水塔水位自动控制电路设计

水塔水位自动控制电路设计
水塔水位自动控制电路设计

四川信息职业技术学院

毕业设计说明书

设计(论文)题目:________________________ 水塔水位自动控制电路设计

专业: 应用电子技术

班级:

学号:

姓名:

指导教师:

二〇一三年十二月五日

目录

摘要 (1)

绪论 (2)

第1章方案论证与分析 (3)

1.1系统功能要求 (3)

1.2整体方案 (3)

1.2.1方案比较与论证 (3)

1.2.2方案论证 (5)

第2章硬件设计与分析 (6)

2.1单片机最小系统 (6)

2.1.1芯片介绍 (6)

2.1.2单片机时钟电路设计 (8)

2.1.3单片机复位电路设计 (9)

2.2超声波测水位电路 (10)

2.3指示电路 (11)

2.3.1显示电路 (11)

2.4报警电路 (12)

2.5交流接触器工作原理 (12)

2.6整机电路工作原理 (13)

第3章软件设计 (14)

3.1主程序流程图 (14)

3.2中断流程图 (14)

第4章系统仿真与调试 (16)

4.1常用调试工具 (16)

4.1.1Keil 软件 (16)

4.1.2Proteus软件 (16)

4.2系统调试 (17)

第5章实物制作与调试 (18)

5.1PCB板的制作 (18)

5.2元件的装配 (19)

5.3调试与性能检测 (20)

参考文献 (22)

附录1 整机电路原理图 (23)

附录2 源程序 (24)

附录3 元器件清单 (27)

摘要

采用低功耗单片机为控制核心、辅以超声波水位状态采集模块、二极管指示模块、电源供电模块、扬声器报警模块设计的自动水塔水位控制系统,通过一只中间继电器来接通大功率的交流接触器,控制水泵的运行成功实现水塔水位控制功能,它具有电路简单、功能齐全、制作成本低、性价比高等特点,是一种经济、实用的自动水塔水位控制系统。硬件部分主要由单片机指示灯、继电器、蜂鸣器等基本外围电子电路组成。它设计的优点是当水位达到一定的位置时报警器开始报警。因此在生活实践应用中具有一定的价值。

关键字超声波检测;水位控制

绪论

在我国尤其是人口高度密集的企业单位和学校,有90%以上是采用传统的抽水方法,用人工监控但是这种方法不仅浪费。人力资源且工作不方便而且,近几年来,随着农村饮水工程的。启动和乡村集镇化建设的发展,深井取水成为解决饮用水的主要方法如果采用人工监控抽水,不但浪费人力资源,而且还容。易发生干抽现象,而且水塔的水用完了还不知道,有时则抽满溢出来,浪费水资源和能源为了提高效率,节约资源,我们就如何实现智能抽水,采用单片机系统进行控制,给出了硬件电路和程序思路。其中运用比较多的主要在大众生活方面,以单片机为控制中心的智能小系统。在本设计中,我们采用了单片机控制多模块设计,便于检查和维修。该设计的基本原理为以51 单片机作为控制元,由软件系统和硬件系统两部分组成。

可靠性:系统应保证长期安全地运行。系统中的硬软件及信息资源应满足可靠性设计要求。安全性:系统应具有必要的安全保护和保密措施。实用性:注重采用经济而实用的技术,使系统建设的投入产出比最高,能产生良好的社会效益和经济效益。易操作性:贯彻面向最终用户的原则,使用户操作简单直观,易于掌握。广泛性:现在大多数企业以及农户为了节约成本都应用此种水塔控制,它的优越性被越来越多的人们所接受、使用。

第1章方案论证与分析

1.1系统功能要求

设计方案采用单片机作为核心部件,并配以时钟电路、复位电路、报警电路、通过扩展外围设备及接口电路完成整个控制系统对电机的控制。成功实现水塔水位显示功能,自动控制电机进行补水功能,从而达到设计要求。

1.2整体方案

1.2.1方案比较与论证

1.基于数字电路实现的电路方案

本设计电路专门用于自来水塔水位的控制。当水位低于最低水位时,自动将供水泵启动上水;当水位到达最高水位是,自动停住上水,不用人工控制。该电路的特点是通过一只中间继电器来接通大功率的交流接触器,控制上水水泵电动机的启动。这是由于555电路输出功率较小,不能驱动大功率的交流接触器它。

电路工作原理:电路中如图(1-1),NE555组成R-S触发器,作为主控电路。R1、R3与R4组成输入端分压偏置电路,它将R-S触发器的R端与S端分别偏置在既不大于2V/3,也不小于V/3的中间状态。当水塔中的水位处于满水时,电源电极A通过水电阻与B、C电极相连,使R-S触发器的R、S端均为高电平,R-S触发器输出端为低电平,继电器K通过吸合,通过常闭触点将交流接触K2的电源断开,上水水泵处于停歇状态。

图1-1数电设计电路原理图

在上水过程中,当水位上升使电极A、B接触后,通过水电阻与R2将电源电压加至定时器的2脚,使R-S触发器的S端出现高电平,但这一高电平对电路不起触发作用。电路保持原状态,上水过程继续。当水位进一步上升使电极AC连通后,电源电压通过

水电阻与R1加至6脚,是R-S触发器的R端出现高电平。这一高电平作为R-S触发器的复位电平,使电路复位,输出端输出低电平,继电器K通电吸合,通过常闭触点K1-1将交流电接触器的电源断开,接触器断开水泵工作电源,上水停止。

2.基于单片机电路实现的电路方案

本设计方案采用内部含Flash存储器的单片机作为核心部件,并配以时钟电路、复位电路、显示电路、报警电路、超声波测距模块,通过扩展外围设备及接口电路完成整个控制系统对电机的控制.电机的控制有串行和并行两种方式,本系统采用串行控制,驱动系统中通过单片机输出控制信号,实现电机不同的控制。基于单片机实现的电路方案方框图如图1-2所示:

图1-2单片机设计电路原理框图

各模块的功能如下:

时钟电路:单片机的时钟信号用来提供单片机内各种微操作的时间基准,时钟电路用于产生单片机工作所需要的时钟信号。

复位电路:用于系统的正常初始化,当单片机系统在运行出错或操作错误使系统处于死锁状态时,为摆脱困境,也需要复位以使其恢复正常工作状态。

超声波水位控制及显示电路:用于控制水位的上升,同时显示水位,当水位超过警卫线时显示灯就会亮。

交流接触器电路:控制大功率水泵进行抽水工作。

报警电路:超过警卫线时,再加水就会实施报警,提醒人们无需再加水。

稳压滤波电源电路:主要是为给系统提供安全、稳定的电源电路。

1.2.2方案论证

以单片机为主体配以超声波测距模块,精确测出水位容量,且不会影响水质。电路具有高可靠性、功能强、高速度、超强抗干扰、低功耗、便于操作等优点,高可靠性、功能强、高速度。在系统中,应用超声波模块可以测出水位的高度和水即满的位置,在单片机的控制下,让超声波功能最大化。一直是衡量单片机性能的重要指标,也是单片机占领市场、赖以生存的必要条件,所以本次设计我们选用了以单片机为中心的设计,此方案的灵活性明显要高于数字电路构成的系统,即本次设计选择基于单片机电路实现的电路方案。

第2章硬件设计与分析

水塔自动供水系统由单片机最小系统、液位控制电路、水位指示电路、报警电路、交流接触器电路和稳压电源等组成,水塔自动供水系统电路原理图见附录1所示。2.1单片机最小系统

电路最小系统由AT89C51单片机、时钟电路、复位电路组成,它是电路工作的最基本的单元电路,任何单片机基于单片机的设计系统都离不开它。

2.1.1芯片介绍

单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线。

中央处理器:

中央处理器(CPU)是整个单片机的控制核心部件,完成运算和控制功能。CPU有运算器和控制器组成。它是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU 负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作。

内部数据存储器(RAM):

单片机内部共有256个RAM单元,其中有128个8位用户数据存储单元和128个专用寄存器单元,它们是统一编址的,专用寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据,所以,用户能使用的RAM只有128个,可存放读写的数据,运算的中间结果或用户定义的字型表。

内部程序存储器(ROM):

单片机共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。

定时/计数器:

单片机有两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向。

并行输入输出(I/O)口共有4组8位I/O口(P0、P1、P2或P3),用于对外部数据的传输。

全双工串行口:

单片机内置一个全双工串行通信口,用于与其它设备间的串行数据传送,该串行口既可以用作异步通信收发器,也可以当同步移位器使用。

中断系统:

单片机具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串行中断,可满足不同的控制要求,并具有2级的优先级别选择。

时钟电路:

单片机内置最高频率达12MHz 的时钟电路,用于产生整个单片机运行的脉冲时序,但单片机需外置振荡电容。

单片机的引脚说明:

单片机采用40Pin 封装的双列直接DIP 结构,下图是它们的引脚配置,40个引脚中,正电源和地线两根,外置石英振荡器的时钟线两根,4组8位共32个I/O 口,中断口线与P3口线复用。其引脚排列如图2-1。

图2-1 单片机引脚图 控制引脚介绍: 1.ALE:系统扩展时,P0口是八位数据线和低八位地址先复用引脚,ALE 用于把P0口输出的低八位地址锁存起来,以实现低八位地址和数据的隔离。

2.PSEN ;低电平有效时,可实现对外部ROM 单元的读操作。

3.EA:当EA 信号为低电平时,对ROM 的读操作限制在外部程序存储器;而挡EA 为高电平时,对ROM 的读操作是从内部程序存储器开始的,并可延至外部单片

程序存储器。

4.RST:当输入的复位信号延续两个机器周期以上的高电平时即为有效,用以

完成单片机的复位初始化操作。

5.XTAL和1XTAL2:外接晶振引线端。

并行I/O端口介绍:

P0端口[P0.0-P0.7]P0是一个8位漏极开路型双向I/O端口,端口置1(对端口写1)时作高阻抗输入端。作为输出口时能驱动8个TTL。

P1端口[P1.0-P1.7]P1是一个带有内部上拉电阻的8位双向I/0端口。输出时可驱动4个TTL。端口置1时,内部上拉电阻将端口拉到高电平,作输入用。

对内部Flash程序存储器编程时,接收低8位地址信息。

P2端口[P2.0-P2.7]P2是一个带有内部上拉电阻的8位双向I/0端口。输出时可驱动4个TTL。端口置1时,内部上拉电阻将端口拉到高电平,作输入用。对内部Flash 程序存储器编程时,接收高8位地址和控制信息。在访问外部程序和16位外部数据存储器时,P2口送出高8位地址。而在访问8位地址的外部数据存储器时其引脚上的内容在此期间不会改变。

P3端口[P3.0-P3.7]P2是一个带有内部上拉电阻的8位双向I/0端口。输出时可驱动4个TTL。端口置1时,内部上拉电阻将端口拉到高电平,作输入用。

除此之外P3端口还用于一些专门功能,具体请看下表2-1。

表2-1 P3引脚的第二功能说明

2.1.2单片机时钟电路设计

单片机是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在

唯一的时钟信号控制下严格的按时序进行工作。时钟电路用于产生单片机的工作的

所修要的时钟信号。时钟可以由内部方式或外部方式产生。89C52内部方式时钟电路,是在XTAL1和XTAL2引脚上外接定时元件,

就能构成自激振荡电路。定时元件通常采用石英

晶体和电容组成的并联谐振电路。电容器C1和

C2主要起频率微调作用,电容值可选取为30pF

左右或40pF左右。89C52外部方式时钟电路是

XTAL1接外部振荡器,XTAL2悬空。对外部振荡

信号无特殊要求,只要保证脉冲宽度,一般采用

频率低于12MHz的方波信号。而此设计采用石英

图2-2时钟电路

晶体内部时钟电路。如图2-2所示。

XTAL1是片内振荡器的反相放大器输入端,XTAL2则是输出端,使用外部振

荡器时,外部振荡信号应直接加到XTAL1,而XTAL2悬空。内部方式时,时钟发

生器对振荡脉冲二分频,如晶振为12MHz,时钟频率就为6MHz。晶振的频率可以

在1MHz-12MHz内选择。电容取30pF左右。系统的时钟电路设计是采用的内部方式,即利用芯片内部的振荡电路。AT89C52单片机内部有一个用于构成振荡器的高

增益反相放大器。引脚XTAL1和XTAL2分别是此放大器的输入端和输出端。这个

放大器

与作为反馈元件的片外晶体谐振器一起构成一个自激振荡器。外接晶体谐振器

以及电容C1和C2构成并联谐振电路,接在放大器的反馈回路中。对外接电容的值

虽然没有严格的要求,但电容的大小会影响震荡器频率的高低、震荡器的稳定性、

起振的快速性和温度的稳定性。因此,此系统电路的晶体振荡器的值为12MHz,电

容应尽可能的选择陶瓷电容,电容值约为30pF。

2.1.3单片机复位电路设计

复位是使单片机或系统中的其他部件处于某种确定的初始状态。单片机的工作就是从复位开始的,当在单片机的RST引脚引入高电平并保持2个机器周期时,单片机内部就执复位操作(若该引脚持续保持高电平,单片机就处于循环复位状态)。

实际应用中,复位操作有两种基本的形式:一种是上电复位,另一种是按键复位。由于本次设计采用的是按键复位,所以这里只介绍按键复位,如图2-1-3所示。按键复位要求按下按键后,单片机实现复位操作。常用的按键复位如图所示。按下按键瞬间

RST 引脚获得高电平,随着电容C 1的充电,RST 引脚的高电平将逐渐下降。

RST 引脚的高电平只要能保持足够的时间(2个机器周期),单片机就可以进行复位操作。该电路典型的电阻和电容参数为:晶振为12MHz 时,C 1为10uF ,R 1为8.2kΩ,晶振为6MHz 时,C 1为22uF ,R 1为1kΩ。

单片机的复位操作使单片机进入初始化状态。初

始化后,程序计数器PC=0000H 所以程序从0000H

地址单元开始执行。单片机启动后,片内RAM 为随

机值,运行中的复位操作不改变片内RAM 的内容。

特殊功能寄存器复位后状态使确定的。P0~P3

为FFH ,SP 为07H ,SBUF 不定,IP 、IE 和PCON

的有效值为0,其余的特殊功能寄存器的状态均为

00H 。 2.2 超声波测水位电路

超声波测水位的作用:一种是为了液体储藏量的管理,一种是为了液位的安全或自动化控制。有时需要精确的液位数据,有时只需液位升降的信息,超声波模块一共五个引脚,左边第一个引脚是VCC ,第二个引脚是控制端,第三个引脚是接收端,第四个引脚是信号输出端,第五个引脚是GND 。如图2-4所示。

超声波测水位的基本工作原理如图2-5所示。单片机发出的脉冲信号经过整形后,传到超声波换能器(中心频率为40 kHz),通过超声波发射头将电能转换为机械能发射出去。脉冲信号采用高频低功耗非周期窄脉冲信号,因为其具有频率高,波长短,绕射现象小,方向性好,发射器体积小等优点。根据检测水位的要求进行升降调节,实际是一个测距的检测电路。当超声波检测到水位小于最短距离时,此时水位处于L ,就可以通过单片机控制水泵停止工作;当超声波检测到水位大于最短距离时,此时水位处于A 点图2-3 按键复位电路

图2-4 超声波测距模块

或者B 点,就可以控制水泵开始工作。同时通过显示器,可对供水系统进行控制。

超声波的测距公式:

声速(V )*时间(T/2)=距离(S )

2.3 指示电路 指示部分可由液晶显示屏、发光二极管等组成,考虑到成本和适用等问题,在此我们选用发光二极管作为本次设计地显示器件,发光二极管具有工作电流低、发光响应快、体积小、耐振动、耐冲击、驱动电路简单,适用于和集成电路配合等优点。当P2.7输出为高电平时,此时二极管D11亮,指示水塔水位处于A ;当P2.6为高电平时,二极管D10亮,指示水塔水位处于B ;当P2.7和P2.6都为高电平时,二极管D11和D10同时亮,预示水塔水位处于L 已将溢满不能再加水。如图2-6所示。

2.3.1 显示电路 本系统使用数码显示管显示水位的实际高度。一共12个引脚,4个位选,8个段选。从上面一排左边第一引脚开始,按顺时针顺序依次往下遍历所有引脚。1:左边第1个数码管的位选择端;2:a ;3:f ;4:左边数起第2个数码管的位选择端;5:左边数起第3个数码管的位选择端;6:b ;7:左边数起第4个数码管的位选择端;8:g ;9:c ;10:小数点dp ;11:d ;12:e 。如图2-7所示

图2-5 超声波测水位工作原理图

图2-6 指示电路

图2-7显示电路

2.4报警电路

报警电路实现的功能是:当水塔即将溢满时,指示灯亮扬声器开始发声报警,提示人们不能再加水了,防止水资源白白浪费。

工作原理是:当用户按下按键D时,P2.0将电流送至二极管D5和三极管Q1,二极管变亮扬声器开始报警。当用户按下断开D时,此时二极管D5变灭并且扬声器停止工作。如图2-8所示。

图2-8报警电路

2.5交流接触器工作原理

交流接触器主要有四部分组成:电磁系统,包括吸引线圈、动铁芯和静铁芯;触头系统,包括三组主触头和一至两组常开、常闭辅助触头,它和动铁芯是连在一起互相联动的;灭弧装置,一般容量较大的交流接触器都设有灭弧装置,以便迅速切断电弧,免于烧坏主触头;绝缘外壳及附件,各种弹簧、传动机构、短路环、接线柱等。

当线圈通电时,静铁芯产生电磁吸力,将动铁芯吸合,由于触头系统是与动铁芯联

动的,因此动铁芯带动三条动触片同时运行,触点闭合,从而接通电源。

当线圈断电时,吸力消失,动铁芯联动部分依靠弹簧的反作用力而分离,使主触头断开,切断电源。如图2-9所示。

2.6整机电路工作原理

为了节约水资源我们设计了基于单片机的水塔自动供水系统,更加快速的来控制水位的升降,在生活中起到了非常重要的作用。

整个水塔供水系统原理是:开启电源,水塔的水位不断上升,当水位位于B时指示灯D10亮,;当水位位于A时指示灯D11亮;当水位位于L时指示灯D11和D10同时亮,并且电动机开始减速直至停止,预示着水塔水位即将溢满;当水位位于L时此时指示灯D11和D10同时亮报警扬声器报警。当水位低于L时报警器停止报警,指示灯灭;当水位低于A时指示灯D11灭,电动机开始工作为水塔供水;当水位低于B时电动机正常工作为水塔供水。

图2-9交流接触器原理图

第3章软件设计

程序是使单片机系统按预定的操作方式运行,它是单片机系统程序的框架。系统上电后,对系统进行初始化。初始化程序主要完成对单片机内专用寄存器的设定,单片机工作方式及各端口的工作状态的规定。同时控制电机的运行达到升水的目的。系统功能是由软硬件共同实现的,由于软件的可伸缩性,终实现的系统功能可强可弱,差别可能很大。因此,软件是本系统的灵魂。软件采用模块化设计方法,不仅易于编程和调试,也可减小软件故障率和提高软件的可靠性。

3.1主程序流程图

主程序的功能是检测水塔的水位,提示、显示水塔的水位,以防水溢出来了,造成不必要的浪费。如图3-1所示主程序的流程图。

图3-1 主程序流程图

3.2中断流程图

在实时控制中,现场的各种参数、信息的变化是随机的。这些外界变量可根据要求随时向CPU发出中断申请,请求CPU及时处理,如中断条件满足,CPU马上就会响应,转去执行相应的处理程序,从而实现实时控制。如图3-2所示中断流程图。

图3-2定时器中断流程图

水泵自动化控制系统使用说明书

水泵自动化控制系统使用说明书 一、···················概述 乌兰木伦水泵自动化控制系统是由常州自动化研究所针对乌兰木伦矿井下排水系统的实际情况设计的自动控制系统。通过该系统可实现对水泵的开停、主排水管路的流量、水泵排水管的压力、水仓的水位等信号的实时监测,并能通过该系统实现三台主水泵的自动、手动控制并和KJ95监控系统的联网运行,实现地面监控。 基本参数: 水泵:200D43*33台(无真空泵) 扬程120米流量288米3/小时 主排水管路直径200mm 补水管路直径100mm 水仓:3个 水仓深度分别为: 总容量:1800米3 主电机:3*160KW 电压:AC660V 启动柜控制电压:AC220V 220变压器容量:1500VA

二、系统组成 本控制系统主要由水泵综合控制柜,电动阀门及传感器三大部分组成。参见“水泵控制柜内部元件布置图:。 1、水泵综合控制柜是本系统的控制中心,由研华一体化工控机、数据采集板、KJ95分站通讯接口、中间继电器、控制按钮及净化电源及直流稳压电源组成。 其中,净化电源主要是提供一个稳定的交流220V电压给研华一体化工控机,以保证研华一体化工控机的正常工作,直流稳压电源主要提供给外部传感器、中间继电器及数据采集板的工作电源。 控制按钮包括方式转换按钮、水泵选择按钮及手动自动控制按钮,分别完成工作方式的转换、水泵的选择及水泵的手动和自动控制。本控制柜共有40个按钮,从按钮本身的工作形式来说这些按钮有两种,一种为瞬间式,即按钮按下后再松开,按钮立刻弹起,按钮所控制的接点也不保持;另外一种为交替式,即按钮按下后再松开按钮,按钮并不立刻弹起,而是再按一次后才弹起,按钮所控制的接点保持(如方式转换按钮、水泵选择按钮等)。 中间继电器采用欧姆龙公司MY4型继电器,主要完成信号的转换和隔离。另外,还对外部开关量信号进行扩展,以保证这些信号在不同状态下的使用要求。 控制柜的数据采集板分为开关量输入板(两块)、开关量输出板(一块)和模拟量数据采集板(两块)。这些数据采集板主要是对传感器采集来的模拟量信号和中间继电器的开关量信号转换成工控机识别的信号,并将工控机发出的控制

水塔水位智能控制系统

摘要 水塔水位控制系统,根据水位传感器得知水塔内水位情况,水位传感器分为上限位传感器和下限位传感器,还有一个直接接上5V的传感器。当水塔上限位和下限位传感器电位为0时,电机运转,期间电机状态不变,直到下限位传感器和上限位传感器的电位不为0时,电机停转。当发生下限位传感器电位为0而上限位传感器电位不为0时,电机停转并报警。水塔水位控制电路设有光耦合器,通过光耦合器的通断控制电机运转与停转。同时设有LED 灯和蜂鸣器,报警时LED灯闪烁和蜂鸣器响。水塔水位控制器系统有四种状态,分别为电机运转状态、电机停转状态、保持状态和报警状态。各种状态皆由水位传感器传来的信号来判定并由单片机输出信号来执行,由此使得水位控制在上限位和下限位之间。 水塔水位控制系统的原理 1、功能要求 1)水塔水位下降至下线水位时,启动水泵上水。 2)水塔水位上升至上线水位时,关闭水泵。 3)水塔水位在上、下限水位之间时,水泵保持原状态。 4)供水系统出现故障时,自动报警。 2、基本原理 图1 水塔水位检测原理图 水塔水位控制原理图见图(1),图中两条虚线表示正常工作情况下水位升降的上下限,在正常供水时,水位应控制在两条虚线代表的水位之间。B测量水位下限,C测量水位上限,A接+5V,B、C接地。 在水塔无水或水位低于下限水位时,B、C为断开,B、C两点电位为零(低电平“0” ),需要水泵供水,单片机输出低电平,控制电机工作供水。水位上升到B点,B接通,B点电位变为高电平“1”,C开关仍断开,C点仍为低电平,维持现状水泵继续供水。当水位上升到C点时,C接通。这时B、C均接通,B、C两点都为高电平,表示水塔水位已满,需水泵停止供水,单片机输出高电平,电机断电停止供水。水塔水位开始下降,水位在降到B点之前,B点电位为高、C点电位为低,单片机输出控制电平维持不变,仍为高。当水位降到B 点以下,B、C两点电平都为低时,单片机输出控制电平又变低.水泵供水。 B和p1.0、C和P1.1之间接4.7k 的电阻(下拉电阻),目的是为了保护单片机。单片机9

基于三菱PLC的水塔水位自动控制设计

电气工程学院 设计题目:水塔水位PLC自动控制系统 系别: 年级专业: 学号: 学生姓名: 指导教师:

电气工程学院《课程设计》任务书课程名称:电气控制与PLC课程设计 基层教学单位:电气工程及自动化系指导教师:

摘要 目前,大量的高位生活用水和工作用水逐渐增多。因此,不少单位自建水塔储水来解决高层楼房的用水问题。最初,大多用人工进行控制,由于人工无法每时每刻对水位进行准确的定位监测,很难准确控制水泵的起停。要么水泵关停过早,造成水塔缺水;要么关停过晚,造成水塔溢出,浪费水资源,给用户造成不便。利用人工控制水位会造成供水时有时无的不稳定供水情况。后来,使用水位控制装置使供水状况有了改变,但常使用浮标或机械水位控制装置,由于机械装置的故障多,可靠性差,给维修带来很大的麻烦。因此为更好的保证供水的稳定性和可靠性,传统的供水控制方法已难以满足现在的要求。 本文采用的是三菱FXZN型PLC可编程控制器作为水塔水位自动控制系统核心,对水塔水位自动控制系统的功能性进行了需求分析。主要实现方法是通过传感器检测水塔的实际水位,将水位具体信息传至PLC 构成的控制模块,来控制水泵电机的动作,同时显示水位具体信息,若水位低于或高于某个设定值时,就会发出危险报警的信号,最终实现对水塔水位的自动。 关键词:水位自动控制、三菱FX2N、水泵、传感器

目录 摘要 ............................................................................................................................................................................ I 目录 ........................................................................................................................................................................... I I 第一章绪论 (1) 1.1本课题的选题背景与意义 (1) 1.2可编程逻辑控制器简述 (1) 第二章水塔水位控制系统硬件设计 (2) 2.1基于PLC的水塔水位控制系统基本原理 (2) 2.2水塔水位控制系统要求 (3) 2.3水塔水位控制系统主电路设计 (4) 2.4 系统硬件元器件选择 (5) 2.5 I/O口的分配及PLC外围接线 (6) 第三章水塔水位系统的PLC软件设计 (10) 3.1 水位控制系统的流程图 (11) 3.2 PLC 控制梯形图 (12) 3.3 水位控制系统的具体工作过程 (20) 第四章总结 (21) 参考文献 (22)

水塔水位控制系统课程设计报告

北京理工大学珠海学院 课程设计 课程设计(C) 学院:信息学院 专业班级: 学号: 学生姓名: 指导教师: 201 年月日 北京理工大学珠海学院

北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第 1 学期 学生姓名:专业班级:自动化 指导教师:工作部门:信息学院 一、课程设计题目水塔水位控制系统 二、课程设计内容: 1、硬件设计 (1)用80C51设计一个单片机最小控制系统。其中P1.0接水位下限传感器,P1.1接水位上限传感器,P1.2输出经反相器后接光电耦合器,通过继电器控制水泵工作,P1.3输出经反相器后接LED,当出现故障时LED闪烁;P1.4输出经反相器后接蜂鸣器,当出现故障时报警。 (2)用塑料尺、导线等设计一个水塔水位传感器。其中A电级置于水位10CM处,接5V电源的正极,B级置于水位15CM处,经4.7K下拉电阻接单片机的P1.0口,C 电级置于水位的20CM处,经4.7K下拉电阻接单片机的P1.1口。 (3)设计一个单片机至水泵的控制电路。要求单片机与水泵之间用反相器、光电耦合器和继电器控制,计算出LED限流电阻,接好继电器的续流二极管。 2、软件设计 (1)根据功能要求画出控制程序流程图。 (2)根据控制程序流程图编写80C51汇编语言或C51程序。 三、功能要求: 1、水塔水位下降至下限水位时,启动水泵,水塔水位上升至上限水位则关闭水泵。 2、水塔水位在上、下限水位之间时,水泵保持原状态。 3、供水系统出现故障时,自动报警。 四、调试 1、在Kerl-uvision上单步调试,观察累加器寄存器存储器的运行之间是否正常。 2、将程序下载到仿真仪上,进行模拟仿真,检查程序工作是否正常。 3、将模拟水塔、传感器、控制电路和水泵联成一个完整的系统,进行整机调试,观察系统工作是否正常。 撰搞人教研室主任院长 签名 日期2010.10.6

智能水塔水位控制器

职业技术学院 毕业设计 题目智能水塔水位控制器 学生姓名 专业应用电子 指导教师 班级0 _ 2010年6月26日

目录 第一章前言 (2) 第二章功能说明,结合功能框图 (3) 第三章使用操作说明 (5) 第四章原理图分析主要部分工作原理 (7) 第五章 PCB板制作 (9) 第六章主要芯片资料应用说明 (11) 第七章程序框图及说明 (15) 第八章调试数据记录表及调试故障现象及其解决方法 (16) 第九章心得体会 (20) 第十章致谢 (22) 第十一章参考文献 (23) 第十二章附录(源程序) (24)

第一章前言 目前我国水资源已经相当的匮乏,如何节约用水也成为了电子爱好者设计制作的焦点。 现有的二级供水方式,既先用水泵从水井中抽到蓄水池中供用户使用,要求蓄水池的水位必须保持一定的高度,还需要防止水的溢出。可是现在市售的都是传统的水位控制器,多以浮球式、触点式为主,可靠性不好,有着无法改进的致命缺点,如:无水位显示,无电机保护,可靠性不高,控制精度改进度不大,寿命不长…… 相对于机械式水位控制器,电子式的水位控制器有着无可比拟的优点:添加水位显示电路、电机保护电路、强制性手动开、关机电路可以达到水位显示、简单的电机保护、水位自动控制,控制精度是传统机械式水位控制器的几何倍。 本控制器采用了高效率、高稳定性、低功耗的ATMEL80s51单片机,具有水位状态显示、抽水时间显示、并有故障检测功能。集高效、高精度、高稳定性、低功耗、高性价比、良好的人机交流界面、操作简便、显示直观以及低功耗等功能于一体的智能水塔水位控制器无疑将会家用水位控制器极具竞争力的一匹黑马。

水塔水位PLC自动控制系统

电气工程学院课程设计说明书 设计题目:水塔水位PLC自动控制系统系别:电气工程及其自动化 年级专业: 13级应电2班 组员:贾猛、孟令军、修圣虎、李晶指导教师:郭忠南

随着现代社会生产的发展和技术进步,现代工业自动化生产水平的日益提高,微电子技术的飞速发展,在继电器控制系统的基础上产生了一种新型的工 业控制装置——可编程控制器(PLC)。随着科技的发展和现实暴露的一些问题,以便能更快捷更方便的完成一些任务,在工农业生产过程中,经常需要对水位 进行测量和控制。水位控制在日常生活中应用也相当广泛,比如水塔、地下水、水电站等情况下的水位控制。而水位检测可以有多种实现方法,如机械控制、 逻辑电路控制、机电控制等。 本文采用PLC进行主控制,在水箱上安装一个自动测水位装置。利用水的 导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电 信号,主控台对接收到的信号进行数据处理,完成相应的水位显示、故障报警 信息显示、实时曲线和历史曲线的显示,使水位保持在适当的位置。 关键词:PLC(Programmable Logic Controller) 自动化水塔水位三菱PLC

第一章研究背景 (1) 1.1可编程控制器的产生及发展 (1) 1.2PLC的基本结构 (2) 1.3PLC的特点 (5) 1.4PLC的工作原理 (6) 1.5梯形图程序设计及工作过程分析 (8) 第二章水塔水位自动控制系统方案设计 (10) 第三章水塔水位自动控制系统硬件设计 (12) 3.1水塔水位控制系统设计要求 (12) 3.2水塔水位控制系统主电路 (12) 3.3水泵电机的选择 (13) 3.4水位传感器的选择 (13) 3.5可编程序控制器的选择 (14) 3.6PLC I/O口分配 (14) 3.7PLC控制电路原理图 (15) 第四章水塔水位自动控制系统软件设计 (17) 4.1程序流程图 (17) 4.2梯形图 (18) 第五章设计总结 (23)

水塔水位自动控制电路设计

四川信息职业技术学院 毕业设计说明书 设计(论文)题目:________________________ 水塔水位自动控制电路设计 专业: 应用电子技术 班级: 学号: 姓名: 指导教师: 二〇一三年十二月五日

目录 摘要 (1) 绪论 (2) 第1章方案论证与分析 (3) 1.1系统功能要求 (3) 1.2整体方案 (3) 1.2.1方案比较与论证 (3) 1.2.2方案论证 (5) 第2章硬件设计与分析 (6) 2.1单片机最小系统 (6) 2.1.1芯片介绍 (6) 2.1.2单片机时钟电路设计 (8) 2.1.3单片机复位电路设计 (9) 2.2超声波测水位电路 (10) 2.3指示电路 (11) 2.3.1显示电路 (11) 2.4报警电路 (12) 2.5交流接触器工作原理 (12) 2.6整机电路工作原理 (13) 第3章软件设计 (14) 3.1主程序流程图 (14) 3.2中断流程图 (14) 第4章系统仿真与调试 (16) 4.1常用调试工具 (16) 4.1.1Keil 软件 (16) 4.1.2Proteus软件 (16)

4.2系统调试 (17) 第5章实物制作与调试 (18) 5.1PCB板的制作 (18) 5.2元件的装配 (19) 5.3调试与性能检测 (20) 参考文献 (22) 附录1 整机电路原理图 (23) 附录2 源程序 (24) 附录3 元器件清单 (27)

摘要 采用低功耗单片机为控制核心、辅以超声波水位状态采集模块、二极管指示模块、电源供电模块、扬声器报警模块设计的自动水塔水位控制系统,通过一只中间继电器来接通大功率的交流接触器,控制水泵的运行成功实现水塔水位控制功能,它具有电路简单、功能齐全、制作成本低、性价比高等特点,是一种经济、实用的自动水塔水位控制系统。硬件部分主要由单片机指示灯、继电器、蜂鸣器等基本外围电子电路组成。它设计的优点是当水位达到一定的位置时报警器开始报警。因此在生活实践应用中具有一定的价值。 关键字超声波检测;水位控制

DF-96系列全自动水位控制器工作原理

DF-96系列全自动水位控制器工作原理 [日期:2012-01-02] 来源:作者:辽宁徐涛 一、整机工作原理 该型全自动水位控制器电路原理如下图所示。由图可知,本控制器电路主要由电源电路、水位信号检测电路、输出驱动电路三部分组成,下面分别加以介绍。 1.电源电路 AC220V电压经变压器T降压,其次级输出近13V左右交流电加至由D1~D4构成的整流桥输入端,整流后经电容CI滤波得到约10.5V直流电压。该电压经Rl加到红色发光管LED I上,将LEDI点亮,表示电源正常。该电压除了为IC I 及继电器提供工作电源外还直接送到水位检测电极C.作为水位检测的公共电位。 2.水位信号检测电路 该部分是以四二输入与门电路CD4081为核心并配以五根水位检测电极A—E构成的。其作用是根据电极实测水位的变化CD4081相应引脚的电平随之变化,满足与门条件时相应输出端电平改变,以驱动输出电路。其中R2是ICI 的电源输入限流电阻,D5与R3及D6与R8起隔离自锁作用,当相应输出端即ICI(10)脚、(3)脚为高电平时将(8)脚、(1)脚锁死,其状态的翻转取决于(9)脚和(2)脚。C2—C5及R4_R6、R12的作用是滤除干扰信号意外进入控制器引起误动作。 3.输出驱动电路 该部分主要由驱动管VTI,继电器Jl、功能选择开关K及输出状态指示绿发光管LED2组成。功能选择开关K处于“开?位时,继电器Jl被强制动作.其相应触点Jl-I闭合,外接负荷(单相电动水泵或控制接触器)开始工作,输出状态指示绿发光管LED2也被点亮;处于“关”位时,触点Jl-I断开,外接负荷被切断;处于“自动”位置时.Jl动作与否受驱动管VTI的控制.当VTI基极电位高于0.7V 以上时则饱和导通,继电器儿得电动作,其触点Jl-I闭合,反之则断开。

水塔水位自动控制

实训三、水塔水位自动控制 一、实训目的 1、了解水塔水位自动控制工作原理。 2、掌握梯形图的编程方法和指令程序的编法。 3、掌握编程器的基本操作以及编程器的输入、检查、修改和运行操作。 二、实训器材 1、亚龙PLC主机单元一台。 2、亚龙PLC水塔水位自动控制单元一台。 3、计算机或编程器一台。 4、安全连线若干条。 5、PLC串口通讯线一条。 三、工作原理 水塔水位的工作方式: 当水池液面低于下限水位(S4为ON表示),电磁阀Y打开注水,S4为OFF,表示水位高于下限水位。当水池液面高于上限水位(S3为ON表示),电磁阀Y关闭。 当水塔水位低于下限水位(S2为ON表示),水泵M工作,向水塔供水,S2为OFF,表示水位高于下限水位。当水塔液面高于上限水位(S1为ON表示),水泵M停。 当水塔水位低于下限水位,同时水池水位也低于下限水位时,水泵M不启动。 四、I/O分配表 表3-1水塔水位自动控制的I/O分配表

水塔上限位S1 水塔下限位S2 水池上限位S3 水池下限位S4 电磁阀Y 水泵M I0.1 24V 12V FU I0.2 I0.3 I0.4 1M 2M Q0.1 Q0.2 1L CPU 226 CN 五、I/O接线 图3-1 水塔水位自动控制的I/O 接线 六、实训步骤 1、先将PLC 主机上的电源开关拨到关状态,严格按图3-2 所示接线,注意12V 和24V 电 源的正负不要短接,电路不要短路,否则会损坏PLC 触点。 2、将电源线插进PLC 主机表面的电源孔中,再将另一端插到220V 电源插板。 3、将PLC 主机上的电源开关拨到开状态,并且必须将PLC 串口置于STOP 状态,然后通 过计算机或编程器将程序下载到PLC 中,下载完后,再将PLC 串口置于RUN 状态。 4、接通2. 5、2. 6、2.7(2.4 不接通),否则无法正确运行演示程序。 5、按下列步骤进行实训操作: (1)拨下限开关S4,电磁阀Y 亮,下限开关S4 复位。 (2)拨上限开关S3,电磁阀Y 灭,上限开关S3 复位。 (3)拨下限开关S2,水泵M 亮,下限开关S2 复位。 (4)拨上限开关S1,水泵M 灭,上限开关S1 复位。 各种限位开关初始状态都是朝下。 七、实物接线图 图3-2 所示水塔水位自动控制接线图。 八、思考题 当水池水位低于下限水位(S4 为 ON),电磁阀 Y 应打开注水,若 3 秒内开关 S4 仍未由闭合转为分断,表明电磁阀 Y 未打开,出现故障,则指示灯 Y 闪烁报警。

简易水塔水位控制电路电子课程设计

目录 1 概述 (1) 2 系统总体方案设计 (2) 3 主要单元电路设计 (3) 3.1 电源电路 (3) 3.2 水位检测电路和水位范围测量电路 (3) 3.3 水泵开关电路及显示电路 (5) 4 元器件选型 (8) 4.1 水压传感器 (8) 4.2 比较器 (8) 4.3 稳压管 (9) 4.4 稳压芯片 (10) 4.5 普通二极管 (10) 4.6 发光二极管 (11) 4.7 三极管 (11) 4.8 电磁继电器 (12) 4.9 变压器 (14) 4.10 桥式整流电路 (14) 4.11 CD4011 (15) 4.12 迟滞比较器 (16) 结论及展望 (17) 参考文献 (18) 附录 (19)

摘要 该方案电源电路采用电网供电,通过变压器电路、整流电路、滤波电路和稳压电路将电网中的220V交流电转换成直流12V电压。稳压电路由三端稳压器实现,用它来组成稳压电源只需很少的外围元件,电路非常简单,且安全可靠。水位测量和水位监测电路主要由电阻型水压传感器和迟滞比较器组成。电阻型水压传感器是最典型也是最简单的一种压力传感器。迟滞比较器不仅可以测量水位的范围,还可以防止跳闸现象的出现。水泵开关电路和显示电路主要由电流放大电路和继电器组成。继电器可以提供水泵所需要的交流电,而电流放大电路是由三极管组成,是一种比较典型的和简单的电路。用发光二极管的显示来检测水位状态和水泵的状态。 关键词水压传感器继电器比较器 1 概述 本次设计的是一个水塔水位控制电路,电路能够通过控制两个水泵实现对水位的控制。水位范围在S1~S2(S1<S2)之间,S为实际水位。当S<S1时,两个水泵都放水;当S1<S<S2时,仅一个水泵放水;当S>S2时,两个水泵都关闭。同时本电路设计了水位检测电路,通过发光二极管的显示来检测水位状态。 我们都知道,在日常生活和工业生产中,水位控制装置有着广泛的应用。如水塔、楼房水箱、锅炉等。水位控制装置的形式有很多种,浮子开关式,电节点式,压力式,电子式,微机式等。这些装置或多或少的存在着一些缺点:浮子开关式采用机械结构,维护起来不方便;微机式控制装置,虽然操作方便,但造价较贵。本文从实用型和经济型出发,设计了一种水位控制装置,该装置结构简单,维护方便,工作可靠性能价格比优良,而且在不同程度上克服了其他方法的一些缺点。可以在经济上节约资金,降低损耗,节约资源,有很多场合下均可采用。

基于单片机的水位控制系统设计.

o 课 程 设 计 任 务 书 题目 水位控制器设计 专业、班级 学号 姓名 主要内容、基本要求、主要参考资料等: 一、主要内容: ① 熟悉单片机应用系统的设计方法和规范,达到综合的目的。② 学习文件检索和查找数据手册的能力。③ 学习protel 软件的使用。 ④ 学会整理和总结设计文档报告。二、基本要求: ① 以MCS-51系列单片机为核心,组成一个水位自动控制系统。② 六区间式水位显示。③ 全自动位式进水。④ 满水、低水水位报警。 ⑤ 水位传感器故障自检及报警提示。⑥ 能延时恢复的报警消音。三、主要参考资料: ① 张毅坤等 单片微型计算机原理及应用 西安 西安电子科技大学出版社 ② 李建忠编著 单片机原理及应用 西安 西安电子科技大学出版社 完 成 期 限: 指导教师签名: 课程负责人签名: 2013年 12月 16 日 目录

摘要...................................................I 1、概述. (1) 1.1、系统原理 (1) 1.2、系统结构图 (1) 1.3、控制方案说明 (2) 1.4、系统组成及原理 (2) 2、硬件设计 (4) 2.1、单片机最小系统电路设计 (4) 2.2、水位检测传感器的选用 (5) 2.3、稳压电路的设计 (6) 2.4、光报警电路的设计 (7) 2.5、水泵的介绍 (9) 2.6、继电器控制水泵加水电路 (12) 2.7、电源电路 (13) 2.8、看门狗技术 (14) 3、软件设计 (17) 3.1、系统总原理图 (17) 3.2、系统程序清单 (18) 总结 (20) 参考文献 (21) 附录 (22)

水塔水位控制系统PLC设计完整版

水塔水位控制系统P L C 设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

水塔水位控制系统PLC设计 1、水塔水位控制系统PLC硬件设计 、水塔水位控制系统设计要求 水塔水位控制装置如图1-1所示 控制装置 水塔水位的工作方式: 当水池液位低于下限液位开关S4,S4此时为 ON,水阀Y打开(Y为ON),开始往水池里注水, 定时器开始定时,4秒以后,若水池液位没有超过 水池下限液位开关时(S4还不为OFF),则系统发 出报警(阀Y指示灯闪烁),表示阀Y没有进水,出现故障;若系统正常,此时水 池下限液位开关S4为OFF,表示水位高于下限水位。当水位液面高于上限水位,则 S3为ON,阀Y关闭(Y为OFF)。 当S4为OFF时,且水塔水位低于水塔下限水位时(水塔下限水位开关S2为 ON),电机M开始工作,向水塔供水,当S2为OFF时,表示水塔水位高于水塔下 限水位。当水塔液面高于水塔上限水位时(水塔上限水位开关S1为OFF),电机M 停止。(注:当水塔水位低于下限水位,同时水池水位也低于下限水位时,水泵不 能启动) 水塔水位控制系统主电路 水塔水位控制系统主电路如图1-2所示: 图1-2 水塔水位控制系统主电路 、I/O接口分配 水塔水位控制系统PLC的I/O接口分配如表1-1所示。 这是一个单体控制小系统,没有特殊的控制要求,它有5个开关量,开关量输 出触点数有8个,输入、输出触点数共有13个,只需选用一般中小型控制器即 可。据此,可以对输入、输出点作出地址分配,水塔水位控制系统的I/O接线图如 图1-3所示。 图1-3 水塔水位控制系统的I/O接线图

简易水塔供水系统

第一章系统基本设计 第一节引言 随着生活水平的提高,水塔自动供水系统在日常生活及工业领域中应用相当广泛,本设计应用于工厂备用水源方面使用自动供水系统, 而以往水塔水位的检测是由人工完成的,值班人员全天候地对水位的变化进行监测,而本设计的主要作用是能够很好的节省劳动力,免去了传统的供水的繁琐,自动供水,适用于节约型经济社会。 本系统摒去一往的设计理念,将水的特殊导电性做成的水位传感器作为芯片的输入量传给芯片,经芯片处理后由继电器控制水泵的启动和停止。以确保给水、补水箱水位的平衡,并且还有指示灯来实现当前的工作状态。 第二节系统设计方案 1.2.1设计要求: 1、可以自动实现水位检测。 2、可以自动启动停止水泵。 3、有指示灯能够现实当前的工作状态。 1.2.2两种设计方案 方案一: 用单片机作为控制核心用六个液位传感器分别作为给水箱补水箱的上限位、中限位和下限位传感器,从而利用单片机采集信号、处理来控制电机起停实现补水与否和工作状态指示。 方案二: 系统以模拟,数字混合电路为核心,利用水的特殊导电性做成的水位传感器作为芯片的输入量。通过逻辑门电路的组合来实现控制。与非门电路组成给水箱控制电路实现给水箱的补水;用与门电路的组合实现补水箱控制电路,控制给给水箱补水与否;最后通过两个二极管的开通

和关断来实现电机的启动与停止以及工作指示灯的指示。 对比以上两种方案都可以实现系统要求,但方案一成本高,电路复杂,并且还需要软件的调试。考虑到系统的精度不需很高,确定选择方案二的设计。

第二章电源电路 电源采用三端稳压器结构。电路有整流、滤波及三端稳压等环节组成,如图2-1 图2-1 电源电路 第一节单相桥式整流 桥式整流电路由变压器、四个二极管组成的整流桥和滤波电容等器件组成,属于全桥整流电路。整流过程如图2-1 当u2是正半周时,二极管VD1和VD3导通,而二极管VD2和VD4截止,负载上的电流自上而下流过负载,负载上得到与u2的正半周期相同的电压。 当在u2负半周时,u2的实际极性是下正上负,二极管VD2和VD4导通而VD1和VD3截止,负载上的电流仍然自上而下流过负载,负载上得到了与u2正半周相同的电压。

水位数字控制电路(1)

华南农业大学珠江学院水位数字控制电路实训报告 院系:信息工程系 专业:电气工程及其自动化 班级:1202班 姓名:黄伟奇201225180211 组员:罗润 201225180235 赖梓聪201225180242 指导老师:詹庄春 2013年11月20日

第一章绪论 (3) 1.1 摘要 (3) 1.2 课题研究的目的和意义 (3) 第二章系统总体设计及方案认证系统 (4) 2.1 设计内容 (4) 2.2 电路原理 (4) 2.4方案认证 (5) 第三章硬件电路设计设 (6) 3.1 利用multisim绘制原理图 (6) 第四章硬件电路安装及调试 (7) 4.1 手工焊的工具 (7) 4.2 焊接原理 (7) 4.3 焊接注意事项 (7) 4.4 元件清单及其功能 (9) 4.5 调试要点 (11) 4.6 问题讨论 (11) 第五章总结 (12) 第六章后记 (12) 参考文献 (13)

第一章绪论 1.1 摘要 在日常生活及工农业生产中,往往需要对水位进行监测并加以控制,时下市场上有一些采用浮球来控制水位的球阀和简单水位控制开关,这些产品价格不高,但是没能做到自动控制水位的高低,下面介绍一款性能稳定的全自动水位控制器;该控制电路简单,使用灵活,可独立运作,也可作大型数字控制系统的外围控制器件。。 1.2 课题研究的目的和意义 研究目的:通过这次的课题研究我们希望在理清它的发展脉络上进一步了解它的发明原理,将平时所学习的知识运用到实验探索上,这对提高我们的动手能力,创新意识,及锻炼思维活动无疑是一个莫大的帮助。同时我们也希望这次的研究能让同学进一步了解照明灯,而不是仅局限于课本知识以内。从小的突破点入手,掌握又一项科技知识,从而实现课堂外的又一次提高,为现代教育科学尽一份力量! 研究意义:随着电子技术的发展,人类越来越脱离纯手工的检测,特别是水位检测的发展,更是迅猛发展。本报告介绍的是模拟水位数字控制电路。依靠水位,来控制水泵的运行,适时对河水进行加水控制,达到用户用水安全。适合于水利工厂适时控制水源,达到合理利用水源,保护环境。

毕业设计 水塔水位自动控制系统 -(DOC)

摘要 供水是一个关系国计民生的重要产业。随着社会的发展和人民生活水平的提高,对城市供水提出了更高的要求,要满足及时、准确、安全保证充足供水,如果仍然沿用人工方式,劳动强度大,工作效率低,安全性难以保障,为此必须进行水塔水位控制自动化系统的改造。可编程控制器( PLC) 因其高可靠性和较高的性价比在工业控制中得到广泛的应用。本文针对目前比较流行的控制技术,利用PLC和传感器构成了水塔水位恒的控制系统。改造后的水塔水位自控系统,实现水塔水位自动控制系统,远程监控,实现无人值守。 关键词: 可编程逻辑控制器(PLC)水塔水位自动控制

Abstract Water supply is a major industry involving the interests of the state and the people. With development of society and the improvement of the people's livelihood, city water supply has been brought forward a higher request. It needed to be timely , accurate and safely to plentifully conduct water supply. If we still continue to use a way of the man-power, the intensity of labor are high , availability is low and the security is difficult to ensure .We must carry out water tower water level under the control of automatic system reforming for this purpose . Programmable Logic Controller (PLC) is applied broadly in industrial control because of high reliability and higher nature price. The main body of this paper on the control technology is aimed at being popular for at present comparatively, which makes the using of PLC and the sensor to compose water tower control system of permanent water level. Water tower control system after being reformed have realized water tower water level auto-controlling system , long-range supervisory control, and nobody's value guards realization. Key wards:Programmable Logic Controller. water pool water lever. automatically controls

西门子S7-200系列PLC控制水塔水位(含程序)

一、水塔水位 1、系统描述及控制要求 1.1 国内外发展现状调查 1.1.1 PLC及西门子S7-200系列PLC介绍 20世纪70年代初出现了微处理器。人们很快将其引入可编程逻辑控制器,使可编程逻辑控制器增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。此时的可编程逻辑控制器为微机技术和继电器常规控制概念相结合的产物。个人计算机发展起来后,为了方便和反映可编程控制器的功能特点,可编程逻辑控制器定名为Programmable Logic Controller(PLC)。 20世纪70年代中末期,可编程逻辑控制器进入实用化发展阶段,计算机技术已全面引入可编程控制器中,使其功能发生了飞跃。更高的运算速度、超小型体积、更可靠的工业抗干扰设计、模拟量运算、PID功能及极高的性价比奠定了它在现代工业中的地位。 20世纪80年代初,可编程逻辑控制器在先进工业国家中已获得广泛应用。世界上生产可编程控制器的国家日益增多,产量日益上升。这标志着可编程控制器已步入成熟阶段。 20世纪80年代至90年代中期,是可编程逻辑控制器发展最快的时期,年增长率一直保持为30~40%。在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,可编程逻辑控制器逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。 20世纪末期,可编程逻辑控制器的发展特点是更加适应于现代工业的需要。这个时期发展了大型机和超小型机、诞生了各种各样的特殊功能单元、生产了各种人机界面单元、通信单元,使应用可编程逻辑控制器的工业控制设备的配套更加容易。 西门子S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。因此S7-200系列具有极高的性能/价格比。 西门子S7-200系列在集散自动化系统中充分发挥其强大功能。使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制。应用领域极为广泛,覆盖所有与自动检测,自动化控制有关的工业及民用领域,包括各种机床、机械、电力设施、民用设施、环境保护设备等等。如:冲压机床,磨床,印刷机械,橡胶化工机械,中央空调,电梯控制,运动系统。

水塔自动上水课程设计

目录 一、设计目的 (1) 二、设计要求 (1) 三、设计方案 (1) 四、设计组成及原理分析 (4) 五、元器件的选用及其参数 (12) 六、设计总结 (12) 七、参考文献 (14)

一、设计目的 本课程设计是在前导验证性认知实验基础上,进行更高层次的命题设计实验,要求学生在教师指导下独立查阅资料、设计、安装和调试特定功能的电子电路。培养学生利用模拟、数字电路知识,解决电子线路中常见实际问题的能力,使学生积累实际电子制作经验,目的在于巩固基础、注重设计、培养技能、追求创新、走向实用。 二、设计要求 1)设计制作一个带保护装置的水塔自动进水逻辑电路。 2)要求有水满、进水、水量不足指示,当水位低时要自动进水,满时要及时断电停水,水位过低时能停止出水。 三、设计方案 1.设计方案分析 每部分电路都有其相应功能:首先有信号产生部分产生整个电路的输入信号,该信号经过信号处理之后,输出其他电路的控制信号,控制其他电路工作,电机控制电路部分接收到有信号处理电路输出的有效控制信号后正常工作驱动电机转动抽水,使水位上升,而水位的变化又直接关系到信号的产生,因此有个循环的过程,即使水位保持在一定范围内,水位显示电路接收到有效信号后驱动显示器工作,使其显示该时刻的水位;水位超限时输出为电机停止的有效控制信号使

上水电路停止工作。由“信号产生→信号处理→电机控制→水位变化→信号产生”这个循环就能使水塔具有自动控制水位的能力。 方案一、 通过NE555接成施密特触发电路,利用v1-v0电压传输特性就可以达到水塔自动进水,不会产生水满而溢出的目的。 自动进水:当水位下降低于A点时,A点悬空。IC的2脚低于1/3Vcc,其3脚输出高电平,水塔被启动,水位逐渐上升。 中间保持:当水位上升到A点到B点之间时,此时P点电位控制在1/2Vcc左右,触发器保持原来的状态不变。因为此时电路不工作,所以水位一直保持在A点与C点之间,不再上升。 停止进水:当水位达到C时,此时输出信号V0变为低电平,致使后续电机上水电路不工作。 以上过程形成循环,在正常情况下一直保持水塔水位大于下限水位。

水塔水位控制系统

过程控制工程实训设计报告 题目:水塔水位控制系统 院系:电气信息工程系专业:电气工程及其自动化 2012年10月10日

过程控制工程实训设计报告 一、选题目的和意义: 水塔水位控制系统是我国住宅小区广泛应用的供水系统,传统供水系统大多采用水塔、高位水箱或气压罐式增压设备,用水泵以高出实际用水高度的扬程来“提升”水量,其结果增大了水泵的轴功率和能耗。现研究设计的水塔水位控制系统采用变频调速恒压供水系统,实现水泵无级调速。依据用水量的变化自动调节系统的运行参数,保持水压恒定以满足用水要求,是当今先进、合理的节能型供水系统。 供水是一个关系国计民生的重要产业。随着社会的发展和人民生活水平的提高,对城市供水提出了更高的要求,要满足及时、准确、安全保证充足供水,如果仍然沿用人工方式,劳动强度大,工作效率低,安全性难以保障,为此必须进行水塔水位控制自动化系统的改造。由于当前可编程序控制器(PLC)技术已日趋成熟,因而考虑利用它来实现水塔/水箱供水控制。多年来,可编程控制器(简称 PLC)从其产生到现在,实现了接线逻辑到存储逻辑的飞跃,今天的 PLC 在处理模拟量、数字运算、人机接口和网络的各方面能力都已大幅提高,成为工业控制领域的主流控制设备,在各行各业发挥着越来越大的作用。可编程控制器(PLC)是以计算接触控制技术相结合的产物,它克服了继电接触控制系统中的机械触点的接线复杂、可靠性低、功耗高、通用性和灵活性差的缺点,充分利用了微处理器的优点,又照顾到现场电气操作维修人员的技能与习惯,特别是PLC 的程序编制,不需要专门的计算机编程语言知机技术为基础的新型工业控制装置。因其高可靠性和较高的性价比在工业控制中得到广泛的应用。 本文针对目前比较流行的控制技术,利用PLC 和传感器构成了水塔水位的控制系统。改造后的水塔水位自控系统,实现水塔水位自动控制系统,远程监控,实现无人值守,提高了供水质量。 学生姓名任务分工学生姓名任务分工

水塔水位控制系统

水塔水位控制系统 TD-TW 一、产品简介: 济南腾达电子水塔水位控制系统可实现无线远距离控制水泵、水塔。系统基于中国移动信号遍布全国各地,能够稳定工作。控制系统采用12V供电,在山区送电不便的情况下可配置太阳能电池板给控制系统供电。安装简单,无需布线。操作简单,发SMS便可远程控制水泵启停,发SMS便可查询水泵工作状态。水泵工作异常报警主人号码,保证您的供水系统稳定运转。 二、系统组成: 水塔水位控制系统由两个GSMSMS远程控制器、两个输出12V电源、不锈钢浮球(或水位传感器)、两根天线组成。用户只需提供220V市电控制系统便可工作。一个控制器控制水泵、一个检测水塔内水位。 三、系统工作过程: 当水塔内水深低于用户设定的下限,控制器便启动水泵,给水塔供水。 当水塔内水深高于用户设定的上限,控制器便停止水泵,给水塔供水。 若水泵没有正常启动或停止,控制器便会给主人号码发送报警SMS,例如“水泵工作异常,请到现场查看!”。 四、系统功能与优点:

1、系统优势无线远程控制,适应各种环境,无需考虑水塔与水泵相距多远。例如:水塔在山上,水泵在山下河里。 1、两个GSMSMS远程控制器相互通讯控制,无需人工干涉,节省人力。 2、最多能设置5个管理员号码,接收报警SMS,保证系统稳定工作。 3、控制器具有号码过滤功能,可以避免外界干扰和恶意破坏。 4、可配置水位传感器,用户可实时查询水塔内水深。 5、系统220VAC供电、太阳能电池板供电。功耗低,省电环保。 6、基于GSM无线远程控制,无需布线,信号覆盖面广。 7、水塔水位控制系统运行费用低(SMS费用),为用户省钱。 8、操作简单,发SMS便可控制水泵。 9、体积小(110mm*90mm*35mm),安装方便。 10、电子设备怕水,请勿被雨淋。 本公司还供应上述产品的同类产品:水泵水塔联动控制系统,水泵远程控制器,水泵远程遥控器

PLC水塔水位控制实验报告

中国矿业大学机电学院 机电综合实验中心实验报告 课程名称机电综合实验 实验名称水塔水位控制模拟系统 实验日期2016、11、20 实验成绩 指导教师 第一章绪论 1、1实验目得 学会使用组态软件(推荐选用组态王软件)与PLC(推荐选用SIMEINS S7-2 00)控制系统连接,采用下位机执行,上位机监视控制得方法,构建完成水塔水位 自动控制系统。 1、2实验要求 (1)阅读本实验参考资料及有关图样,了解一般控制装置得设计原则、方法与步 骤。 (2)调研当今电气控制领域得新技术、新产品、新动向,用于指导设计过程,使设 计成果具有先进与创造性。 (3)认真阅读实验要求,分析并进行流程分析,画出流程图。 (4)应用PLC设计控制装置得控制程序。 (5)设计电气控制装置得照明、指示及报警等辅助电路。 (6)绘制正式图样,要求用计算机绘图软件绘制电气控制电路图,用STEP

7-Micro/Win32编程软件编写梯形图。 1、3 实验内容 (1)当水池水位低于水池低水位界(S4为ON表示),阀Y打开进水(Y为ON)定时器开始定时; (2)阀Y打开4秒后,如果S4还不为OFF,那么阀Y指示灯闪烁,表示阀Y没有进水,出现故障; (3)S3为ON后,阀Y关闭(Y为OFF)。当S4为OFF时,且水塔水位低于水塔低水位界时S2为ON,电机M运转抽水。当水塔水位高于水塔高水位界时电机M停止。 1、4课程设计器材: (1)TKPLC-1型实验装置一台 (2)安装了STEP7-Micro/WIN32编程软件与组态软件得计算机一台。 (3)PC/PPI编程电缆一根。 (4)连接导线若干。 1、5 PLC得介绍 可编程逻辑控制器(ProgrammableLogic Controller,PLC),它采用一类可编程得存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计数与算术操作等面向用户得指令,并通过数字或模拟式输入/输出控制各种类型得机械或生产过程。 1、5、1基本结构 PLC实质就是一种专用于工业控制得计算机,其硬件结构基本上与微型计算机相同,如图所示: 1、5、2 PLC得特点

相关文档
最新文档