高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编及答案解析

合集下载

高考数学压轴专题(易错题)备战高考《平面解析几何》全集汇编附答案解析

高考数学压轴专题(易错题)备战高考《平面解析几何》全集汇编附答案解析

新数学《平面解析几何》试卷含答案一、选择题1.点为椭圆的一个焦点,若椭圆上存在点使(为坐标原点)为正三角形,则椭圆的离心率为( ) A .B .C .D .【答案】B 【解析】 【分析】为正三角形,点在椭圆上,代入椭圆方程,计算得到.【详解】由题意,可设椭圆的焦点坐标为, 因为为正三角形,则点在椭圆上,代入得,即,得,解得,故选B . 【点睛】本题考查了椭圆离心率的计算,意在考查学生的计算能力.2.若双曲线上存在四点,使得以这四点为顶点的四边形是菱形,则该双曲线的离心率的取值范围是( ) A .2) B .3)C .(2,)+∞D .3,)+∞【答案】C 【解析】 【分析】根据题意,双曲线与直线y x =±相交且有四个交点,由此得1ba>.结合双曲线的基本量的平方关系和离心率的定义,化简整理即得该双曲线的离心率的取值范围. 【详解】解:不妨设该双曲线方程为22221(0,0)x y a b a b-=>>,由双曲线的对称性质可知,该四边形为正方形, 所以直线y x =与双曲线有交点,所以其渐近线与x 轴的夹角大于45︒,即1ba>.离心率e =所以该双曲线的离心率的取值范围是)+∞. 故选:C . 【点睛】本题考查双曲线的离心率取值范围以及双曲线的标准方程和简单几何性质等知识,属于基础题.3.已知直线(3)(0)y k x k =+>与抛物线2:4C y x =相交于A ,B 两点,F 为C 的焦点.若5FA FB =,则k 等于( )A .3B .12C .23D .2【答案】B 【解析】 【分析】 由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->,得213k <,129x x =①,再利用抛物线的定义根据5FA FB =,得到1254x x =+②,从而求得21x =,代入抛物线方程得到(1,2)B ,再代入直线方程求解. 【详解】设()11,A x y ,()22,B x y ,易知1 0x >,20x >,10y >,20y >,由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->,所以213k <,129x x =①.因为1112p FA x x =+=+,2212pFB x x =+=+,且5FA FB =, 所以1254x x =+②. 由①②及20x >得21x =, 所以(1,2)B ,代入(3)y k x =+,得12k =. 故选:B【点睛】本题考查抛物线的定义,几何性质和直线与抛物线的位置关系,还考查了运算求解的能力,属于中档题.4.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,10【答案】D 【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=,又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =,再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.5.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A .125 B .65C .2D 【答案】A 【解析】试题分析:根据抛物线的定义可知抛物线24y x =上的点P 到抛物线的焦点距离1PF d =,所以122d d MF d +=+,其最小值为()1,0F 到直线3490x y -+=的距离,由点到直线的距离公式可知()()122min min223912534d d MF d ++=+==+,故选A. 考点:抛物线定义的应用.6.如图,12,F F 是双曲线221:13y C x -=与椭圆2C 的公共焦点,点A 是1C ,2C 在第一象限的公共点,若112F A F F =,则2C 的离心率是( )A .13B .15C .23D .25【答案】C 【解析】由221:13y C x -=知2c =,1124F A F F ==∵122F A F A -= ∴22F A =∵由椭圆得定义知1226a F A F A =+= ∴23,3c a e a === 故选C7.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP →→g 的最大值为( )A .4B .5C .6D .7【答案】C 【解析】 【分析】设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ⋅u u u r u u u r表示成为x 的二次函数,根据二次函数性质可求出其最大值. 【详解】设(),P x y ,()()1,0,0,0F O -,则()(),,+1,OP x y FP x y ==u u u r u u u r,则 22OP FP x x y ⋅=++u u u r u u u r,因为点P 为椭圆上,所以有:22143x y +=即22334y x =-,所以()222223132244x x y x x x FP x OP =++=⋅++-=++u u u r u u u r又因为22x -≤≤,所以当2x =时,OP FP ⋅u u u r u u u r的最大值为6 故选:C 【点睛】本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题.8.已知0mn ≠,则方程是221mx ny +=与20mx ny +=在同一坐标系内的图形可能是 ( )A .B .C .D .【答案】A 【解析】方程20mx ny +=即2my x n=-,表示抛物线,方程()2210mx ny mn +=≠表示椭圆或双曲线,当m 和n 同号时,抛物线开口向左,方程()2210mx ny mn +=≠表示椭圆,无符合条件的选项,当m 和n 异号时,抛物线2my x n=-开口向右,方程221mx ny +=表示双曲线,故选A.9.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.10.设P 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点,延长1FP 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .22(x 2)y 28-+=B .22(x 2)y 7++=C .22(x 2)y 28++=D .22(x 2)y 7-+= 【答案】C 【解析】 【分析】推导出12PF PF 2a +==2PQ PF =,从而11PFPQ FQ +==Q 的轨迹为圆,由此能求出动点Q 的轨迹方程. 【详解】P Q 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点, 延长1FP 至点Q ,使得2PQ PF =,12PF PF 2a ∴+==2PQ PF =,11PF PQ FQ 27∴+==, Q ∴的轨迹是以()1F 2,0-为圆心,27为半径的圆, ∴动点Q 的轨迹方程为22(x 2)y 28++=.故选:C . 【点睛】本题考查动点的轨迹方程的求法,考查椭圆的定义、圆的标准方程等基础知识,考查运算求解能力,是中档题.11.已知抛物线2:4C y x =,过其焦点F 的直线l 交抛物线C 于,A B 两点,若3AF FB =uu u r uu r,则AOF V 的面积(O 为坐标原点)为( )A .3 B .3C .433D .23【答案】B 【解析】 【分析】首先过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥,易得30ABM ∠=o ,60AFH ∠=o .根据直线AF :3(1)y x =-与抛物线联立得到12103x x +=,根据焦点弦性质得到163AB =,结合已知即可得到sin 6023AH AF ==o ,再计算AOF S V 即可.【详解】 如图所示:过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥. 因为3AF BF =uuu r uu u r,设BF k =,则3AF k =,11BB A M k ==.所以2AM k =. 在RT ABM V 中,12AM AB =,所以30ABM ∠=o . 则60AFH ∠=o .(1,0)F ,直线AF 为1)y x =-.221)310304y x x x y x⎧=-⎪⇒-+=⎨=⎪⎩,12103x x +=. 所以121016233AB x x p =++=+=,344AF AB ==.在RT AFH V 中,sin 60AH AF ==o所以112AOF S =⨯⨯=V 故选:B 【点睛】本题主要考查抛物线的几何性质,同时考查焦点弦的性质,属于中档题.12.若A ,B 分别是直线20x y --=与x 轴,y 轴的交点,圆C :()()22448x y -++=上有任意一点M ,则AMB ∆的面积的最大值是( )A .6B .8C .10D .12【答案】C 【解析】 【分析】先求出AB ,再求出M 到直线的最大距离为点M 到直线20x y --=加上半径,进而可得面积最大值. 【详解】由已知()2,0A ,()0,2B -则AB ==,又点M =所以最大面积为1102⨯=. 故选:C. 【点睛】本题考查圆上一点到直线的最大距离问题,是基础题.13.过双曲线22134x y -=的左焦点1F 引圆223x y +=的切线,切点为T ,延长1F T 交双曲线右支于P 点,M 为线段1F P 的中点,O 为坐标原点,则MO MT -=( ) A .1 B .23-C .13+D .2【答案】B 【解析】 【分析】根据三角形的中位线性质,双曲线的定义,及圆的切线性质,即可得到结论. 【详解】由图象可得()1111||MO MT MO MF TF MO MF TF -=--=-+=()(22211112322322PF PF OF OT -+-=⋅-+= 故选:B. 【点睛】本题考查圆与双曲线的综合,解题的关键是正确运用双曲线的定义,三角形的中位线性质.14.已知12F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,P 为双曲线上一点,2PF 与x 轴垂直,1230PF F ∠=︒,且焦距为3 ) A .3y x = B .2y x =C .2y x =±D .3y x =±【答案】B 【解析】 【分析】先求出c 的值,再求出点P 的坐标,可得22bPF a=,再由已知求得1PF ,然后根据双曲线的定义可得ba的值,则答案可求. 【详解】解:由题意,223c =解得3c =,∵()2,0F c ,设(),P c y ,∴22221x y a b-=,解得2b y a =±,∴22b PF a=,∵1230PF F ∠=︒,∴21222b PF PF a==,由双曲线定义可得:2122b PF PF a a-==,则222a b =,即2ba=. ∴双曲线的渐近线方程为2y x =±. 故选:B .【点睛】本题考查双曲线渐近线方程的求解,难度一般.求解双曲线的渐近线方程,可通过找到,,a b c 中任意两个量的倍数关系进行求解.15.已知点1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,1e ,2e 分别是1C 和2C 的离心率,点P 为1C 和2C 的一个公共点,且1223F PF π∠=,若22e =,则1e 的值是( ) A 5B 5C 25D 25【答案】D 【解析】 【分析】利用椭圆和双曲线的定义以及余弦定理可得到方程2221243c a a =+,由此得到关于离心率的方程求得结果.【详解】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,焦点坐标为()1,0F c -,()2,0F c , 不妨设P 为第一象限内的点,则1212+=PF PF a ,1222-=PF PF a , 则221212PF PF a a =-,由余弦定理得:2222212121212242cos3c PF PF PF PF PF PF PF PF π=+-=++, ()22222211212443c a a a a a ∴=--=+,2212314e e ∴+=,又22e =,2145e ∴=, 125e ∴=. 故选:D . 【点睛】本题考查共焦点的椭圆与双曲线问题的求解,关键是能够熟练应用椭圆和双曲线的定义,利用余弦定理构造等量关系,配凑出关于椭圆和双曲线离心率的方程.16.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,根据船P 接收到A 台和B 台电磁波的时间差,计算出船P 到B 发射台的距离比到A 发射台的距离远30海里,则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫± ⎪ ⎪⎝⎭B .135322,77⎛⎫± ⎪ ⎪⎝⎭C .3217,3⎛⎫±⎪⎝⎭D .(45,162±【答案】B 【解析】 【分析】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,根据双曲线的定义得出15a =,再得出由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,与双曲线()222713664x y --=联立,即可得出点P 坐标. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥由于船P 到B 台和到A 台的距离差为30海里,故15a =,又=17c ,故8b =故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>联立()()()222227121366411522564x y x x y x ⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135,7P ⎛ ⎝⎭ 故选:B 【点睛】本题主要考查了双曲线的应用,属于中档题.17.已知抛物线2:2(0)C x py p =>的焦点为F ,C 的准线与对称轴交于点H,直线2p y =-与C 交于A ,B两点,若||3AH =,则||AF =( ) A .3 B .83C .2D .4【答案】C 【解析】 【分析】注意到直线2py =-过点H ,利用||||AM AH=tan AHM ∠=||AH =||2AM =,再利用抛物线的定义即可得到答案.【详解】连接AF ,如图,过A 作准线的垂线,垂足为M ,易知点0,,0,22p p F H ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.易知直线2p y =-过点H,tan 3AHM AHM π∠=∠=,则||||AM AH =又43||AH =, 所以||2AM =,由抛物线的定义可得||AF =||2AM =.故选:C. 【点睛】本题考查直线与抛物线的位置关系,涉及到利用抛物线的定义求焦半径,考查学生转化与化归的思想,是一道中档题.18.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 且斜率为247的直线与双曲线在第一象限的交点为A ,若()21210F F F A F A +⋅=u u u u v u u u u v u u u v,则此双曲线的标准方程可能为( )A .22143x y -=B .22134x y -=C .221169x y -=D .221916x y -=【答案】D 【解析】 【分析】先由()21210F F F A F A +⋅=u u u u r u u u u r u u u r 得到1222F F F A c ==,根据2AF 的斜率为247,求出217cos 25AF F ∠=-,结合余弦定理,与双曲线的定义,得到c a ,求出ab ,进而可得出结果. 【详解】由()21210F F F A F A +⋅=u u u u r u u u u r u u u r,可知1222F F F A c ==,又2AF 的斜率为247,所以易得217cos 25AF F ∠=-, 在12AF F ∆中,由余弦定理得1165AF c =, 由双曲线的定义得16225c c a -=,所以53c e a ==,则:3:4a b =, 所以此双曲线的标准方程可能为221916x y -=.故选D 【点睛】本题考查双曲线的标准方程,熟记双曲线的几何性质与标准方程即可,属于常考题型.19.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( )A .2B C .2D 【答案】B 【解析】 【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率. 【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =,11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+-222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以c ==因此椭圆的离心率为c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.20.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,1223F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C 【解析】 【分析】利用椭圆的性质,根据4AB =,1223F F =3c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上, 12AB F F ⊥于2F ,4AB =,1223F F =3c =,22 4b a=, 222c a b =-,解得3a =,6b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.。

高考数学压轴专题(易错题)备战高考《平面解析几何》全集汇编及答案

高考数学压轴专题(易错题)备战高考《平面解析几何》全集汇编及答案

新数学《平面解析几何》期末复习知识要点一、选择题1.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =, 所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b = 所以双曲线的渐近线方程为23by x x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.2.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( ) A .3B 3C .2D .22【答案】A 【解析】【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】由22224(42)02y x bx b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,125x =-,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||MN = 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.3.已知抛物线x 2=16y 的焦点为F ,双曲线22145x y -=的左、右焦点分别为F 1、F 2,点P是双曲线右支上一点,则|PF|+|PF 1|的最小值为( ) A .5 B .7 C .9 D .11 【答案】C 【解析】 【分析】由题意并结合双曲线的定义可得1222(4)44PF PF PF PF PF PF FF +=++=++≥+,然后根据两点间的距离公式可得所求最小值. 【详解】由题意得抛物线216x y =的焦点为()0,4F ,双曲线22145x y -=的左、右焦点分别为()()123,0,3,0F F -.∵点P 是双曲线右支上一点, ∴124PF PF =+.∴1222(4)44549PF PF PF PF PF PF FF +=++=++≥+=+=,当且仅当2,,F P F 三点共线时等号成立,∴1PF PF +的最小值为9. 故选C . 【点睛】解答本题的关键是认真分析题意,然后结合图形借助数形结合的方法求解.另外在解题中注意利用双曲线的定义将所求问题进行转化,考查分析理解能力和解决问题的能力,属于基础题.4.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x yx y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点,(,(,,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.5.已知O 为平面直角坐标系的原点,2F 为双曲线()222210,0x y a b a b-=>>的右焦点,E 为2OF 的中点,过双曲线左顶点A 作两渐近线的平行线分别与y 轴交于C ,D 两点,B 为双曲线的右顶点,若四边形ACBD 的内切圆经过点E ,则双曲线的离心率为( )A .2 BC D 【答案】B 【解析】 【分析】由对称性可得四边形ACBD 为菱形,其内切圆圆心为坐标原点O ,求出圆心O 到BC 的距离d ,由四边形ACBD 的内切圆经过点E ,可得212d OF =,化简得出双曲线的离心率. 【详解】由已知可设()0A a -,,()0B a ,,AC bk a=, 有直线点斜式方程可得直线AC 方程为()by x a a=+, 令0x =,可得()0C b ,, 由直线的截距式方程可得直线BC 方程为1x ya b+=,即0bx ay ab +-=, 由对称性可得四边形ACBD 为菱形,其内切圆圆心为坐标原点O ,设内切圆的半径为r ,圆心O 到BC的距离为abd r c===, 又∵四边形ACBD 的内切圆经过点E , ∴2122ab cOF r c ===, ∴22ab c =, ∴()22244aca c -=,同除以4a 得,42440e e -+=,∴()2220e -=,∴22e =,∴e =(舍),∴e =故选:B. 【点睛】本题考查求双曲线离心率的问题,通过对称的性质得出相关的等量关系,考查运算求解能力和推理论证能力,是中档题.6.已知抛物线24y x =上有三点,,A B C ,,,AB BC CA 的斜率分别为3,6,2-,则ABC ∆的重心坐标为( )A .14,19⎛⎫⎪⎝⎭B .14,09⎛⎫⎪⎝⎭C .14,027⎛⎫⎪⎝⎭D .14,127⎛⎫⎪⎝⎭【答案】C 【解析】 【分析】设()()()112233,,,,,A x y B x y C x y ,进而用坐标表示斜率即可解得各点的纵坐标,进一步可求横坐标,利用重心坐标公式即可得解. 【详解】设()()()112233,,,,,,A x y B x y C x y 则1212221212124344AB y y y y k y y x x y y --====-+-,得1243y y +=, 同理234263y y +==,31422y y +==--,三式相加得1230y y y ++=, 故与前三式联立,得211231241,2,,3349y y y y x =-==-==,22214y x ==,233449y x ==,则12314327x x x ++=.故所求重心的坐标为14,027⎛⎫⎪⎝⎭,故选C. 【点睛】本题主要考查了解析几何中常用的数学方法,集合问题坐标化,进而转化为代数运算,对学生的能力有一定的要求,属于中档题.7.在平面直角坐标系中,已知双曲线的中心在原点,焦点在轴上,实轴长为8,离心率为,则它的渐近线的方程为( ) A . B .C .D .【答案】D 【解析】试题分析:渐近线的方程为,而,因此渐近线的方程为,选D.考点:双曲线渐近线8.过双曲线()2222100x y a b a b-=>>,的右焦点且垂直于x 轴的直线与双曲线交于A B,两点,OAB ∆的面积为133bc,则双曲线的离心率为( ) A 13B 13 C .222D .223【答案】D 【解析】 【分析】令x c =,代入双曲线方程可得2by a=±,由三角形的面积公式,可得,a b 的关系,由离心率公式计算可得所求值. 【详解】右焦点设为F ,其坐标为(),0c令x c =,代入双曲线方程可得2221c by b a a=±-=±OAB V的面积为21223b c a ⋅⋅=3b a ⇒=可得3c e a ==== 本题正确选项:D 【点睛】本题考查双曲线的对称性、考查双曲线的离心率和渐近线方程,属于中档题.9.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.10.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( ) A .322- B .22-C .32-D .21-【答案】D 【解析】由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PF PM m PQPQα===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设204x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以222PQ PF ,==,则2PF PQ a +=,∴21a =+,1c =,∴21ce a==-,故选D .11.已知椭圆22198x y +=的一个焦点为F ,直线220,220x y x y -+=--=与椭圆分别相交于点A 、B 、C 、D 四点,则AF BF CF DF +++=( ) A .12 B .642+C .8D .6【答案】A 【解析】 【分析】画出图像,根据对称性得到()()224AF BF CF DF AF AF DF DF a +++=+++=,得到答案. 【详解】画出图像,如图所示:直线220,220x y x y -+=--=平行,根据对称性知:()()22412AF BF CF DF AF AF DF DF a +++=+++==. 故选:A .【点睛】本题考查了椭圆的性质,意在考查学生对于椭圆知识的灵活运用.12.已知点M 是抛物线24x y =上的一动点,F 为抛物线的焦点,A 是圆C :22(1)(4)1x y -+-=上一动点,则||||MA MF +的最小值为( )A .3B .4C .5D .6【答案】B 【解析】 【分析】根据抛物线定义和三角形三边关系可知当,,M A P 三点共线时,MA MF +的值最小,根据圆的性质可知最小值为CP r -;根据抛物线方程和圆的方程可求得CP ,从而得到所求的最值. 【详解】如图所示,利用抛物线的定义知:MP MF =当,,M A P 三点共线时,MA MF +的值最小,且最小值为1CP r CP -=-Q 抛物线的准线方程:1y =-,()1,4C415CP ∴=+= ()min 514MA MF ∴+=-=本题正确选项:B 【点睛】本题考查线段距离之和的最值的求解,涉及到抛物线定义、圆的性质的应用,关键是能够找到取得最值时的点的位置,从而利用抛物线和圆的性质来进行求解.13.点为椭圆的一个焦点,若椭圆上存在点使(为坐标原点)为正三角形,则椭圆的离心率为( ) A .B .C .D .【答案】B 【解析】 【分析】为正三角形,点在椭圆上,代入椭圆方程,计算得到.【详解】由题意,可设椭圆的焦点坐标为, 因为为正三角形,则点在椭圆上,代入得,即,得,解得,故选B . 【点睛】本题考查了椭圆离心率的计算,意在考查学生的计算能力.14.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为( ) A .92B .9C .6D .3【答案】D 【解析】 【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭ ()122152522333n m m n ⎛≥+⨯=+⨯= ⎝.当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.15.倾斜角为45︒的直线与双曲线22214x y b-=交于不同的两点P 、Q ,且点P 、Q 在x 轴上的投影恰好为双曲线的两个焦点,则该双曲线的焦距为( )A.2B.2 C1 D1 【答案】B【解析】【分析】方法一;由双曲线的对称性可知直线过原点,可得2Rt QOF △为等腰三角形且245QOF ∠=︒,根据勾股定理及双曲线的定义可得:1c =.方法二:等腰2Rt QOF △中,可得22b QF a=,且2b c a =.又根据222b a c =-,联立可解得1c =. 【详解】方法一;由双曲线的对称性可知直线过原点,在等腰2Rt QOF △中,245QOF ∠=︒,则122F F c =,2QF c =,1QF =. 由双曲线的定义可得:122QF QF a-=,41c c -==,,故22c =.方法二:等腰2Rt QOF △中,22b QF a=, ∴2b c a=. 又222b a c =-,∴2240c c --=,得1c =.∴22c =.故选:B .【点睛】本题考查双曲线的性质,解题关键是将题目条件进行转化,建立等量关系求解,属于中等题.16.O 为坐标原点,F 为抛物线2:4C y x =的焦点,P 为C 上一点,若4PF =,则POF V 的面积为 A .2B .3C .2D .3 【答案】B【解析】【分析】由抛物线的标准方程24y x =可得抛物线的焦点坐标和准线方程,设出(,)P x y ,由PF =4以及抛物线的定义列式可得(1)4x --=,即3x =,再代入抛物线方程可得点P 的纵坐标,再由三角形的面积公式1||2S y OF =可得. 【详解】由24y x =可得抛物线的焦点F (1,0),准线方程为1x =-,如图:过点P 作准线1x =- 的垂线,垂足为M ,根据抛物线的定义可知PM =PF =4,设(,)P x y ,则(1)4x --=,解得3x =,将3x = 代入24y x =可得23y =±, 所以△POF 的面积为1||2y OF ⋅=123132⨯⨯=. 故选B .【点睛】本题考查了抛物线的几何性质,定义以及三角形的面积公式,关键是①利用抛物线的定义求P 点的坐标;②利用OF 为三角形的底,点P 的纵坐标的绝对值为高计算三角形的面积.属中档题.17.已知抛物线22(0)y px p =>的焦点为F ,过点F 作互相垂直的两直线AB ,CD 与抛物线分别相交于A ,B 以及C ,D ,若111AF BF+=,则四边形ACBD 的面积的最小值为( )A .18B .30C .32D .36【答案】C【解析】【分析】【详解】 由抛物线性质可知:112AF BF p +=,又111AF BF+=,∴2p =, 即24y x =设直线AB 的斜率为k (k≠0),则直线CD 的斜率为1k -. 直线AB 的方程为y=k (x ﹣1),联立214y k x y x=⎧⎨=⎩(﹣),消去y 得k 2x 2﹣(2k 2+4)x+k 2=0, 从而242A B x x k+=+,A B x x =1 由弦长公式得|AB|=244k +, 以1k-换k 得|CD|=4+4k 2, 故所求面积为()22221141AB CD 4448222k k k k ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭≥32(当k 2=1时取等号),即面积的最小值为32.故选C18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <u u u v u u u v ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,29λμ=,则该椭圆的离心率为( )A .35B .1213C .35或1213D .45【答案】A【解析】 分析:根据向量共线定理及29λμ=,AP BP <u u u v u u u v ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率. 详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v∴1λμ+= 又∵29λμ= ∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵AP BP <u u u v u u u v ∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限) ∴2(,)b P c a ,2(,)b B c a - ∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点∴直线1l 的方程为为1x y a b +=- ∴()(,)a c b A c a+ ∵2133OP OA OB =+u u u r u u u r u u u r ∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+. ∴22224()2a c a ac c -=++,即223520a c ac --=.∴25230e e +-=∵(0,1)e ∈∴35e = 故选A. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).19.双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( ).A .2B .22C .4D .42【答案】C【解析】试题分析:设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .考点:双曲线的方程与几何性质20.当点P 在圆221x y +=上变动时,它与定点(3,0)Q 的连结线段PQ 的中点的轨迹方程是( )A .22(3)4x y ++=B .22(23)41x y -+=C .22(3)1x y -+=D .22(23)41x y ++= 【答案】B【解析】【分析】根据已知条件可设()00,P x y ,线段PQ 的中点为(),M x y ,再利用中点坐标公式可得到0023,2x x y y =-=,再代入圆的方程221x y +=即可得到线段PQ 的中点的轨迹方程.【详解】设()00,P x y ,线段PQ 的中点为(),M x y ,(如图)则00322x x y y +⎧=⎪⎪⎨⎪=⎪⎩即00232x x y y =-⎧⎨=⎩, Q 点()00,P x y 在圆221x y +=上变动,即22001x y += ()()222321x y ∴-+=即()222341x y -+= 故选:B【点睛】本题考查了中点坐标公式,动点轨迹方程求法,属于一般题.。

高考数学压轴专题(易错题)备战高考《平面解析几何》分类汇编含答案

高考数学压轴专题(易错题)备战高考《平面解析几何》分类汇编含答案

【最新】数学《平面解析几何》高考知识点一、选择题1.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A .2B .2C .2-D .12【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得221202x y x +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为22=. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.2.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.3.已知抛物线x 2=16y 的焦点为F ,双曲线22145x y -=的左、右焦点分别为F 1、F 2,点P是双曲线右支上一点,则|PF|+|PF 1|的最小值为( ) A .5 B .7 C .9 D .11 【答案】C 【解析】 【分析】由题意并结合双曲线的定义可得1222(4)44PF PF PF PF PF PF FF +=++=++≥+,然后根据两点间的距离公式可得所求最小值. 【详解】由题意得抛物线216x y =的焦点为()0,4F ,双曲线22145x y -=的左、右焦点分别为()()123,0,3,0F F -.∵点P 是双曲线右支上一点, ∴124PF PF =+.∴1222(4)44549PF PF PF PF PF PF FF +=++=++≥+=+=,当且仅当2,,F P F 三点共线时等号成立,∴1PF PF +的最小值为9. 故选C . 【点睛】解答本题的关键是认真分析题意,然后结合图形借助数形结合的方法求解.另外在解题中注意利用双曲线的定义将所求问题进行转化,考查分析理解能力和解决问题的能力,属于基础题.4.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2BC .2D【答案】D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出P ⎫⎪⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c c ⎛⎫ ⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题.5.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,10【答案】D 【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=,又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =,再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6.已知双曲线22:1124x y C -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,P Q .若POQ ∆为直角三角形,则PQ =( ) A .2 B .4C .6D .8【答案】C 【解析】 【分析】由题意不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒,解三角形即可. 【详解】不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒.则易知30POF ∠=︒,4OF =,∴23OP =,在POQ n 中,60POQ ∠=︒,90OPQ ∠=︒,23OP =∴36PQ OP ==. 故选C 【点睛】本题主要考查双曲线的性质,根据双曲线的特征设出P ,Q 位置,以及POQ V 的直角,即可结合条件求解,属于常考题型.7.在平面直角坐标系中,已知双曲线的中心在原点,焦点在轴上,实轴长为8,离心率为,则它的渐近线的方程为( ) A . B .C .D .【答案】D 【解析】试题分析:渐近线的方程为,而,因此渐近线的方程为,选D.考点:双曲线渐近线8.如图,12,F F 是双曲线221:13y C x -=与椭圆2C 的公共焦点,点A 是1C ,2C 在第一象限的公共点,若112F A F F =,则2C 的离心率是( )A .13B .15C .23D .25【答案】C 【解析】由221:13y C x -=知2c =,1124F A F F ==∵122F A F A -= ∴22F A =∵由椭圆得定义知1226a F A F A =+= ∴23,3c a e a === 故选C9.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .(1,14) B .1(,1)4-C .(1,2)D .(1,2)-【答案】A 【解析】 【分析】 【详解】试题分析:抛物线24y x =焦点为F (1,0),准线为1x =-,作PQ 垂直于准线,垂足为M 根据抛物线定义: ,PQ PF PQ PM +=+,根据三角形两边距离之和大于第三边,直角三角形斜边大于直角边知:PQ PM +的最小值是点Q 到抛物线准线1x =-的距离;所以点P 纵坐标为1,则横坐标为14,即(1,14),故选A 考点:抛物线的定义及几何性质的运用.10.如图所示,点F 是抛物线24y x =的焦点,点,A B 分别在抛物线24y x =及圆22(1)4x y -+=的实线部分上运动,且AB 总是平行于x 轴,则FAB ∆的周长的取值范围( )A .(4,6)B .[4,6]C .(2,4)D .[2,4]【答案】A 【解析】由题意知抛物线24y x =的准线为1x =-,设A B 、两点的坐标分别为1,0()A x y ,2,0()B x y ,则1||1AF x =+.由()222414y x x y ⎧=⎪⎨-+=⎪⎩ 消去y 整理得2230x x +-=,解得1x =, ∵B 在图中圆()2214x y -+=的实线部分上运动, ∴213x <<.∴FAB ∆的周长为1212(1)2()3(4,6)AF FB BA x x x x ++=+++-=+∈. 选A .点睛:解决与抛物线有关的问题时,要注意抛物线定义的运用.特别是对于焦点弦的问题更是这样,利用定义可将抛物线上的点到焦点的距离(两点间的距离)转化成该点到准线的距离(点到直线的距离),然后再借助几何图形的性质可使问题的解决变得简单.11.已知P 是双曲线2221(0)8x y a a -=>上一点,12,F F 为左、右焦点,且19PF =,则“4a =”是“217PF =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】化简得到229PF a =+或292PF a =-,故当4a =时,217PF =或21PF =;当217PF =时,4a =,得到答案.【详解】P 是双曲线2221(0)8x y a a -=>上一点,12,F F 为左、右焦点,且19PF =,则229PF a =+或292PF a =-,当4a =时,217PF =或21PF =;当217PF =时,4a =. 故“4a =”是“217PF =”的必要不充分条件. 故选:B . 【点睛】本题考查了必要不充分条件,意在考查学生的推断能力.12.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P是双曲线在第一象限上的点,MO OP =u u u u v u u u v,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A .23B .7C .3D .2【答案】B 【解析】 【分析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ , 即有2224208c a a =+,即227c a =,可得7c a =,即7ce a==.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).13.过点(11)M , 的直线与椭圆22143x y += 交于A ,B 两点,且点M 平分AB ,则直线AB 的方程为( ) A .3470x y +-= B .3410x y -+=C .4370x y +-=D .4310x y --=【答案】A 【解析】设1122(,),(,)A x y B x y ,代入椭圆的方程可得222211221,14343x y x y +=+=,两式相减可得12121212()()()()044x x x x y y y y +-+-+=,又121212122,2,y y x x y y k x x -+=+==-, 即为12123()34()4x x k y y +=-=-+,则直线AB 的方程为:31(1)4y x -=--,化为3470x y +-=,故选A . 点睛:本题考查了直线与椭圆的位置关系,注意运用“点差法”的应用,考查了学生的推理与计算能力,试题比较基础,属于基础题,解答此类问题的关键在于把握弦的中点,恰当的选择“点差法”是解答的关键.14.已知点1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,1e ,2e 分别是1C 和2C 的离心率,点P 为1C 和2C 的一个公共点,且1223F PF π∠=,若22e =,则1e 的值是( ) ABCD【答案】D 【解析】 【分析】利用椭圆和双曲线的定义以及余弦定理可得到方程2221243c a a =+,由此得到关于离心率的方程求得结果.【详解】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,焦点坐标为()1,0F c -,()2,0F c , 不妨设P 为第一象限内的点,则1212+=PF PF a ,1222-=PF PF a , 则221212PF PF a a =-,由余弦定理得:2222212121212242cos3c PF PF PF PF PF PF PF PF π=+-=++, ()22222211212443c a a a a a ∴=--=+,2212314e e ∴+=,又22e =,2145e ∴=, 125e ∴=. 故选:D . 【点睛】本题考查共焦点的椭圆与双曲线问题的求解,关键是能够熟练应用椭圆和双曲线的定义,利用余弦定理构造等量关系,配凑出关于椭圆和双曲线离心率的方程.15.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,若船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs (已知电磁波在空气中的传播速度约为0.3km/μs ,1海里 1.852km =),则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫± ⎪ ⎪⎝⎭B .135322,77⎛⎫± ⎪ ⎪⎝⎭C .3217,3⎛⎫±⎪⎝⎭D .(45,162±【答案】B 【解析】 【分析】根据双曲线的定义求出点P 所在的双曲线的标准方程()2211522564x y x -=>,将方程与()222713664x y --=联立,求解即可. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,因为船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs ,则船P 到B 台和到A 台的距离差为185.20.32301.852a PB PA ⨯===-海里,故15a =,又=17c ,故8b =,故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,联立()()()222227121366411522564x y x x y x ⎧--=<⎪⎪⎨⎪-=>⎪⎩, 解得135322,77P ⎛⎫± ⎪ ⎪⎝⎭,故选:B . 【点睛】本题考查了双曲线的定义、圆锥曲线在生活中的应用,考查了理解转化能力,属于中档题.16.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,根据船P 接收到A 台和B 台电磁波的时间差,计算出船P 到B 发射台的距离比到A 发射台的距离远30海里,则点P 的坐标(单位:海里)为( )A.90,7⎛±⎝⎭B.135,7⎛⎝⎭C .3217,3⎛⎫±⎪⎝⎭D.(45,±【答案】B 【解析】 【分析】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,根据双曲线的定义得出15a =,再得出由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,与双曲线()222713664x y --=联立,即可得出点P 坐标. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥由于船P 到B 台和到A 台的距离差为30海里,故15a =,又=17c ,故8b =故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>联立()()()222227121366411522564x y x x y x ⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135,77P ⎛⎫± ⎪ ⎪⎝⎭ 故选:B 【点睛】本题主要考查了双曲线的应用,属于中档题.17.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <u u u v u u u v ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,29λμ=,则该椭圆的离心率为( )A .35B .1213C .35或1213D .45【答案】A 【解析】分析:根据向量共线定理及29λμ=,AP BP <u u u v u u u v ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率.详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v∴1λμ+= 又∵29λμ=∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵AP BP <u u u v u u u v ∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限)∴2(,)b P c a,2(,)b B c a -∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点 ∴直线1l 的方程为为1x y a b+=- ∴()(,)a c bA c a+ ∵2133OP OA OB =+u u u r u u u r u u u r∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+. ∴22224()2a c a ac c -=++,即223520a c ac --=. ∴25230e e +-= ∵(0,1)e ∈∴35e =故选A.点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).18.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( ) A .3 B .22C .2 D .6 【答案】B 【解析】 【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率. 【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =,11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+-222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以2222c a b =-=, 因此椭圆的离心率为223c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.19.过双曲线()222210,0x y a b a b-=>>的右焦点F ,作渐近线b y x a =的垂线与双曲线左右两支都相交,则双曲线离心率e 的取值范围为( ) A .()1,2 B .()1,2C .()2,+∞D .()2,+∞【答案】C 【解析】 【分析】设过双曲线的右焦点F 与渐近线by x a=垂直的直线为AF ,根据垂线与双曲线左右两支都相交,得AF 的斜率要小于双曲线另一条渐近线的斜率 ,由此建立关于,a b 的不等式,解之可得22b a >,从而可得双曲线的离心率e 的取值范围 . 【详解】过双曲线的右焦点F 作渐近线by x a=垂线,设垂足为A , Q 直线为AF 与双曲线左右两支都相交,∴直线AF 与渐近线by x a=-必定有交点B , 因此,直线by x a=-的斜率要小于直线AF 的斜率, Q 渐近线b y x a =的斜率为b a, ∴直线AF 的斜率a k b =-,可得b aa b-<-, 即22,b a b a a b>>,可得222c a >, 两边都除以2a ,得22e >,解得2e >双曲线离心率e 的取值范围为)2,+∞,故选C.【点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将 e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围.20.当点P 在圆221x y +=上变动时,它与定点(3,0)Q 的连结线段PQ 的中点的轨迹方程是( )A .22(3)4x y ++=B .22(23)41x y -+=C .22(3)1x y -+=D .22(23)41x y ++=【答案】B 【解析】 【分析】根据已知条件可设()00,P x y ,线段PQ 的中点为(),M x y ,再利用中点坐标公式可得到0023,2x x y y =-=,再代入圆的方程221x y +=即可得到线段PQ 的中点的轨迹方程.【详解】设()00,P x y ,线段PQ 的中点为(),M x y ,(如图)则00322x x y y +⎧=⎪⎪⎨⎪=⎪⎩即00232x x y y =-⎧⎨=⎩,Q 点()00,P x y 在圆221x y +=上变动,即22001x y +=()()222321x y ∴-+=即()222341x y -+=故选:B 【点睛】本题考查了中点坐标公式,动点轨迹方程求法,属于一般题.。

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编含解析

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编含解析

新单元《平面解析几何》专题解析一、选择题1.已知点M 是抛物线24x y =上的一动点,F 为抛物线的焦点,A 是圆C :22(1)(4)1x y -+-=上一动点,则||||MA MF +的最小值为( )A .3B .4C .5D .6【答案】B 【解析】 【分析】根据抛物线定义和三角形三边关系可知当,,M A P 三点共线时,MA MF +的值最小,根据圆的性质可知最小值为CP r -;根据抛物线方程和圆的方程可求得CP ,从而得到所求的最值. 【详解】如图所示,利用抛物线的定义知:MP MF =当,,M A P 三点共线时,MA MF +的值最小,且最小值为1CP r CP -=-Q 抛物线的准线方程:1y =-,()1,4C415CP ∴=+= ()min 514MA MF ∴+=-=本题正确选项:B 【点睛】本题考查线段距离之和的最值的求解,涉及到抛物线定义、圆的性质的应用,关键是能够找到取得最值时的点的位置,从而利用抛物线和圆的性质来进行求解.2.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A 2B .2C 3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.3.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( ) A .22B 22-C .22D 22+【答案】D 【解析】 【分析】设P 、Q 、M 、N分别为第一、二、三、四象限内的点,根据对称性可得出,22P c c ⎛⎫ ⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题.4.已知点(,)P x y 是直线240x y -+=上一动点,直线,PA PB 是圆22:20C x y y ++=的两条切线,,A B 为切点,C 为圆心,则四边形PACB 面积的最小值是( ) A .2 BC.D .4【答案】A 【解析】圆22:20C x y y ++=即22(y 1)1x ++=,表示以C (0,-1)为圆心,以1为半径的圆。

高考数学压轴专题新备战高考《平面解析几何》难题汇编及答案解析

高考数学压轴专题新备战高考《平面解析几何》难题汇编及答案解析

【高中数学】数学《平面解析几何》复习知识点(1)一、选择题1.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C 【解析】 【分析】利用椭圆的性质,根据4AB =,12F F =c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=,222c a b =-,解得3a =,b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.2.已知抛物线2:6C x y =的焦点为F 直线l 与抛物线C 交于,A B 两点,若AB 中点的纵坐标为5,则||||AF BF +=( ) A .8 B .11 C .13 D .16【答案】C 【解析】 【分析】设点A 、B 的坐标,利用线段AB 中点纵坐标公式和抛物线的定义,求得12y y +的值,即可得结果; 【详解】抛物线2:6C x y =中p =3, 设点A (x 1,y 1),B (x 2,y 2),由抛物线定义可得:|AF |+|BF |=y 1+ y 2+p =y 1+ y 2+3,又线段AB 中点M 的横坐标为122y y +=5,∴12y y +=10, ∴|AF |+|BF |=13; 故选:C . 【点睛】本题考查了抛物线的定义的应用及中点坐标公式,是中档题.3.已知一条抛物线恰好经过等腰梯形ABCD 的四个顶点,其中4AB =,2BC CD AD ===,则该抛物线的焦点到其准线的距离是( )A .3 B .3 C .3 D .23【答案】B 【解析】 【分析】不妨设抛物线标准方程22(0)x py p =>,将条件转化为坐标,代入解出p ,即得结果. 【详解】不妨设抛物线标准方程22(0)x py p =>,可设(1,),(2,3)C m B m +,则123323242(3)pm p p p m =⎧⎪∴=∴=⎨=+⎪⎩,即抛物线的焦点到其准线的距离是3,选B. 【点睛】本题考查抛物线方程及其性质,考查基本分析求解能力,属基本题.4.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点,(,(,,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.5.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,10【答案】D 【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=, 又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =,再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6.在平面直角坐标系中,已知双曲线的中心在原点,焦点在轴上,实轴长为8,离心率为,则它的渐近线的方程为( ) A . B .C .D .【答案】D 【解析】试题分析:渐近线的方程为,而,因此渐近线的方程为,选D.考点:双曲线渐近线7.已知椭圆221259x y +=上一点M 到椭圆的一个焦点的距离等于4,那么点M 到另一个焦点的距离等于( ) A .1 B .3 C .6 D .10 【答案】C 【解析】由椭圆方程可得225210a a =∴= ,由椭圆定义可得点M 到另一焦点的距离等于6.故选C .8.已知,A B 两点均在焦点为F 的抛物线()220y px p =>上,若4AF BF +=,线段AB 的中点到直线2px =的距离为1,则p 的值为 ( ) A .1 B .1或3C .2D .2或6【答案】B 【解析】4AF BF +=1212442422p px x x x p x p ⇒+++=⇒+=-⇒=-中因为线段AB 的中点到直线2px =的距离为1,所以121132px p p -=∴-=⇒=中或 ,选B. 点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.若00(,)P x y 为抛物线22(0)y px p =>上一点,由定义易得02pPF x =+;若过焦点的弦AB AB 的端点坐标为1122(,),(,)A x y B x y ,则弦长为1212,AB x x p x x =+++可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.9.已知双曲线22x a-22y b =1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .B .C .D .【答案】A 【解析】 【分析】 【详解】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1), 即点(-2,-1)在抛物线的准线上,又由抛物线y 2=2px 的准线方程为2px =-,则p=4, 则抛物线的焦点为(2,0);则双曲线的左顶点为(-2,0),即a=2;点(-2,-1)在双曲线的渐近线上,则其渐近线方程为12y x =±, 由双曲线的性质,可得b=1;则c =故选A .10.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A B .2C .2-D 【答案】A 【解析】【分析】根据题意,易知a r 与b r的夹角为60︒,设()=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r,可得2212302x y x y +--+=,所以原问题等价于,圆2212302x y x y +--+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设()=13a ,r ,()20b =,r ,(),c x y =r, 因为()()21a c b c -⋅-=r r r r ,所以2212302x y x y +--+=,又()222b c x y -=-+r r ,所以原问题等价于,圆2212302x y x y +--+=上一动点与点()20,之间距离的最小值,又圆2212302x y x y +--+=的圆心坐标为312⎛⎫ ⎪ ⎪⎝⎭,,半径为5,所以点()20,与圆2212302x y x y +--+=上一动点距离的最小值为()22357521222⎛⎫--+-= ⎪ ⎪⎝⎭. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.11.双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( ). A .2 B .22C .4D .42【答案】C 【解析】试题分析:设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .考点:双曲线的方程与几何性质12.倾斜角为45︒的直线与双曲线22214x y b-=交于不同的两点P 、Q ,且点P 、Q 在x轴上的投影恰好为双曲线的两个焦点,则该双曲线的焦距为( )A .232B .252C 31D 51【答案】B 【解析】 【分析】方法一;由双曲线的对称性可知直线过原点,可得2Rt QOF △为等腰三角形且245QOF ∠=︒,根据勾股定理及双曲线的定义可得:51c =.方法二:等腰2Rt QOF △中,可得22b QF a=,且2b c a =.又根据222b a c =-,联立可解得51c =. 【详解】方法一;由双曲线的对称性可知直线过原点,在等腰2Rt QOF △中,245QOF ∠=︒, 则122F F c =,2QF c =,15QF c =.由双曲线的定义可得:122QF QF a-=, 5451c c c -==,, 故2252c =.方法二:等腰2Rt QOF △中,22bQF a=,∴2b c a=. 又222b a c =-, ∴2240c c --=, 得51c =. ∴2252c =. 故选:B . 【点睛】本题考查双曲线的性质,解题关键是将题目条件进行转化,建立等量关系求解,属于中等题.13.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,根据船P 接收到A 台和B 台电磁波的时间差,计算出船P 到B 发射台的距离比到A 发射台的距离远30海里,则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫±⎪⎪⎝⎭B .135322,77⎛⎫±⎪⎪⎝⎭C .3217,3⎛⎫± ⎪⎝⎭D .(45,162±【答案】B 【解析】 【分析】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,根据双曲线的定义得出15a =,再得出由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,与双曲线()222713664x y --=联立,即可得出点P 坐标. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥由于船P 到B 台和到A 台的距离差为30海里,故15a =,又=17c ,故8b =故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>联立()()()222227121366411522564x y x x y x ⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135322,7P ⎛ ⎝⎭【点睛】本题主要考查了双曲线的应用,属于中档题.14.已知抛物线22(0)y px p =>的焦点为F ,过点F 作互相垂直的两直线AB ,CD 与抛物线分别相交于A ,B 以及C ,D ,若111AF BF+=,则四边形ACBD 的面积的最小值为( ) A .18 B .30C .32D .36【答案】C 【解析】 【分析】 【详解】由抛物线性质可知:112AF BF p +=,又111AF BF+=,∴2p =, 即24y x =设直线AB 的斜率为k (k≠0),则直线CD 的斜率为1k-. 直线AB 的方程为y=k (x ﹣1),联立214y k x y x=⎧⎨=⎩(﹣),消去y 得k 2x 2﹣(2k 2+4)x+k 2=0,从而242A B x x k+=+,A B x x =1由弦长公式得|AB|=244k+,以1k-换k 得|CD|=4+4k 2,故所求面积为()22221141AB CD 4448222k k k k ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭≥32(当k 2=1时取等号),即面积的最小值为32. 故选C15.已知抛物线2:2(0)C x py p =>的焦点为F ,C 的准线与对称轴交于点H,直线2p y =-与C 交于A ,B两点,若||AH =||AF =( ) A .3 B .83C .2D .4【答案】C【分析】注意到直线32py x =-过点H ,利用||||AM AH =tan 3,AHM ∠=43||AH =,可得||2AM =,再利用抛物线的定义即可得到答案.【详解】连接AF ,如图,过A 作准线的垂线,垂足为M ,易知点0,,0,22p p F H ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.易知直 线32p y x =-过点H ,tan 3,3AHM AHM π∠=∠=,则||3,||AM AH =又43||3AH =, 所以||2AM =,由抛物线的定义可得||AF =||2AM =.故选:C. 【点睛】本题考查直线与抛物线的位置关系,涉及到利用抛物线的定义求焦半径,考查学生转化与化归的思想,是一道中档题.16.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <u u u v u u u v ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,29λμ=,则该椭圆的离心率为( )A .35B .1213C .35或1213D .45【答案】A 【解析】分析:根据向量共线定理及29λμ=,AP BP <u u u v u u u v ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率. 详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v∴1λμ+= 又∵29λμ= ∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵AP BP <u u u v u u u v ∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限) ∴2(,)b P c a ,2(,)b B c a - ∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点∴直线1l 的方程为为1x y a b +=- ∴()(,)a c b A c a+ ∵2133OP OA OB =+u u u r u u u r u u u r ∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+. ∴22224()2a c a ac c -=++,即223520a c ac --=.∴25230e e +-=∵(0,1)e ∈ ∴35e =故选A. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a =;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).17.已知双曲线222:41(0)x C y a a -=>的右顶点到其一条渐近线的距离等于3,抛物线2:2E y px =的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线1:4360l x y -+=和2:1l x =-距离之和的最小值为( )A .1B .2C .3D .4 【答案】B【解析】分析:由双曲线的右顶点到渐近线的距离求出234a =,从而可确定双曲线的方程和焦点坐标,进而得到抛物线的方程和焦点,然后根据抛物线的定义将点M 到直线2l 的距离转化为到焦点的距离,最后结合图形根据“垂线段最短”求解.详解:由双曲线方程22241(0)x y a a-=>可得, 双曲线的右顶点为(,0)a ,渐近线方程为12y x a =±,即20x ay ±=. ∵双曲线的右顶点到渐近线的距离等于34, ∴23414a =+,解得234a =, ∴双曲线的方程为224413x y -=, ∴双曲线的焦点为(1,0).又抛物线2:2E y px =的焦点与双曲线C 的右焦点重合,∴2p =,∴抛物线的方程为24y x =,焦点坐标为(1,0)F .如图,设点M 到直线1l 的距离为||MA ,到直线2l 的距离为||MB ,则MB MF =, ∴MA MB MA MF +=+.结合图形可得当,,A M F 三点共线时,MA MB MA MF +=+最小,且最小值为点F到直线1l 的距离2d ==.故选B .点睛:与抛物线有关的最值问题一般情况下都与抛物线的定义有关,根据定义实现由点到点的距离与点到直线的距离的转化,具体有以下两种情形:(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.18.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( )A B .3 C .2 D 【答案】B【解析】【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率.【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =,11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c , 由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+- 222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以c ==因此椭圆的离心率为223c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.19.已知直线1:(1)(1)20l a x a y -++-=和2:(1)210l a x y +++=互相垂直,则a 的值为( )A .-1B .0C .1D .2【答案】A【解析】分析:对a 分类讨论,利用两条直线相互垂直的充要条件即可得出. 详解:1a =-时,方程分别化为:10210x y +=+=,, 此时两条直线相互垂直,因此1a =-满足题意.1a ≠-时,由于两条直线相互垂直,可得:11()112a a a -+-⨯-=-+, 解得1a =-,舍去.综上可得:1a =-.故选A .点睛:本题考查了两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题20.已知椭圆22:195x y C +=左右焦点分别为12F F 、,直线):32l y x =+与椭圆C 交于A B 、两点(A 点在x 轴上方),若满足11AF F B λ=u u u v u u u v ,则λ的值等于( )A .3B .3C .2D 3【答案】C【解析】由条件可知,直线l 过椭圆的左焦点()12,0F -.由)222195y x x y ⎧=+⎪⎨+=⎪⎩消去y 整理得232108630x x ++=, 解得34x =-或218x =-. 设1122(,),(,)A x y B x y ,由A 点在x 轴上方可得12321,48x x =-=-. ∵11AF F Bλ=u u u v u u u v , ∴1122(2,)(2,)x y x y λ---=+, ∴122(2)x x λ--=+. ∴3212()(2)48λ---=-+, 解得2λ=.选C。

高考数学压轴专题(易错题)备战高考《平面解析几何》全集汇编含答案解析

高考数学压轴专题(易错题)备战高考《平面解析几何》全集汇编含答案解析

数学《平面解析几何》知识点一、选择题1.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A .125 B .65C .2D 【答案】A 【解析】试题分析:根据抛物线的定义可知抛物线24y x =上的点P 到抛物线的焦点距离1PF d =,所以122d d MF d +=+,其最小值为()1,0F 到直线3490x y -+=的距离,由点到直线的距离公式可知()()122min min125d d MF d +=+==,故选A. 考点:抛物线定义的应用.2.已知双曲线22x a-22y b =1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .B .C .D .【答案】A 【解析】 【分析】 【详解】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1), 即点(-2,-1)在抛物线的准线上,又由抛物线y 2=2px 的准线方程为2px =-,则p=4, 则抛物线的焦点为(2,0);则双曲线的左顶点为(-2,0),即a=2;点(-2,-1)在双曲线的渐近线上,则其渐近线方程为12y x =±, 由双曲线的性质,可得b=1;则c =故选A .3.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.4.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( ) A.2BC.2D【答案】D 【解析】 【分析】设P 、Q 、M 、N分别为第一、二、三、四象限内的点,根据对称性可得出,22P c c ⎛⎫ ⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得P ⎫⎪⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b-=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题.5.若双曲线上存在四点,使得以这四点为顶点的四边形是菱形,则该双曲线的离心率的取值范围是( )A .B .C .)+∞D .)+∞【答案】C 【解析】 【分析】根据题意,双曲线与直线y x =±相交且有四个交点,由此得1ba>.结合双曲线的基本量的平方关系和离心率的定义,化简整理即得该双曲线的离心率的取值范围. 【详解】解:不妨设该双曲线方程为22221(0,0)x y a b a b-=>>,由双曲线的对称性质可知,该四边形为正方形, 所以直线y x =与双曲线有交点, 所以其渐近线与x 轴的夹角大于45︒,即1ba>.离心率e =所以该双曲线的离心率的取值范围是)+∞. 故选:C .【点睛】本题考查双曲线的离心率取值范围以及双曲线的标准方程和简单几何性质等知识,属于基础题.6.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( ) A.B.C.D.【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+,因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g ,12||y y -===由题意可知,四边形AA B B ''为直角梯形,所以1211()||822AA B B S AA BB y y ''''=+-=gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.7.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点, 233AF BF +=, 则∠AFB 的最大值为( ) A .3π B .34π C .56π D .23π 【答案】D 【解析】 【分析】设|AF |=m ,|BF |=n ,再利用基本不等式求解mn 的取值范围,再利用余弦定理求解即可. 【详解】设|AF |=m ,|BF |=n , ∵233AF BF +=, 2323AB mn ≥∴213mn AB ≤,在△AFB 中,由余弦定理得22222()2cos 22m n ABm n mn ABAFB mnmn+-+--∠==212213222AB mnmn mn mn mn --=≥=-∴∠AFB 的最大值为23π. 故选:D 【点睛】本题主要考查了抛物线的焦半径运用,同时也考查了解三角形与基本不等式的混合运用,属于中等题型.8.已知双曲线2221(0)2x y b b-=>的左右焦点分别为12,F F ,其一条渐近线方程为y x =,点0(3,)P y 在该双曲线上,则12PF PF ⋅u u u r u u u u r=( )A .12-B .2-C .0D .4【答案】C 【解析】 由题知,故,∴12(23,1)(23,1)3410PF PF ⋅=-±⋅±=-+=u u u r u u u u r ,故选择C .9.若双曲线223mx my -=3的一个焦点是()0,2,则m 的值是 A .-1 B .1C .1020-D .102【答案】A 【解析】双曲线223mx my -=3的标准方程为22113x y m m-=, ∵焦点在y 轴上,∴134m m+=,且0m <, ∴ 1.m =- 故选A .10.已知抛物线24y x =上有三点,,A B C ,,,AB BC CA 的斜率分别为3,6,2-,则ABC ∆的重心坐标为( )A .14,19⎛⎫⎪⎝⎭B .14,09⎛⎫⎪⎝⎭C .14,027⎛⎫⎪⎝⎭D .14,127⎛⎫⎪⎝⎭【答案】C 【解析】 【分析】设()()()112233,,,,,A x y B x y C x y ,进而用坐标表示斜率即可解得各点的纵坐标,进一步可求横坐标,利用重心坐标公式即可得解. 【详解】设()()()112233,,,,,,A x y B x y C x y 则1212221212124344AB y y y y k y y x x y y --====-+-,得1243y y +=, 同理234263y y +==,31422y y +==--,三式相加得1230y y y ++=, 故与前三式联立,得211231241,2,,3349y y y y x =-==-==,22214y x ==,233449y x ==,则12314327x x x ++=.故所求重心的坐标为14,027⎛⎫⎪⎝⎭,故选C. 【点睛】本题主要考查了解析几何中常用的数学方法,集合问题坐标化,进而转化为代数运算,对学生的能力有一定的要求,属于中档题.11.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( ) A .4 B .2 C .2 D . 【答案】D 【解析】()1ln (0,0)a a f x x a b b b+=-->>,所以()'a f x bx =-,则f ′(1)=-ab为切线的斜率, 切点为(1,-1a b+), 所以切线方程为y +1a b +=-ab(x -1), 整理得ax +by +1=0.因为切线与圆相切,所以22a b+=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab , 所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2, 所以a +b ≤,即a +b 的最大值为.故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.12.在平面直角坐标系中,已知双曲线的中心在原点,焦点在轴上,实轴长为8,离心率为,则它的渐近线的方程为( ) A . B .C .D .【答案】D 【解析】试题分析:渐近线的方程为,而,因此渐近线的方程为,选D.考点:双曲线渐近线13.已知,A B 两点均在焦点为F 的抛物线()220y px p =>上,若4AF BF +=,线段AB 的中点到直线2px =的距离为1,则p 的值为 ( ) A .1 B .1或3C .2D .2或6【答案】B 【解析】4AF BF +=1212442422p px x x x p x p ⇒+++=⇒+=-⇒=-中 因为线段AB 的中点到直线2px =的距离为1,所以121132px p p -=∴-=⇒=中或 ,选B. 点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.若00(,)P x y 为抛物线22(0)y px p =>上一点,由定义易得02pPF x =+;若过焦点的弦AB AB 的端点坐标为1122(,),(,)A x y B x y ,则弦长为1212,AB x x p x x =+++可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.14.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =, 所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b = 所以双曲线的渐近线方程为23by x x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.15.已知点M 是抛物线24x y =上的一动点,F 为抛物线的焦点,A 是圆C :22(1)(4)1x y -+-=上一动点,则||||MA MF +的最小值为( )A .3B .4C .5D .6【答案】B 【解析】 【分析】根据抛物线定义和三角形三边关系可知当,,M A P 三点共线时,MA MF +的值最小,根据圆的性质可知最小值为CP r -;根据抛物线方程和圆的方程可求得CP ,从而得到所求的最值.【详解】如图所示,利用抛物线的定义知:MP MF =当,,M A P 三点共线时,MA MF +的值最小,且最小值为1CP r CP -=-Q 抛物线的准线方程:1y =-,()1,4C415CP ∴=+= ()min 514MA MF ∴+=-=本题正确选项:B 【点睛】本题考查线段距离之和的最值的求解,涉及到抛物线定义、圆的性质的应用,关键是能够找到取得最值时的点的位置,从而利用抛物线和圆的性质来进行求解.16.已知12F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,P 为双曲线上一点,2PF 与x 轴垂直,1230PF F ∠=︒,且焦距为3 ) A .3y x = B .2y x =C .2y x =±D .3y x =±【答案】B 【解析】 【分析】先求出c 的值,再求出点P 的坐标,可得22bPF a=,再由已知求得1PF ,然后根据双曲线的定义可得ba的值,则答案可求. 【详解】解:由题意,223c = 解得3c =,∵()2,0F c ,设(),P c y ,∴22221x y a b -=,解得2b y a =±,∴22b PF a=,∵1230PF F ∠=︒,∴21222b PF PF a==,由双曲线定义可得:2122b PF PF a a-==,则222a b =,即2ba=. ∴双曲线的渐近线方程为2y x =±. 故选:B .【点睛】本题考查双曲线渐近线方程的求解,难度一般.求解双曲线的渐近线方程,可通过找到,,a b c 中任意两个量的倍数关系进行求解.17.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 且斜率为247的直线与双曲线在第一象限的交点为A ,若()21210F F F A F A +⋅=u u u u v u u u u v u u u v,则此双曲线的标准方程可能为( )A .22143x y -=B .22134x y -=C .221169x y -=D .221916x y -=【答案】D 【解析】 【分析】先由()21210F F F A F A +⋅=u u u u r u u u u r u u u r 得到1222F F F A c ==,根据2AF 的斜率为247,求出217cos 25AF F ∠=-,结合余弦定理,与双曲线的定义,得到c a ,求出ab ,进而可得出结果. 【详解】由()21210F F F A F A +⋅=u u u u r u u u u r u u u r,可知1222F F F A c ==,又2AF 的斜率为247,所以易得217cos 25AF F ∠=-, 在12AF F ∆中,由余弦定理得1165AF c =, 由双曲线的定义得16225c c a -=, 所以53c e a ==,则:3:4a b =, 所以此双曲线的标准方程可能为221916x y -=.故选D 【点睛】本题考查双曲线的标准方程,熟记双曲线的几何性质与标准方程即可,属于常考题型.18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <u u u v u u u v ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,29λμ=,则该椭圆的离心率为( )A .35B .1213C .35或1213D .45【答案】A 【解析】分析:根据向量共线定理及29λμ=,AP BP <u u uv u u u v ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率.详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v∴1λμ+= 又∵29λμ=∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵AP BP <u u u v u u u v∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限)∴2(,)b P c a,2(,)b B c a -∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点 ∴直线1l 的方程为为1x y a b+=- ∴()(,)a c bA c a+ ∵2133OP OA OB =+u u u r u u u r u u u r∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+. ∴22224()2a c a ac c -=++,即223520a c ac --=. ∴25230e e +-= ∵(0,1)e ∈∴35e =故选A.点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).19.过双曲线()222210,0x y a b a b-=>>的右焦点F ,作渐近线b y x a =的垂线与双曲线左右两支都相交,则双曲线离心率e 的取值范围为( ) A .()1,2 B.(C.)+∞D .()2,+∞【答案】C 【解析】 【分析】设过双曲线的右焦点F 与渐近线by x a=垂直的直线为AF ,根据垂线与双曲线左右两支都相交,得AF 的斜率要小于双曲线另一条渐近线的斜率 ,由此建立关于,a b 的不等式,解之可得22b a >,从而可得双曲线的离心率e 的取值范围 . 【详解】过双曲线的右焦点F 作渐近线by x a=垂线,设垂足为A , Q 直线为AF 与双曲线左右两支都相交,∴直线AF 与渐近线by x a=-必定有交点B , 因此,直线by x a=-的斜率要小于直线AF 的斜率, Q 渐近线b y x a =的斜率为b a, ∴直线AF 的斜率a k b =-,可得b aa b-<-, 即22,b a b a a b>>,可得222c a >, 两边都除以2a ,得22e >,解得2e >双曲线离心率e 的取值范围为)2,+∞,故选C.【点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将 e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围.20.直线3y kx =+与圆22(3)(2)4x y -+-=相交于M ,N 两点,若||3MN ≥k 的取值范围是( ) A .3,04⎡⎤-⎢⎥⎣⎦B .30,4⎡⎤⎢⎥⎣⎦C .3⎡⎤⎢⎥⎣⎦D .2,03⎡⎤-⎢⎥⎣⎦【答案】A 【解析】 【分析】可通过将弦长转化为弦心距问题,结合点到直线距离公式和勾股定理进行求解 【详解】如图所示,设弦MN 中点为D ,圆心C(3,2),330y kx kx y =+⇒-+=Q∴弦心距222(1)1CD k k ==+-+,又2||23||33MN DN DN 厖?,∴由勾股定理可得222222231DN CN CD k ⎛⎫=-=-+…,222231|31|1(31)1(43)0041k k k k k k k k ⇒++++⇒+⇒-+剟剟答案选A 【点睛】圆与直线的位置关系解题思路常从两点入手:弦心距、勾股定理。

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编及答案解析

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编及答案解析

【最新】数学高考《平面解析几何》专题解析一、选择题1.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP →→g 的最大值为( )A .4B .5C .6D .7【答案】C 【解析】 【分析】设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ⋅u u u r u u u r表示成为x 的二次函数,根据二次函数性质可求出其最大值. 【详解】设(),P x y ,()()1,0,0,0F O -,则()(),,+1,OP x y FP x y ==u u u r u u u r,则 22OP FP x x y ⋅=++u u u r u u u r,因为点P 为椭圆上,所以有:22143x y +=即22334y x =-,所以()222223132244x x y x x x FP x OP =++=⋅++-=++u u u r u u u r又因为22x -≤≤,所以当2x =时,OP FP ⋅u u u r u u u r的最大值为6 故选:C 【点睛】本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题.2.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( )A .BC .2D .【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】由22224(42)02y x bx b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,125x =-,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||MN = 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.3.已知抛物线x 2=16y 的焦点为F ,双曲线22145x y -=的左、右焦点分别为F 1、F 2,点P是双曲线右支上一点,则|PF|+|PF 1|的最小值为( ) A .5 B .7 C .9 D .11 【答案】C 【解析】 【分析】由题意并结合双曲线的定义可得1222(4)44PF PF PF PF PF PF FF +=++=++≥+,然后根据两点间的距离公式可得所求最小值. 【详解】由题意得抛物线216x y =的焦点为()0,4F ,双曲线22145x y -=的左、右焦点分别为()()123,0,3,0F F -.∵点P 是双曲线右支上一点,∴124PF PF =+.∴1222(4)44549PF PF PF PF PF PF FF +=++=++≥+=+=,当且仅当2,,F P F 三点共线时等号成立,∴1PF PF +的最小值为9. 故选C . 【点睛】解答本题的关键是认真分析题意,然后结合图形借助数形结合的方法求解.另外在解题中注意利用双曲线的定义将所求问题进行转化,考查分析理解能力和解决问题的能力,属于基础题.4.已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( )A .16B .10C .12D .8【答案】C 【解析】 【分析】根据题意可知AD BD ⊥,利用抛物线的定义,可得30ABD ∠=︒,所以||||2612AF BF ==⨯=.【详解】解:因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1||||||2AD AF AB ==,所以30ABD ∠=︒.因为F 到准线的距离为6, 所以||||2612AF BF ==⨯=. 故选:C .【点睛】本题考查抛物线的性质,抛物线的定义,考查转化思想,属于中档题.5.已知双曲线2222 :1(0,0)x yC a ba b-=>>)的左,右焦点分别为12,F F,其右支上存在一点M,使得21MF MF⋅=u u u u r u u u r,直线:0l bx ay+=,若直线2//MF l则双曲线C的离心率为()A.2B.2 C.5D.5【答案】C【解析】【分析】易得且1MF l⊥,从而l是线段1MF的垂直平分线求出直线1MF的方程与渐近线方程联立求出交点坐标,进而求得M坐标,根据勾股定理即可求解离心率.【详解】由12MF MF⋅=u u u u v u u u u v可得12MF MF⊥易知直线:0l bx ay+=为双曲线的一条渐近线,可知l的方程为by xa=-,且1MF l⊥,从而l是线段1MF的垂直平分线,且直线1MF的方程为()ay x cb=+设1MF,与l相交于点(),N x y.由()ay x cbby xa⎧=+⎪⎪⎨⎪=-⎪⎩得2axcabyc⎧=-⎪⎪⎨⎪=⎪⎩即2,a abNc c⎛⎫- ⎪⎝⎭,又()1,0F c-,由中点坐标公式,得222,.a abM cc c⎛⎫-⎪⎝⎭由双曲线性质可得122MF MF a-=①,由12MF MF⊥得222124MF MF c+=②,①②联立,可得2122MF MF b⋅=所以点M的纵坐标为2bc,所以22b abc c=即2ba=所以21 5.bea⎛⎫=+=⎪⎝⎭故选:C【点睛】本题考查双曲线性质的综合问题,考查数形结合思想,对于学生的数学运算和逻辑推理能力要求较高,属于一般性题目.6.设抛物线()2:20C y px p =>的焦点为F ,抛物线C 与圆22525:()416C x y +-='于,A B 两点,且5AB =若过抛物线C 的焦点的弦MN 的长为8,则弦MN 的中点到直线2x =-的距离为( )A .2B .5C .7D .9【答案】B 【解析】 【分析】易得圆C '过原点,抛物线22y px =也过原点,联立圆和抛物线方程由AB 求得交点坐标,从而解出抛物线方程,根据抛物线定义即可求得弦MN 的中点到直线2x =-的距离. 【详解】圆:22525:,416C x y ⎛⎫+-= ⎪⎝⎭'即为2252x y y +=,可得圆经过原点.抛物线22y px =也过原点. 设()()0,0,,,0A B m n m >. 由5AB =可得225m n +=, 又2252m n n +=联立可解得2,1n m ==. 把()1,2B 代人22y px =,解得2p =,故抛物线方程为24y x =,焦点为()1,0F ,准线l 的方程为1x =-.如图,过,M N 分别作ME l ⊥于E ,NK l ⊥于K ,可得,MF ME NK NF ==,即有MN MF NF ME KN =+=+|. 设MN 的中点为0P ,则0P 到准线l 的距离11(|)422EM KNI MN +==, 则MN 的中点0P ,到直线2x =-的距离是415+=. 故选:B 【点睛】本题考查抛物线的几何性质,考查学生的分析问题,解决问题的能力,数形结合思想.属于一般性题目.7.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,10【答案】D 【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=, 又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =,再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.8.已知双曲线22:1124x y C -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,P Q .若POQ ∆为直角三角形,则PQ =( ) A .2 B .4C .6D .8【答案】C 【解析】 【分析】由题意不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒,解三角形即可. 【详解】不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒.则易知30POF ∠=︒,4OF =,∴OP =POQ n 中,60POQ ∠=︒,90OPQ ∠=︒,OP =∴6PQ ==. 故选C 【点睛】本题主要考查双曲线的性质,根据双曲线的特征设出P ,Q 位置,以及POQ V 的直角,即可结合条件求解,属于常考题型.9.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .(1,14) B .1(,1)4-C .(1,2)D .(1,2)-【答案】A 【解析】 【分析】 【详解】试题分析:抛物线24y x =焦点为F (1,0),准线为1x =-,作PQ 垂直于准线,垂足为M 根据抛物线定义: ,PQ PF PQ PM +=+,根据三角形两边距离之和大于第三边,直角三角形斜边大于直角边知:PQ PM +的最小值是点Q 到抛物线准线1x =-的距离;所以点P 纵坐标为1,则横坐标为14,即(1,14),故选A 考点:抛物线的定义及几何性质的运用.10.过双曲线()2222100x y a b a b-=>>,的右焦点且垂直于x 轴的直线与双曲线交于A B ,两点,OAB ∆,则双曲线的离心率为( )A B C .2D 【答案】D 【解析】 【分析】令x c =,代入双曲线方程可得2by a=±,由三角形的面积公式,可得,a b 的关系,由离心率公式计算可得所求值. 【详解】右焦点设为F ,其坐标为(),0c令x c =,代入双曲线方程可得2by a=±=±OAB V 的面积为2121323b c bc a ⋅⋅= 133b a ⇒=可得2213221193c b e a a ==+=+= 本题正确选项:D 【点睛】本题考查双曲线的对称性、考查双曲线的离心率和渐近线方程,属于中档题.11.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( ) A .4 B .2 C .2 D . 【答案】D 【解析】()1ln (0,0)a a f x x a b b b+=-->>,所以()'a f x bx =-,则f ′(1)=-ab为切线的斜率, 切点为(1,-1a b+), 所以切线方程为y +1a b +=-ab(x -1), 整理得ax +by +1=0.因为切线与圆相切,所以22a b+=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab , 所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2, 所以a +b ≤,即a +b 的最大值为.故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.12.当点P 在圆221x y +=上变动时,它与定点(3,0)Q 的连结线段PQ 的中点的轨迹方程是( )A .22(3)4x y ++=B .22(23)41x y -+=C .22(3)1x y -+=D .22(23)41x y ++=【答案】B 【解析】 【分析】根据已知条件可设()00,P x y ,线段PQ 的中点为(),M x y ,再利用中点坐标公式可得到0023,2x x y y =-=,再代入圆的方程221x y +=即可得到线段PQ 的中点的轨迹方程.【详解】设()00,P x y ,线段PQ 的中点为(),M x y ,(如图)则00322x x y y +⎧=⎪⎪⎨⎪=⎪⎩即00232x x y y =-⎧⎨=⎩,Q 点()00,P x y 在圆221x y +=上变动,即22001x y +=()()222321x y ∴-+=即()222341x y -+=故选:B 【点睛】本题考查了中点坐标公式,动点轨迹方程求法,属于一般题.13.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P是双曲线在第一象限上的点,MO OP =u u u u v u u u v,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A 23B 7C 3D 2【答案】B 【解析】 【分析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ , 即有2224208c a a =+,即227c a =,可得7c a =,即7ce a==.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).14.倾斜角为45︒的直线与双曲线22214x y b-=交于不同的两点P 、Q ,且点P 、Q 在x轴上的投影恰好为双曲线的两个焦点,则该双曲线的焦距为( ) A .232 B .252C 31D 51【答案】B 【解析】 【分析】方法一;由双曲线的对称性可知直线过原点,可得2Rt QOF △为等腰三角形且245QOF ∠=︒,根据勾股定理及双曲线的定义可得:51c =.方法二:等腰2Rt QOF △中,可得22b QF a=,且2b c a =.又根据222b a c =-,联立可解得51c =. 【详解】方法一;由双曲线的对称性可知直线过原点,在等腰2Rt QOF △中,245QOF ∠=︒,则122F F c =,2QF c =,1QF =.由双曲线的定义可得:122QF QF a-=,41c c -==,,故22c =.方法二:等腰2Rt QOF △中,22bQF a=,∴2b c a=. 又222b a c =-, ∴2240c c --=,得1c =.∴22c =. 故选:B . 【点睛】本题考查双曲线的性质,解题关键是将题目条件进行转化,建立等量关系求解,属于中等题.15.已知点1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,1e ,2e 分别是1C 和2C 的离心率,点P 为1C 和2C 的一个公共点,且1223F PF π∠=,若22e =,则1e 的值是( )A B .4C .7D 【答案】D 【解析】 【分析】利用椭圆和双曲线的定义以及余弦定理可得到方程2221243c a a =+,由此得到关于离心率的方程求得结果. 【详解】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,焦点坐标为()1,0F c -,()2,0F c , 不妨设P 为第一象限内的点,则1212+=PF PF a ,1222-=PF PF a , 则221212PF PF a a =-,由余弦定理得:2222212121212242cos3c PF PF PF PF PF PF PF PF π=+-=++,()22222211212443c a a a a a ∴=--=+,2212314e e ∴+=,又22e =,2145e ∴=,15e ∴=. 故选:D .【点睛】本题考查共焦点的椭圆与双曲线问题的求解,关键是能够熟练应用椭圆和双曲线的定义,利用余弦定理构造等量关系,配凑出关于椭圆和双曲线离心率的方程.16.O 为坐标原点,F 为抛物线2:4C y x =的焦点,P 为C 上一点,若4PF =,则POF V 的面积为ABC .2D .3【答案】B 【解析】 【分析】由抛物线的标准方程24y x =可得抛物线的焦点坐标和准线方程,设出(,)P x y ,由PF =4以及抛物线的定义列式可得(1)4x --=,即3x =,再代入抛物线方程可得点P 的纵坐标,再由三角形的面积公式1||2S y OF =可得. 【详解】由24y x =可得抛物线的焦点F (1,0),准线方程为1x =-,如图:过点P 作准线1x =- 的垂线,垂足为M ,根据抛物线的定义可知PM =PF =4,设(,)P x y ,则(1)4x --=,解得3x =,将3x = 代入24y x =可得y =±,所以△POF 的面积为1||2y OF ⋅=112⨯= 故选B .【点睛】本题考查了抛物线的几何性质,定义以及三角形的面积公式,关键是①利用抛物线的定义求P 点的坐标;②利用OF 为三角形的底,点P 的纵坐标的绝对值为高计算三角形的面积.属中档题.17.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,若船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs (已知电磁波在空气中的传播速度约为0.3km/μs ,1海里 1.852km =),则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫± ⎪ ⎪⎝⎭B .135322,77⎛⎫± ⎪ ⎪⎝⎭C .3217,3⎛⎫±⎪⎝⎭D.(45,±【答案】B 【解析】 【分析】根据双曲线的定义求出点P 所在的双曲线的标准方程()2211522564x y x -=>,将方程与()222713664x y --=联立,求解即可. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,因为船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs ,则船P 到B 台和到A 台的距离差为185.20.32301.852a PB PA ⨯===-海里,故15a =,又=17c ,故8b =,故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,联立()()()222227121366411522564x y x x y x ⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135,77P ⎛⎫± ⎪ ⎪⎝⎭,故选:B . 【点睛】本题考查了双曲线的定义、圆锥曲线在生活中的应用,考查了理解转化能力,属于中档题.18.已知双曲线()2222100x y C a b a b-=:>,>的一条渐近线与圆22(4x y +-=相交于A ,B 两点,若|AB |=2,则C 的离心率为( )A.3BC .2D .4【答案】C 【解析】 【分析】求出双曲线的渐近线方程,圆的圆心与半径,利用距离公式得到a 、b 关系式,然后求解离心率即可. 【详解】由题意可知不妨设双曲线的一条渐近线方程为:bx +ay =0,圆22(4x y +-=的圆心为(0,,半径为2,由题意及|AB |=2,可得22212+=,222123a a b=+,即b 2=3a 2,可得c 2﹣a 2=3a 2,即224c a = 所以e ca==2. 故选:C . 【点睛】本题主要考查求双曲线离心率的问题,此类问题的解题关键是建立,,a b c 的方程或不等关系,考查学生的运算求解能力,是一道中档题.19.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( )A B .3C .2D 【答案】B 【解析】 【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率. 【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =,11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+-222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以c ==因此椭圆的离心率为223c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.20.过抛物线212x y =的焦点F 的直线交抛物线于点A 、B ,交抛物线的准线于点C ,若3AF FB =uu u r uu r,则BC =( )A .4B .43C .6D .8【答案】D 【解析】 【分析】作出图象,作BM CP ⊥,AN CP ⊥,BH AN ⊥,设BF x =,根据抛物线的性质可得BM BF HN x ===,3AN AF x ==,进而得到1sin 2ACN ∠=,则可求出x 的值,进而得到BC 的值. 【详解】作BM CP ⊥,AN CP ⊥,BH AN ⊥,如图,因为3AF FB =uu u r uu r,不妨设BF x =,所以33AF BF x ==,4AB x =,根据抛物线的定义可得BM BF HN x ===,3AN AF x ==,6FP p ==,则32AH AN HN x x x =-=-=,所以1sin sin 2AH ABH ACN AB ∠=∠==,则212CF FP ==,2CB x =, 则312CF CB BF x =+==,所以4x =,则28BC x ==, 故选:D . 【点睛】本题考查抛物线的性质,涉及抛物线定义的应用,考查数形结合思想,属于中档题.。

高考数学压轴专题专题备战高考《平面解析几何》易错题汇编含解析

高考数学压轴专题专题备战高考《平面解析几何》易错题汇编含解析

新数学《平面解析几何》专题解析一、选择题1.已知椭圆1C :22113x y +=,双曲线2C :22221(,0)x y a b a b-=>,若以1C 的长轴为直径的圆与2C 的一条渐近线交于A 、B 两点,且椭圆1C 与该渐近线的两交点将线段AB 三等分,则2C 的离心率是( ) AB .3CD .5【答案】A 【解析】由已知得OA =OA 的方程为()00,0y kx k x =>>,∴可设()00,A x kx ,进一步0=,A AB ∴的一个三分点坐标为⎛⎫,该点在椭圆上,221⎛⎫⎛⎫+=,即()2211391k k+=+,解得22k =,从而有,222222b b a a==,解得c e a ===,故选A. 【 方法点睛】本题主要考查双曲线的渐近线及椭圆的离心率,属于难题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系;离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.2.已知双曲线22x a-22y b =1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .B .C .D .【答案】A 【解析】 【分析】 【详解】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),即点(-2,-1)在抛物线的准线上,又由抛物线y 2=2px 的准线方程为2px =-,则p=4, 则抛物线的焦点为(2,0);则双曲线的左顶点为(-2,0),即a=2;点(-2,-1)在双曲线的渐近线上,则其渐近线方程为12y x =±, 由双曲线的性质,可得b=1;则c =故选A .3.已知一条抛物线恰好经过等腰梯形ABCD 的四个顶点,其中4AB =,2BC CD AD ===,则该抛物线的焦点到其准线的距离是( )ABCD.【答案】B 【解析】 【分析】不妨设抛物线标准方程22(0)x py p =>,将条件转化为坐标,代入解出p ,即得结果. 【详解】不妨设抛物线标准方程22(0)x py p =>,可设(1,),(2,C m B m ,则123242(pm p p m =⎧⎪∴==⎨=+⎪⎩B. 【点睛】本题考查抛物线方程及其性质,考查基本分析求解能力,属基本题.4.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( ) A.BC .2D.【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】由22224(42)02y x bx b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,125x =-,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||MN = 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.5.已知抛物线x 2=16y 的焦点为F ,双曲线22145x y -=的左、右焦点分别为F 1、F 2,点P是双曲线右支上一点,则|PF|+|PF 1|的最小值为( ) A .5 B .7 C .9 D .11 【答案】C 【解析】 【分析】由题意并结合双曲线的定义可得1222(4)44PF PF PF PF PF PF FF +=++=++≥+,然后根据两点间的距离公式可得所求最小值. 【详解】由题意得抛物线216x y =的焦点为()0,4F ,双曲线22145x y -=的左、右焦点分别为()()123,0,3,0F F -.∵点P 是双曲线右支上一点,∴124PF PF =+.∴1222(4)44549PF PF PF PF PF PF FF +=++=++≥+=+=,当且仅当2,,F P F 三点共线时等号成立,∴1PF PF +的最小值为9. 故选C . 【点睛】解答本题的关键是认真分析题意,然后结合图形借助数形结合的方法求解.另外在解题中注意利用双曲线的定义将所求问题进行转化,考查分析理解能力和解决问题的能力,属于基础题.6.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( ) A.B.C.D.【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+,因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g ,221212121||()436363636433y y y y y y m -=+-=+=+=g ,由题意可知,四边形AA B B ''为直角梯形,所以1211()||84316322AA B B S AA BB y y ''''=+-==gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.7.已知双曲线2222:1(0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上的一点,且212||PF PF =.若直线2PF 与双曲线E 的渐近线交于点M ,且M 为2PF 的中点,则双曲线E 的渐近线方程为( )A .13y x =±B .12y x =±C .2y x =±D .3y x =±【答案】C 【解析】 【分析】由双曲线定义得24PF a =,12PF a =,OM 是12PF F △的中位线,可得OM a =,在2OMF △中,利用余弦定理即可建立,a c 关系,从而得到渐近线的斜率.【详解】根据题意,点P 一定在左支上.由212PF PF =及212PF PF a -=,得12PF a =,24PF a =, 再结合M 为2PF 的中点,得122PF MF a ==,又因为OM 是12PF F △的中位线,又OM a =,且1//OM PF , 从而直线1PF 与双曲线的左支只有一个交点.在2OMF △中22224cos 2a c aMOF ac+-∠=.——①由2tan b MOF a ∠=,得2cos aMOF c∠=. ——② 由①②,解得225c a=,即2b a =,则渐近线方程为2y x =±.故选:C. 【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.8.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,10【答案】D 【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=,又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =,再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.9.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .(1,14) B .1(,1)4-C .(1,2)D .(1,2)-【答案】A 【解析】【详解】试题分析:抛物线24y x =焦点为F (1,0),准线为1x =-,作PQ 垂直于准线,垂足为M 根据抛物线定义: ,PQ PF PQ PM +=+,根据三角形两边距离之和大于第三边,直角三角形斜边大于直角边知:PQ PM +的最小值是点Q 到抛物线准线1x =-的距离;所以点P 纵坐标为1,则横坐标为14,即(1,14),故选A 考点:抛物线的定义及几何性质的运用.10.如图,12,F F 是双曲线221:13yC x -=与椭圆2C 的公共焦点,点A 是1C ,2C 在第一象限的公共点,若112F A F F =,则2C 的离心率是( )A .13B .15C .23D .25【答案】C 【解析】由221:13y C x -=知2c =,1124F A F F ==∵122F A F A -= ∴22F A =∵由椭圆得定义知1226a F A F A =+= ∴23,3c a e a === 故选C11.已知1F ,2F 分别为双曲线C :22221(0,0)x y a b a b-=>>的左,右焦点,点P 是C 右支上一点,若120PF PF ⋅=u u u v u u u u v ,且124cos 5PF F ∠=,则C 的离心率为( ) A .257B .4C .5D .57【答案】C【分析】在12PF F △中,求出1PF ,2PF ,然后利用双曲线的定义列式求解. 【详解】在12PF F △中,因为120PF PF ⋅=u u u r u u u u r ,所以1290F PF ∠=o, 1121248cos 255c PF F F PF F c =⋅∠=⋅=,2121236sin 255cPF F F PF F c =⋅∠=⋅=, 则由双曲线的定义可得128622555c c ca PF PF =-=-= 所以离心率5ce a==,故选C. 【点睛】本题考查双曲线的定义和离心率,解题的关键是求出1PF ,2PF ,属于一般题.12.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P是双曲线在第一象限上的点,MO OP =u u u u v u u u v,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A .3BC D【答案】B 【解析】 【分析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ ,即有2224208c a a =+,即227c a =,可得c =,即ce a==【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).13.倾斜角为45︒的直线与双曲线22214x y b-=交于不同的两点P 、Q ,且点P 、Q 在x轴上的投影恰好为双曲线的两个焦点,则该双曲线的焦距为( )A .232B .252C 31D 51【答案】B 【解析】 【分析】方法一;由双曲线的对称性可知直线过原点,可得2Rt QOF △为等腰三角形且245QOF ∠=︒,根据勾股定理及双曲线的定义可得:51c =.方法二:等腰2Rt QOF △中,可得22b QF a=,且2b c a =.又根据222b a c =-,联立可解得51c =. 【详解】方法一;由双曲线的对称性可知直线过原点,在等腰2Rt QOF △中,245QOF ∠=︒, 则122F F c =,2QF c =,15QF c =.由双曲线的定义可得:122QF QF a-=, 5451c c c -==,, 故2252c =.方法二:等腰2Rt QOF △中,22bQF a=,∴2b c a=.又222b a c =-, ∴2240c c --=,得1c =.∴22c =. 故选:B . 【点睛】本题考查双曲线的性质,解题关键是将题目条件进行转化,建立等量关系求解,属于中等题.14.已知12F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,P 为双曲线上一点,2PF 与x 轴垂直,1230PF F ∠=︒,且焦距为 )A .y =B .y =C .2y x =±D .3y x =±【答案】B 【解析】 【分析】先求出c 的值,再求出点P 的坐标,可得22bPF a=,再由已知求得1PF ,然后根据双曲线的定义可得ba的值,则答案可求. 【详解】解:由题意,2c =解得c =,∵()2,0F c ,设(),P c y ,∴22221x y a b-=,解得2b y a =±,∴22b PF a=,∵1230PF F ∠=︒,∴21222b PF PF a==,由双曲线定义可得:2122b PF PF a a-==,则222a b =,即ba=∴双曲线的渐近线方程为y =.故选:B .【点睛】本题考查双曲线渐近线方程的求解,难度一般.求解双曲线的渐近线方程,可通过找到,,a b c 中任意两个量的倍数关系进行求解.15.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,若船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs (已知电磁波在空气中的传播速度约为0.3km/μs ,1海里 1.852km =),则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫± ⎪ ⎪⎝⎭B .135322,77⎛⎫± ⎪ ⎪⎝⎭C .3217,3⎛⎫±⎪⎝⎭D .(45,162±【答案】B 【解析】 【分析】根据双曲线的定义求出点P 所在的双曲线的标准方程()2211522564x y x -=>,将方程与()222713664x y --=联立,求解即可. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,因为船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs ,则船P 到B 台和到A 台的距离差为185.20.32301.852a PB PA ⨯===-海里,故15a =,又=17c ,故8b =,故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,联立()()()222227121366411522564x y x x y x ⎧--=<⎪⎪⎨⎪-=>⎪⎩, 解得135322,77P ⎛⎫± ⎪ ⎪⎝⎭,故选:B . 【点睛】本题考查了双曲线的定义、圆锥曲线在生活中的应用,考查了理解转化能力,属于中档题.16.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,根据船P 接收到A 台和B 台电磁波的时间差,计算出船P 到B 发射台的距离比到A 发射台的距离远30海里,则点P 的坐标(单位:海里)为( )A.90,7⎛±⎝⎭B.135,7⎛⎝⎭C .3217,3⎛⎫±⎪⎝⎭D.(45,±【答案】B 【解析】 【分析】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,根据双曲线的定义得出15a =,再得出由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,与双曲线()222713664x y --=联立,即可得出点P 坐标. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥由于船P 到B 台和到A 台的距离差为30海里,故15a =,又=17c ,故8b =故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>联立()()()222227121366411522564x y x x y x ⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135,77P ⎛⎫± ⎪ ⎪⎝⎭ 故选:B 【点睛】本题主要考查了双曲线的应用,属于中档题.17.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称,∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.已知抛物线2:2(0)C x py p =>的焦点为F ,C 的准线与对称轴交于点H ,直线32p y x =-与C 交于A ,B 两点,若43||3AH =,则||AF =( ) A .3 B .83C .2D .4【答案】C 【解析】 【分析】注意到直线32py x =-过点H ,利用||||AM AH =tan 3,AHM ∠=43||3AH =,可得||2AM =,再利用抛物线的定义即可得到答案.【详解】连接AF ,如图,过A 作准线的垂线,垂足为M ,易知点0,,0,22p p F H ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.易知直 线32p y x =-过点H ,tan 3,3AHM AHM π∠=∠=,则||3,||2AM AH =又43||AH =, 所以||2AM =,由抛物线的定义可得||AF =||2AM =.故选:C. 【点睛】本题考查直线与抛物线的位置关系,涉及到利用抛物线的定义求焦半径,考查学生转化与化归的思想,是一道中档题.19.已知(cos ,sin )P αα,(cos ,sin )Q ββ,则||PQ 的最大值为( )A B .2C .4D .【答案】B 【解析】 【分析】由两点的距离公式表示PQ ,再运用两角差的余弦公式化简,利用余弦函数的值域求得最值. 【详解】∵(cos ,sin )P αα,(cos ,sin )Q ββ,∴||PQ ====∵cos()[1,1]αβ-∈-,∴||[0,2]PQ ∈. 故选B . 【点睛】本题综合考查两点的距离公式、同角三角函数的平方关系、两角差的余弦公式和余弦的值域,属于中档题.20.已知1F 、2F 分别为双曲线22146x y -=的左、右焦点,M 为双曲线右支上一点且满足120MF MF ⋅=u u u u v u u u u v ,若直线2MF 与双曲线的另一个交点为N ,则1MF N ∆的面积为( )A .12B .C .24D .【答案】C 【解析】 【分析】设1MF m =,2MF n =,根据双曲线的定义和12MF MF ⊥,可求出6m =,2n =,再设2NF t =,则14NF t =+根据勾股定理求出6t =即可求出三角形的面积. 【详解】解:设1MF m =,2MF n =,∵1F 、2F 分别为双曲线22146x y -=的左、右焦点,∴24m n a -==,122210F F c ==.∵120MF MF ⋅=u u u u v u u u u v, ∴12MF MF ⊥,∴222440m n c +==, ∴()2222m n m n mn -=+-, 即2401624mn =-=, ∴12mn =, 解得6m =,2n =,设2NF t =,则124NF a t t =+=+, 在1Rt NMF ∆中可得()()222426t t +=++, 解得6t =, ∴628MN =+=, ∴1MF N ∆的面积111862422S MN MF =⋅=⨯⨯=. 故选C .【点睛】本题考查了双曲线的定义和向量的数量积和三角形的面积,考查了运算能力和转化能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高中数学】数学《平面解析几何》复习知识要点一、选择题1.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C 【解析】 【分析】利用椭圆的性质,根据4AB =,12F F =c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=,222c a b =-,解得3a =,b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.2.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A B .2C D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得AF =u u u v【详解】根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.3.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( ) A .3B 3C .2D .22【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】 由22224(42)02y x b x b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,125x =-,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||MN = 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.4.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( )A .B .C .D .【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+,因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g , 221212121||()436363636433y y y y y y m -=+-=+=+=g ,由题意可知,四边形AA B B ''为直角梯形,所以1211()||84316322AA B B S AA BB y y ''''=+-==gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.5.已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( )A .16B .10C .12D .8【答案】C 【解析】 【分析】根据题意可知AD BD ⊥,利用抛物线的定义,可得30ABD ∠=︒,所以||||2612AF BF ==⨯=.解:因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1||||||2AD AF AB ==,所以30ABD ∠=︒.因为F 到准线的距离为6, 所以||||2612AF BF ==⨯=. 故选:C .【点睛】本题考查抛物线的性质,抛物线的定义,考查转化思想,属于中档题.6.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x yx y +=联立解得222x y ==可判断①③;由图可判断④.()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点()2,2,()2,2-,()2,2--,()2,2-,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.7.已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于,A B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF ∆的面积为24a ,则双曲线的离心率为 A .2 B .3C .2D .5【答案】D 【解析】 【分析】通过双曲线和圆的对称性,将ABF ∆的面积转化为FBF ∆'的面积;利用焦点三角形面积公式可以建立a 与b 的关系,从而推导出离心率. 【详解】由题意可得图像如下图所示:F '为双曲线的左焦点AB Q 为圆的直径 90AFB ∴∠=o根据双曲线、圆的对称性可知:四边形AFBF '为矩形12ABF AFBF FBF S S S ''∆∆∴== 又2224tan 45FBF b S b a ∆'===o,可得:225c a = 25e ∴= 5e ⇒=本题正确选项:D 【点睛】本题考查双曲线的离心率求解,离心率问题的求解关键在于构造出关于,a c 的齐次方程,从而配凑出离心率的形式.8.如图,设椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .12B .23C .13D .14【答案】C 【解析】如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且OF OM 1FAAB2==, 即c c a -=12可得e=c a =13. 故答案为13. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.10.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点,则直线bx ay 4a 0-+=与直线bx ay 0-=的距离224a 4a d ca b ==+, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.11.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( ) A .4 B .2 C .2 D . 【答案】D 【解析】()1ln (0,0)a a f x x a b b b+=-->>,所以()'a f x bx =-,则f ′(1)=-ab为切线的斜率, 切点为(1,-1a b+), 所以切线方程为y +1a b +=-ab(x -1), 整理得ax +by +1=0.因为切线与圆相切,所以22a b+=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab , 所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2, 所以a +b ≤,即a +b 的最大值为.故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.12.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( )A .3-B .2-CD 1【答案】D 【解析】由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PF PM m PQPQα===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设204x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以2PQ PF ,==,则2PF PQ a +=,∴1a =,1c =,∴1ce a==,故选D .13.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P是双曲线在第一象限上的点,MO OP =u u u u v u u u v,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A BC D【答案】B 【解析】 【分析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ ,即有2224208c a a =+,即227c a =,可得c =,即ce a==【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a =; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).14.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A【解析】 【分析】 设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由b y x a =±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b =所以双曲线的渐近线方程为b y x a=±=±. 【点睛】 本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.15.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225*********n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.16.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为M 的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解.【详解】由直线的斜率为tan 60k ︒==y b =+.圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =, 则由弦长公式得:圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与3⎛⎫- ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C.【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.17.已知1F ,2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点A 是双曲线上第二象限内一点,且直线1AF 与双曲线的一条渐近线b y x a=平行,12AF F ∆的周长为9a ,则该双曲线的离心率为( )A .2B C .3D .【答案】A【解析】【分析】根据双曲线的定义,结合三角形的周长可以求出1AF 和2AF 的表达式,根据线线平行,斜率的关系,结合余弦定理进行求解即可.【详解】 由题意知212AF AF a -=,2192AF AF a c +=-,解得21122a c AF -=,1722a c AF -=, 直线1AF 与b y x a =平行,则12tan b AF F a ∠=,得12cos a AF F c∠=, 222121214cos 22AF c AF a AF F c AF c+-∠==⋅, 化简得22280c ac a +-=,即2280e e +-=,解得2e =.故选:A【点睛】本题考查求双曲线的离心率,考查了双曲线的定义的应用,考查了余弦定理的应用,考查了数学运算能力.18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <u u u v u u u v ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,29λμ=,则该椭圆的离心率为( )A .35B .1213C .35或1213D .45【答案】A【解析】 分析:根据向量共线定理及29λμ=,AP BP <u u u v u u u v ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率. 详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v∴1λμ+= 又∵29λμ= ∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩ ∵AP BP <u u u v u u u v∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限) ∴2(,)b P c a ,2(,)b B c a - ∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点∴直线1l 的方程为为1x y a b +=- ∴()(,)a c b A c a+ ∵2133OP OA OB =+u u u r u u u r u u u r ∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+. ∴22224()2a c a ac c -=++,即223520a c ac --=.∴25230e e +-=∵(0,1)e ∈ ∴35e =故选A. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).19.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( )AB.3 C.2 D【答案】B【解析】【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率.【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =, 11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+- 222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以2222c a b =-=,因此椭圆的离心率为223c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.20.已知平面向量,,a b c r r r 满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A 75-B 73-C .532-D 31- 【答案】A【解析】【分析】 根据题意,易知a r 与b r 的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得2212302x y x y +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果.【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=. 故选:A.【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.。

相关文档
最新文档