r
a
a a
=0
d & 0 + ∑ (ra × ma ra ) = ∑ ra × Fa 外 dt a a

d & ∑ (ra × mara ) = ∑ ra × Fa 外 dt a a

& L( o ) = ∑ ra × ma ra
a
M ( o ) = ∑ ra × Fae
ϕ :刚体绕固定轴oz转过的角度——进动角; & ϕ :进动角速度——沿oz方向
& ψ
ψ :刚体绕 ox3 转过的角度——自转角;
:自转角速度——沿 ox3 方向。
ox θ : 3 和oz间的夹角——章动角; θ& :章动角速度——沿oN方向。
1. & 在 x1 x 2平面, 在 θ 由图:
x1 , x 2 , x3 的分量 θ&1 , θ&2 , θ&3 。
dω d ' ω d 'ω = + ω×ω = [ ] dt dt dt

dv 0 & = w + a + 2ω × v + ω × r + ω × (ω × r ) dt

第三章刚体定点转动

第三章刚体定点转动

第三章刚体定点转动§3.1定点转动运动学一、什么是定点转动?刚体转动时,如果刚体内只有一点始终保持不动,这种运动叫刚体的定点转动。

由于做定点转动时刚体上有一点固定不动,一般以定点为基点。

陀螺、回转罗盘(用于航空和航海方面)等,都是刚体绕定点转动的实例。

它们都只有一点不动。

如图3.1.1所示的常平架中的圆盘可绕对称轴z O ′转动,对称轴固结在内悬架上,内悬架可绕固结于外悬架的图3.1.1此,ON 轴转动而外悬架又可绕固定轴Oz 转动,此三轴的交点O 则是始终不动的,所以这种运动和定轴转动的情形不同。

二、定点转动和定轴转动的联系与区别1.联系:定点转动可以看成绕瞬时轴的定轴转动。

把某一瞬时角速度ω的取向,亦即在该瞬时的转动轴叫转动瞬轴。

跟转动瞬心相仿,转动瞬轴在空间和刚体内各描绘一个定点在O 的锥面,前者叫空间极面,后者则叫本体极面。

刚体绕固定点的转动,也可看作时本体极面在空间极面上作无滑动的滚动,如图3.1.2所示。

2.区别:(1)关于转轴:定点转动的轴恒通过一定点,但其在空间的取向随着时间的改变而改变,定轴转动的转轴在空间的取向不变。

(2)关于角速度:定点转动矢量的量值和方向都是时间的函数。

而定轴转动的角速度方向恒沿着固定的转动轴,量值可以是时间的函数。

ω三、定点转动时刚体上任一点的速度r dt r d v v vv ×==ωυ (3.1.1)P图3.1.3如图3.1.3所示,刚体上任一点P 的运动可以看成是绕瞬时轴的转动,所以其速度在圆周的切线方向,大小为R ωυ=.四、定点转动时刚体上任一点的加速度由加速度的定义知r r r dtd r r dt d r dt d dt d a vv v v v vv v v v v v v v v v v 2)()(ωωωωωωωυωωυ−⋅+×=××+×=×+×==而 R r r v v v v v 22)(ωωωω−=−⋅则R r dtd a v v v v 2ωω−×= (3.1.2)上式中的第一项r dtd vv×ω为转动加速度,第二项R v 2ω−为向轴加速度. 例:半径为a 的碾盘在水平面上做无滑滚动,长为b 的水平轴OA 绕竖直轴OE 以匀角速度1ω转动,如图3.1.4所示.求碾盘最高点P 的速度和加速度.x图3.1.4解: 碾盘绕定点O 运动,取如图所示的直角坐标系,OA=b,AB=OE=a,j a i b r P ˆˆ+−=v 要使碾盘在水平面上做无滑滚动,则瞬时角速度的方向为BO 方向,且iab j j i ˆˆˆˆ1121ωωωωω+=+=v.则 kb j a i b i ab j r P P ˆ2)ˆˆ()ˆˆ(111ωωωωυ=+−×+=×=vv v . 或用瞬轴法:P 点速度大小:b PD P 12ωωυ=⋅=. 方向:oz 轴方向.加速度: ja b i b r dt d dt d a P P Pˆˆ321221ωωυωωυ−=×+×==v v v v v v§3.2定点转动刚体对定点的动量矩一、刚体的动量矩图3.2.1刚体是一特殊的质点系,刚体作定点转动时对定点O 的动量矩(角动量)等于刚体上的各质点对定点O 的动量矩之和(矢量和)。

大学物理-第三章 刚体力学

大学物理-第三章 刚体力学
向力的作用点P的矢量。 M rF
大小:M rF sin Fd
M

O
z
M
r
d
P*
F
方向:右手螺旋,图中向上
0 , M o,沿转轴向上,使刚体绕转轴逆时针转
2 , M o,沿转轴向下,使刚体绕转轴顺时针转
上一页 下一页

2.外力F不在转动平面内 MFOFr FFz r F r Fz
T
N2

mg T2 T2 2m
2mg
解 : 设 整 体 顺 时 针 运 动, 即 两 滑 轮 转 轴 正 向 向内 。
右 质 点2m正 向 向 下 , 左 质 点m正 向 向 上 ,
受力分析如图。
上一页 下一页
右质点 2mg T2 2ma
左质点 T1 mg ma
右 滑 轮 T2 r
Tr
第三章 刚体力学
上一页 下一页
刚体:不发生形变的物体(理想模型)
刚体模型突出了物体的大小形状,忽略形变和振动。 刚体的运动形式:平动、转动、滚动、进动
刚体复杂运动可视为:平动 转动(绕某轴线转动) 刚体力学研究方法 把刚体看成不变质点系(任意两个质元的相对距离 保持不变),运用质点系定理和定律研究刚体的运动。

m 2
r
2
左滑轮Tr
T1r

m 2
r 2
关联方程 a r
解出 T 11 mg 8
N1
T

T1
mg
T1 m
mg
T
N2
a
mg T2
T2 2m
2mg
上一页 下一页
M,
J

刚体转动知识点总结

刚体转动知识点总结

刚体转动知识点总结1. 刚体的定义在物理学中,刚体是一个理想化的概念,用来描述物体的力学性质。

刚体是一个不会发生形变的物体,它具有不变的形状和大小。

在刚体转动的过程中,可以忽略物体的形变,只需考虑刚体的质量分布和外力作用情况。

2. 转动定律在刚体转动的过程中,存在着转动定律,即牛顿第二定律在转动运动中的应用。

根据转动定律,刚体的角加速度与作用在刚体上的合外力成正比,与刚体的转动惯量成反比。

转动定律可以用数学公式表示为:\[ \tau = I \alpha \]其中,$\tau$ 表示合外力矩,$I$ 表示刚体的转动惯量,$\alpha$ 表示刚体的角加速度。

3. 角动量角动量是描述刚体转动运动的物理量,它是刚体的转动惯量和角速度的乘积。

角动量可以用数学公式表示为:\[ L = I \omega \]其中,$L$ 表示角动量,$I$ 表示刚体的转动惯量,$\omega$ 表示角速度。

4. 转动惯量转动惯量是描述刚体对转动运动的惯性大小的物理量,它反映了刚体的质量分布对其转动运动的影响程度。

转动惯量的计算需要考虑刚体的形状和质量分布,通常需要使用积分来进行计算。

5. 转动运动方程刚体转动运动的规律可以通过转动运动方程来描述,转动运动方程可以表示为:\[ \tau = \frac{dL}{dt} \]其中,$\tau$ 表示合外力矩,$L$ 表示角动量,$t$ 表示时间。

转动运动方程描述了刚体的转动运动受到外力矩作用时角动量的变化规律。

6. 刚体的转动运动在刚体的转动运动中,需要考虑刚体的转动惯量、角速度、角加速度等物理量。

刚体的转动运动可以在直角坐标系下进行描述,通过使用牛顿运动定律和转动运动方程来分析刚体的转动运动规律。

7. 平行轴定理和垂直轴定理在计算刚体的转动惯量时,可以利用平行轴定理和垂直轴定理来简化计算过程。

根据平行轴定理和垂直轴定理,刚体绕与其质心平行(或垂直)且距离为$d$的轴转动的转动惯量可以表示为:\[ I = I_{\text{CM}} + Md^2 \]其中,$I$ 表示绕过质心平行(或垂直)轴转动的转动惯量,$I_{\text{CM}}$ 表示绕质心转动的转动惯量,$M$ 表示刚体的质量,$d$ 表示轴与质心的距离。

刚体力学

刚体力学

mi (xi2
+
z
2 i
)
−ωz
mi yi zi
=i 1 =i 1
=i 1
n
n
n
∑ ∑ ∑ J z = −ω x mi zi xi − ω y mi zi yi + ω z mi (xi2 + yi2 )
=i 1 =i 1 =i 1
定义:


I
xx
=
n
mi
(
y
2 i
+
z
2 i
)

i =1

ω = dθ
dt
线速度与角速度的关系
∆r = ∆n×r
ω = dn dt
lin ∆r = dn × r = ω× r ∆t→0 ∆t dt
∴ v = dr = ω× r dt
注意:角速度 ω 为整个刚体所共有,v是刚体 内某一点的线速度与 r 有关。
§ 3.3 刚体运动方程和平衡方程
一、力系的简化 1)力的可传性原理:
两个长方形砖块,分别沿 y 轴、z 轴转90 度,转动次序不同所得结果迴然不同,故知对易 律在这时不成立。
有限转动角速度不遵守平行四边形加法的对 易律.所以,有限转动角速度不是矢量 。
2)无限小转动
角位移
如图所示,设刚体绕通过定点O
的某轴线转动了一微小角度 ∆θ ,我
们用 ∆n 来代表∆θ 的量值和方向,
n
n
∑ ∑ M = M i = ri × Fi
i =1
i =1
O点称为简化中心,力的矢量和F叫做主矢,
力偶矩的矢量和M 叫做对简化中心的主矩。
n
F = ∑ Fi i =1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档