船用螺旋桨的设计关键分析

合集下载

cssrc商用船舶螺旋桨设计和空泡试验总结

cssrc商用船舶螺旋桨设计和空泡试验总结

cssrc商用船舶螺旋桨设计和空泡试验总结近年来,随着船舶业的发展,商用船舶螺旋桨的设计和应用日益受到重视。

这些桨有助于推进船舶,提高其综合性能,满足日益增长的游览者需求。

本文重点论述了对商用船舶螺旋桨的设计、结构和动力特性的研究,以及对这类桨的空泡性能的试验。

首先,我们介绍了螺旋桨的设计原理。

为了更好地提高螺旋桨的效率和综合性能,需要综合考虑桨叶的数量、叶型、尖端角度、桨叶弯曲度和轮廓曲线等参数。

接着,对商用船舶螺旋桨的结构和动力性能进行了计算和计算实验研究。

数值模拟工具用于预测各种流动状态下桨叶的气动特性,以及螺旋桨在固定水深下的推进性能。

空泡试验用于衡量商用船舶螺旋桨在不同实际推进速度和推进功率下的空泡
性能,以及螺旋桨的轴力和抗扭力特性。

经过以上研究,我们发现商业船舶螺旋桨可以有效提升船舶的推进能力,同时确保船舶运行的安全性。

实验结果表明,螺旋桨具有良好的推进性能、节能性和可靠性。

此外,空泡性能测试也证明,在某些情况下,螺旋桨可以在低轴力和抗扭力条件下实现良好的推进效果。

综上所述,研究商用船舶螺旋桨的设计、结构和动力特性,以及对这类桨的空泡性能的试验,可以为未来的商用船舶螺旋桨的设计、研发工作提供重要的参考。

结论:
经过详细的研究和实验,我们认为商用船舶螺旋桨具有良好的推进性能、节能性和可靠性。

此外,空泡性能试验也证明,在某些情况
下,螺旋桨可以在低轴力和抗扭力条件下实现良好的推进效果。

因此,我们认为商业船舶螺旋桨可以有效提高船舶的性能,为未来船舶技术发展提供重要参考。

船用螺旋桨螺距计算公式

船用螺旋桨螺距计算公式

船用螺旋桨螺距计算公式船用螺旋桨的设计是船舶工程中的重要环节,其中螺距计算是一个关键步骤。

螺距是指螺旋桨每转一圈前进的距离,它直接影响到船舶的推进性能和效率。

在这篇文章中,我们将介绍船用螺旋桨螺距计算的公式及其应用。

船用螺旋桨的螺距计算公式可以根据船舶的设计要求和性能指标来确定。

一般来说,螺距的计算需要考虑船舶的速度、功率、转速以及螺旋桨的直径等因素。

下面是船用螺旋桨螺距计算的公式:螺距 = (速度× 60) / (π × 直径)其中,速度单位为节(1节=1852米/小时),直径单位为米。

这个公式的原理是通过船舶的速度和螺旋桨转速来计算螺旋桨每转一圈前进的距离。

螺距是船用螺旋桨设计中的重要参数,它直接影响到船舶的推进效率和性能。

通常情况下,为了提高船舶的推进效率,需要选择合适的螺距。

如果螺距选取不当,可能会导致船舶在高速航行时出现过载或低速航行时推进效率低下的问题。

根据船舶的设计要求和性能指标,可以通过螺距计算公式来确定螺旋桨的螺距。

首先,需要确定船舶的速度和螺旋桨的直径。

船舶的速度可以通过船舶设计参数或实测数据来获取,而螺旋桨的直径则可以根据船舶的设计要求和性能指标来确定。

然后,将速度和直径代入螺距计算公式,即可得到螺旋桨的螺距。

船用螺旋桨螺距计算公式的应用非常广泛,不仅可以用于船舶设计过程中,还可以用于船舶的改装和维修。

在船舶改装和维修中,通过调整螺距,可以改变船舶的推进性能和效率,以满足不同的使用需求。

除了螺距计算公式,还有一些其他的影响螺旋桨性能的因素需要考虑。

例如,螺旋桨的叶片数目、叶片形状、叶片角度等都会对螺旋桨的推进效率和性能产生影响。

因此,在实际应用中,需要综合考虑这些因素,以确保螺旋桨的设计满足船舶的要求。

船用螺旋桨螺距计算公式是船舶设计中的重要工具,它可以帮助工程师确定螺旋桨的螺距,以满足船舶的设计要求和性能指标。

在实际应用中,需要综合考虑船舶的速度、功率、转速、直径等因素,以确保螺旋桨的设计满足船舶的推进需求。

螺旋桨设计毕业设计

螺旋桨设计毕业设计

螺旋桨设计毕业设计一、前言1.研究背景和意义螺旋桨是一种将旋转机械能转化为推力的装置,广泛应用于船舶、飞机、潜艇等领域。

螺旋桨的研究背景和意义如下:(1).提高推进效率:螺旋桨的设计和性能直接影响到船舶、飞机等交通工具的推进效率。

通过研究螺旋桨的流场、水动力性能等,可以优化螺旋桨的设计,提高推进效率,降低能耗。

(2).改善船舶操纵性:螺旋桨的设计和布局对船舶的操纵性有很大影响。

通过研究螺旋桨的水动力性能和流场分布,可以优化船舶的操纵性,提高船舶的航行安全性。

(3).降低噪音和振动:螺旋桨在运转过程中会产生噪音和振动,对环境和人员造成不良影响。

通过研究螺旋桨的流场和水动力性能,可以采取相应的措施降低噪音和振动,提高交通工具的舒适性。

(4).推动新技术的应用:随着计算流体力学(CFD)等新技术的发展,螺旋桨的设计和分析方法也在不断更新。

通过研究螺旋桨的设计和性能,可以推动新技术的应用,提高设计水平和效率。

2.研究目的和问题研究螺旋桨的目的主要包括提高推进效率、降低噪音和振动、改善船舶操纵性以及推动新技术的应用等。

以下是一些目前在螺旋桨研究中存在的问题:(1).效率提升:尽管现代螺旋桨的设计已经取得了很大的进步,但在某些情况下,仍然存在效率低下的问题。

提高螺旋桨的效率可以降低能耗,减少对环境的影响。

(2).噪音和振动:螺旋桨在运转过程中会产生噪音和振动,对环境和人员造成不良影响。

降低噪音和振动是螺旋桨研究中的一个重要问题。

(3).空泡现象:在高航速下,螺旋桨周围的水流可能会产生空泡,从而导致推力下降、噪音增加以及螺旋桨的损坏。

如何有效地控制空泡现象是一个亟待解决的问题。

(4).材料和制造工艺:螺旋桨在高速旋转和海水腐蚀的环境下工作,因此对材料和制造工艺的要求很高。

开发高性能材料和先进的制造工艺是提高螺旋桨性能的关键。

(5).多学科优化:螺旋桨的设计涉及到流体力学、结构力学、材料科学等多个学科领域。

如何将这些学科知识有效地整合到螺旋桨的设计过程中,实现多学科优化,是一个具有挑战性的问题。

浅谈船舶螺旋桨的设计

浅谈船舶螺旋桨的设计

浅谈船舶螺旋桨的设计目录目录 (1)2 摘要 ......................................................关键词 (2)引言 (2)1结构与计算要素 ..........................................1.1结构组成 ............................................1.2计算要素 ............................................2项目设计过程及结果与分析 ................................2.1船体估算数据 .......................................2.2螺旋桨要素选取及结果与分析 ..........................2.3推力曲线及自由航行计算及结果与分析 ..................2.4计算总结 ............................................2.5螺旋桨模型的敞水实验 ................................3螺旋桨设计的发展 .......................................3.1节能减排促使螺旋桨加快创新 .........................结束语 ...................................................3 3 3 5 6 6 7 9 9 11 111314 14 14参考文献 ................................................. 致谢 ..................................................... 附录 .....................................................摘要螺旋桨是造船行业必备的推进部件,它的设计精度将直接影响船的推进速度,它为船的前进提供的推力。

船用螺旋桨制作方法

船用螺旋桨制作方法

船用螺旋桨制作方法船用螺旋桨是船舶的重要设备之一,它通过转动产生推力,驱动船舶前进。

下面将介绍船用螺旋桨的制作方法。

一、设计螺旋桨的几何形状设计船用螺旋桨的几何形状是制作螺旋桨的第一步。

船舶设计师需要根据船舶的需求和性能要求,确定螺旋桨的直径、螺距、叶片数等参数。

同时,考虑到船体与螺旋桨的匹配,还需要确定螺旋桨的进气角、弯曲角等参数。

二、制作螺旋桨模型制作螺旋桨的模型是制造螺旋桨的关键步骤之一。

通常,制作螺旋桨模型的方法有数控机床铣削、电解加工和3D打印等。

其中,数控机床铣削是最常用的方法之一。

制作模型时,需要根据设计要求将模型材料切割成相应的形状,然后利用数控机床进行精确铣削。

三、制造螺旋桨母模制造螺旋桨母模是制造螺旋桨的关键步骤之一。

制造螺旋桨母模的材料通常选用耐磨性好、强度高的材料,如铸铁、铸钢等。

制造螺旋桨母模时,需要根据螺旋桨的几何形状,在模具中进行铸造或锻造。

制造螺旋桨母模时,需要注意模具的精度和表面质量,以确保螺旋桨的制造质量。

四、制造螺旋桨叶片制造螺旋桨叶片是制造螺旋桨的关键步骤之一。

制造螺旋桨叶片时,通常采用模铸法或数控机床铣削法。

在模铸法中,需要将螺旋桨的几何形状制作成模具,然后将熔化的金属注入模具中,待金属凝固后取出螺旋桨叶片。

在数控机床铣削法中,需要根据螺旋桨的几何形状,在金属材料上进行精确铣削。

五、组装螺旋桨组装螺旋桨是制造螺旋桨的最后一步。

在组装螺旋桨时,需要将螺旋桨叶片与螺旋桨母模进行组装,并进行合理的校正和调整。

同时,还需要在螺旋桨的轴上安装螺旋桨叶片,并进行固定,以确保螺旋桨的稳定性和可靠性。

六、测试与调试制造完成的螺旋桨需要进行测试与调试,以确保其性能和质量符合设计要求。

测试与调试包括静态平衡试验、动态平衡试验、推力试验等。

通过这些试验,可以检验螺旋桨的平衡性、推力性能等指标是否达到设计要求。

船用螺旋桨的制作方法包括设计螺旋桨的几何形状、制作螺旋桨模型、制造螺旋桨母模、制造螺旋桨叶片、组装螺旋桨以及测试与调试。

舰船用螺旋桨铜合金铸件的建模与仿真分析

舰船用螺旋桨铜合金铸件的建模与仿真分析

舰船用螺旋桨铜合金铸件的建模与仿真分析随着科技的不断发展和船舶工程的推动,舰船的设计和制造变得越来越重要。

在舰船的推进系统中,螺旋桨起到了至关重要的作用。

舰船用螺旋桨铜合金铸件的建模与仿真分析是为了探究螺旋桨的性能,并提出改善措施以提高其推进效率和可靠性。

首先,针对舰船用螺旋桨铜合金铸件的建模,我们需要进行CAD建模。

CAD (Computer-Aided Design)作为一种计算机辅助设计技术,能够准确地模拟出螺旋桨的形状和尺寸。

通过使用CAD软件,我们可以根据机械设计原理和舰船工程要求,设计出符合规格和标准的螺旋桨铜合金铸件。

建模完成后,接下来是仿真分析。

仿真分析是为了模拟螺旋桨在实际运行中的工作状况,并评估其性能。

首先,我们需要进行流场分析。

通过数值模拟方法,我们可以模拟流体在螺旋桨周围的流动情况,包括速度、压力等参数。

通过分析流场,可以评估螺旋桨的推进效率和推力。

除了流场分析,还需要进行结构分析。

结构分析主要针对螺旋桨铜合金铸件的强度和稳定性。

通过有限元分析等方法,我们可以模拟螺旋桨在工作过程中受到的力和振动,评估其在各种负荷情况下的安全性。

此外,也可以进行疲劳寿命分析。

螺旋桨在舰船的长时间使用中会受到重复载荷的作用,容易引起疲劳破坏。

通过数值模拟和材料力学分析,可以预测螺旋桨的疲劳寿命,并提出相应的改进措施,延长螺旋桨的使用寿命。

最后,根据分析结果,可以提出改进和优化的建议。

例如,结构分析可能会发现螺旋桨铸件的局部应力过高,可以通过优化设计或材料选择来改善。

流场分析可能会揭示螺旋桨在某些条件下存在流动阻力,可以通过改变形状或加装辅助装置来提高推进效率。

总之,舰船用螺旋桨铜合金铸件的建模与仿真分析是为了评估螺旋桨的性能和可靠性,并提出优化措施。

通过CAD建模和流场分析,可以模拟螺旋桨周围的流动情况;通过结构分析和疲劳寿命分析,可以评估螺旋桨的强度和寿命。

这些分析结果将为改进螺旋桨设计和制造提供重要的依据,从而提高舰船的推进效率和可靠性,为船舶工程的进一步发展和应用做出贡献。

螺旋桨设计

螺旋桨设计

7螺旋桨设计螺旋桨设计主要有两部分工作:⑴、确定设计船的阻力或有效功率曲线EHP⑵、据此进行螺旋桨设计并预报设计船航速7.1阻力或有效功率的估算当主尺度和船型系数确定以后,必须知道自己功率以确保船舶达到规定的航速,或如果主机功率已知,则需估算阻力或有效功率以预报船舶的设计航速,进而可初步分析比较各种方案的优劣。

可采用海军系数法,比较估算法(具体公式参照《船舶原理》教材)。

采用艾尔法来估算有效功率曲线,具体方法如下:依据《船舶原理》上册第7章,第2节的经验公式之一的艾尔法公式7.1.1艾尔法的基本思想艾尔法首先针对标准船型直接估算有效功率,然后根据设计船与标准船之间的差异逐一进行修正,最后得到设计船的有效功率值。

7.1.2根据艾尔法进行列表计算下面是计算表格:表7.1 艾尔法计算有效马力速度v(kn) 8 9 10 11 12弗洛德数vs/sqrt(gL) 0.15662 0.176196 0.19577 0.215351 0.23493标准C0查图7-3 440 430 410 390 350标砖Cbc查图7-5 0.83 0.79 0.76 0.73 0.695实际Cb(肥或痩)(%)-6.75,肥-12.15肥 -16.5肥-21.3肥-27.4肥Cb修正(%)若肥:Cb肥(%)x3x实际Cb -78.907 -138.889 -180.67 -221.524 -255.67 vs/sqrt(L) 0.49046 0.551769 0.61308 0.674384 0.73569已修正Cb之C1 361.093 291.1111 229.326 168.4757 94.3348B/T修正(%)=-10Cb(B/T-2)% -0.3323 -0.33225 -0.3323 -0.33225 -0.3323B/T修正数量,△2[式(7-23)] -119.97 -96.7217 -76.194 -55.9761 -31.343已修正B/T之C2 241.12 194.3894 153.132 112.4997 62.9921标准xc,%L,船中前或后,查表7-5 0.95 0.79 0.55 0.16 -0.6实际xc,%L,船中前或后0.862 0.862 0.862 0.862 0.862相差%L,在标准者前或后0.125 -0.1022 -0.443 -0.9971 -2.076xc修正(%),查表7-7(b)3.7 3.2 2.6 2.1 1.5(△3)0 8.92143 6.22046 3.9814 2.36249 0.9448xc修正数量,△3[式(7-25)] 0 0 0 0 0已修正xc之C3 241.12 194.389 153.13 112.499 62.992长度修正(%)=(Lwl-1.025Lbp)/Lwl×100% -0.1165 -0.1165 -0.116 -0.1165 -0.116 长度修正数量,△4式[(7-25)] -0.2807 -0.2262 -0.178 -0.1309 -0.073已修正长度C4 240.839 194.163 152.95 112.368 62.918V3s 512 729 1000 1331 1728Pe=△0.64V3s/C4×0.735(kW) 299.052 528.158 919.69 1666.23 3863.3peb(无附体) 276.9 489.035 851.56 1542.80 3577.2Pe(hp) 406.597 718.094 1250.4 2265.44 5252.7根据计算结果,可以得到有效马力曲线,表7.2 有效马力曲线表V(kn) 8 9 10 11 12Pe(hp) 406.59 718.094 1250.43 2265.444 5252.727.2螺旋桨图谱设计7.2.1初步确定螺旋桨的最佳转速7.2.1.1 螺旋桨的叶数依据《船舶原理》下册第8章的有关内容,螺旋桨的叶数与主机气缸数的比值不能为整数(否则会对船体振动不利)。

浅谈选用螺旋桨时应考虑的主要参数

浅谈选用螺旋桨时应考虑的主要参数

浅谈选用螺旋桨时应考虑的主要参数论1云浅谈选用螺旋桨时应考虑的主要参数船舶在水中航行时遭受到阻力,为保持一定的航速,必须供给船舶一定的推力以克服它所受到的阻力,推力是来自船上专门设置的一种设备,此设备称为推进器,推进器运转时必须消耗能量,所消耗的能量由船舶动力装置供给,所以推进器的作用是将船舶动力装置所提供的能量转化成克服水阻力,推船前进的推进功率,推进器的种类很多,有风帆,明轮,喷水推进器,Z型推进器,直叶推进器及螺旋桨等.由于螺旋桨构造简单,重量较轻,效率也较高,因而被绝大多数船舶所采用.螺旋桨和船体,主机在船舶航行中构成了一个统一的"联动机",由主机供给能量,使螺旋桨旋转而发出推力,克服船体阻力,推船以一定速度前进.所以在选择螺旋桨时必须满足船,桨,机之间的联动平衡关系,使之能很好配合,这就是说所选择的螺旋桨的转速和所需功率必须和主机的额定转速和额定功率相结合,使主机处于额定工况下工作,而螺旋桨的进速和发出的推力必须和船舶的航速及遭遇的阻力相配合,使船舶能在预定航速下航行,如螺旋桨不能与主机,船体配合,则会使主机处于"负载过重"或"负载过轻"状态,主机功率不能充分发挥,船舶也将不能达到预定航速.可见,螺旋桨选择是否得当,直接影响到船舶的航行速度,但在实际选择时,不仅考虑到推进效率,还应考虑到空泡,振动等方面的因素,所以,我认为在选择螺旋桨时应考虑以下几方面的主要参数:一,螺旋桨的数目:选择螺旋桨的数目必须综合考虑推进性能,振动,操纵性能及主机功率等因素,若功率相同,则单螺旋桨船的推进效率常高于多螺旋桨船,因为单螺旋桨位于船尾中央,伴流较大,且允许有较大直径.因此,只要主机能力许可,现代货船往往采用单螺旋桨船,随着集装箱船的大型化,高速化,由于主机能力的限制,一般采用多螺旋桨.客船要求速度快,振动小,操纵灵活,故采用双螺旋桨,河船常受吃水限制,而且要求操纵灵活,如我们临海制造的吸砂船,大多采用双螺旋桨或多螺旋桨.二,螺旋桨的直径和螺距:一般说来,螺旋桨直径越大.转速越低,则敞水效率越高;但直径过大,桨盘处平均伴流减少,船身效率下降,对总的推进效率未必有利,螺旋桨叶梢应有一定的沉没深度,不要离水面太近,以避免损失和空气吸人发生,并且在风浪中●临海市航运管理所金伯平航行时桨叶不易露出水面.对于河船,因吃水受到限制,螺旋桨直径过小,致使效率偏低, 为解决这一问题,叶梢沉深可减少.从振动方面考虑,螺旋桨与船体间的间隙不宜过小,否则可能引起严重的振动,2001年《刚质海船人级与建造规范》对螺旋桨与尾柱,舵之间的最小间隙作了规定, 如图所示,间隙值不得小于下列数值:a=0.12D(m)b=0.20D(m)c=0.14D(m)d=0.04D(m)\船劈.所以在选择螺旋桨时,可根据船尾部型深,吃水以及间隙要求.即可决定螺旋桨的最大直径.一般地说,当螺旋桨收到功率和转速为一定时,螺旋桨直径增大,螺距就必须减少,反之亦然,只要是同型螺旋桨,且叶数和盘面比相同,直径变动范围在最佳直径第240期-4?2005-船舶工业技术经济信息55i仑I云的一5~1O%之间,可以认为螺距P和直径D之和为常数,即P+D=常数,利用这一关系,可以根据型船的螺旋桨资料方便地预估新船螺旋桨的螺距或直径.三,螺旋桨的转速:螺旋桨转速低,直径大者敞水效率较高,但在选择螺旋桨的转速时,除考虑螺旋桨本身效率外,尚应顾及主机类型,重量,价格及机器效率.一般来说,两者的要求是相互矛盾的.对机器来说,转速越大,效率越高,且机器重量,尺寸都可以减少.若螺旋桨要求转速与主机转速相差过大时,则可采用避免.所以在选择螺旋桨时,应当预估船体自然频率,特别是二节垂向振动频率N2v(Hz),螺旋桨转速no的选择应避开09N2v~1.1N2v,一般应大于1.1N2v.四,螺旋桨叶数:桨叶数目对效率的影响不明显,但对振动,噪音和空泡等影响较大.从减少振动看,叶数多者有利,但盘面比一定时,叶数增加会导致切面厚度增大,容易发生空泡,所以从避免空泡考虑,叶数以少为宜.通常单螺旋桨船多用四叶,双螺旋桨船的叶数可采用三叶或四叶,河船吃水常受限制,而在减速装置以获得妥善解决.在选择螺旋桨转速时,还应考虑船体的振动问题.船体振动一般分为两类:第一类是当主机或辅机在一定转速时,整个船体处于振动状态,这种影响整个船体结构的振动称为共振;第二类是船舶局部或某些装置处于振动状态,称为局部振动,后者可以采取一些局部措施. 如增设扶强材,支柱等加固措施来消除,而前者则是危险状态应考虑相同设计条件下,一般--nt的最佳直径比四叶的大,所以多用四叶. 一般认为,叶数少者效率高,叶数多者,因叶栅干扰作用增大.故效率下降,但实际比较表明,叶数对效率的影响应视工作范围而定,叶数增加效率不一定下降,因此在选择螺旋桨时,应多进行不同叶数的比较计算.桨叶数目选择与振动关系较大,由于船后伴流场不均匀性,使56船舶工业技术经济信息?第24()期.4.2005 桨叶切面在不同的周向位置下将遇到不同的来流速度和攻角,使螺旋桨的推力和旋转阻力也随之发生变化,这就产生了以叶频(桨叶数目乘转速)为基本频率的周期性不平衡水动力,它作用于船体将引起船体振动.增加桨叶数目,一般可使推力和转矩沿盘面分布更加均匀,对减少激振力有利.因此随着船舶的大型化,振动问题显得突出,单螺旋桨船有采用五叶甚至六叶的趋势.此外,在选择叶数时应避免和船体或轴系发生共振,亦即避免叶频与轴系或船体的自然频率相等或相近,同时还应尽量避免主机气缸数,冲程数与叶数相等或恰为其整数倍.五,桨叶外形或叶切面形状:一般认为,桨Dr#l,形轮廓对螺旋桨陛能的影响很小,其展开轮廓近于椭圆形者为良好的叶形.对于具有倾斜的桨叶,各半径处切面弦长与展开轮廓为椭圆形的各叶切面弦长大致相同者为佳.螺旋桨最常用的叶切面形状有弓形和机翼形两种.弓形切面的压力分布较均匀,不易产生空泡,但在低载荷系数时,其效率较机翼形者约低3~4%.若适当选择机翼形切面的拱线形状,使其压力分布较均匀,则无论对空泡或效率均有得益,故民用船螺旋桨用机翼型切面,或叶梢部分配合用弓形切面.实际螺旋桨常具有一定的后斜角.其目的在于增加与船体的间隙,实践证明,后斜对螺旋桨性能没有什么影响,所以在选择螺旋桨时可根据具体情况确定适宜的后斜角.■。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

船用螺旋桨的设计关键分析
船、机、桨系统中,船体是能量的需求者,主机是能量的发生器,螺旋桨是能量转换装置,三者之间是相互紧密联系的,
但同时又要遵从各自的变化特性。
1.螺旋桨

民用船使用的图谱桨,一般以荷兰的B型桨和日本的AU桨为主。AU桨为等螺距桨、叶切面为机翼型;B型桨根部叶切面为
机翼型、梢部为弓形,除四叶桨0.6R至叶根处为线性变螺距外,其余均为等螺距,桨叶有15°的后倾。为便于设计方便,由.KT、
KQ——J敞水性征曲线图转换为BP一δ图谱。

桨与船体各自在水中运动时,都会形成一个水流场。水流场与桨的敞水工作性能和船的阻力性能密切相关。当桨在船后运
动时,2个原本独立的水流场必然会相互作用、相互影响。船体对螺旋桨的影响体现在2个方面:(1)伴流。由于船尾部螺旋
桨桨盘处因水的粘性等因素作用,形成一股向前方向的伴流,使得螺旋桨的进速小于船速。(2)伴流的不均匀性。船后桨在整
个桨盘面上的进速不等(在实用上可取相对旋转效率为1)。
2.螺旋桨对船体的影响

由于螺旋桨对水流的抽吸作用,造成桨盘处的水流加速,由伯努利定律可知,同一根流线上,水质点速度加快,必然会导
致压力下降,从而造成船的粘压阻力增加。也就是桨产生的推一部分用于克服船体产生的附加阻力。

如果用伴流分数ω表征伴流与船速的比值,用推力减额t表征船体附加阻力与船体自身阻力的比值。那么,敞水桨与船后
桨的差别就在于一个船身效率(1一t)/(1一ω)从中可以看出,伴流分数ω越大、推力减额t越小,则船身效率越高。

从螺旋桨图谱可以看出,横坐标的参数为√BP或BP。BP称为收到功率系数(或称为载荷系数),其值为:BP=NPD0.5 /VA2.5
式中:N为螺旋桨转速;PD为螺旋桨敞水收到功率;VA为螺旋桨进速。

BP值越小,对应的螺旋桨敞水效率越高;反之,则螺旋桨效率越低。从个体因素来讲,N值和PD0.5 /VA2.5值越小,BP
值就越小。PD和VA参数有联动关系,在相对低速的范围内,PD值变大、BP值变小;在相对高速的范围内,PD值变大、BP值也
变大。这取决于船的阻力特性。

实际船螺旋桨设计时,还要考虑以下的先决条件:螺旋桨直径有无限制、船舶航速的具体要求。
一般情况下,螺旋桨设计工况都对应船舶满载航行的状态,在该航行状态下,主机发出预定功率、螺旋桨效率达到最佳,
船、机、桨匹配理想。但如果设计参数选择不当,就会造成螺旋桨产生“轻载”或“重载”的现象,“轻载”是指螺旋桨达到
设计转速后,不能充分吸收主机的转矩,主机发不出预定功率;“重载”是指螺旋桨还未达到设计转速时,主机转矩已达到最
大值,主机同样发不出预定功率。

螺旋桨设计产生“轻载”还是“重载”现象,主要取决于2个方面:(1)伴流分数ω、推力减额t取值是否正确。(2)船舶
阻力计算的误差。

如选取的伴流分数ω大于船后实际值,则螺旋桨不能吸收预定的功率和发出要求的推力,从而无法达到预定的航速,螺旋
桨处于“轻载”状态;反之螺旋桨处于“重载”状态。
如选取的推力减额t大于实际值,该情况类似于船舶轻载航行,螺旋桨达到额定转速后,不能吸收主机额定转矩,螺旋桨
处于“轻载”状态;反之,螺旋桨处于“重载”状态。

船舶的阻力大小,与船舶的尺度、线型等因素关系很大,同样一艘船,采用不同公式计算,阻力值可能有很大的区别。如
阻力计算值大于实船阻力,则实船试航时,航速会大于预估速度,螺旋桨却处于“轻载”状态;反之,螺旋桨处于“重载”状
态。

在桨的设计中,由于各参数的理论取值与实际值必然会有综合性的误差,螺旋桨不可避免地会产生“轻载”、“重载”现
象。不论螺旋桨是“轻载”还是“重载”,都不能充分利用主机功率。相比较而言,螺旋桨“重载”时,主机工作在超负荷恶
劣环境下,影响其使用寿命。

一般船舶在使用中都会有压载(空载)航行、满载航行、超载(船底积污或风浪原因)航行状态。对应船舶满载航行工况设计
的螺旋桨,在超载航行时,就会“重载”。同时考虑到主机因老化、磨损等原因,发出的额定功率也会逐渐降低。为了保证有
一定的避免“重载”的安全裕度,需要有一个功率储备。作者根据自己的设计经验体会,在100%额定转速时,考虑功率储备后
的设计功率推荐如下值:对于海船,85%~90%主机功孰对于内河船,90%~95%主机功率。

如主机为高增压、大功率机型,功率储备取下限值,相对而言,该种机型的外特性曲线与推进特性曲线之间的间隙(潜在功
率)小于常规机型。

相关文档
最新文档