晶体三极管及放大电路基础
第三章 晶体三极管(BJT)及放大电路基础

•
• • • •
(2)、利用输出特性画iC和uCE波形 交流负载线 a、空载时RL=∞ 交流负载线与直流负载线重合,动态工作点在 交流负线上移动,斜率——1/RC • uCE=EC-IC*RC
• b、RL不等于∞ / • 放大电路的交流负载电阻RL =RC‖RL • 交流负载线作法:过Q点作一条斜率 / 为-1/RL 的直线
L be
如果电路如下图所示,如何分析?
+EC RB1 C1 RC C2
T
RL
ui
RB2 RE2
RE1 CE
uo
动态分析: +EC
RB1
C1
RC
C2 T RL
RB1 ui
RB2
RE1
RL
uo RC
ui
RB2 RE2
RE1 CE
uo
交流通路
交流通路:
ui
RB1
RB2
RE1
RL
uo RC
Ii
微变等效电路: Ui
iB /uA iB /uA
60 40 20
iC /mA iC /mA
交流负载线
Q` Q IBQ Q`` vBE/V vBE/V
ICQ t
Q` Q
60uA 40uA
Q`` 20uA vC E/V vC E/V
t
VBEQ t
VC EQ t
3. 非线性失真 1) 截止失真 Q点过低,信号进入截止区
iC 放大电路产生 截止失真 输入波形 uCE
§3.3 图解分析法
2. 用图解法确定Q点
• 1) 给出输入特性,输出特性曲线 • 2) 画出直流通路:标出IBQ,ICQ,UBEQ,UCEQ • 3) 利用输入特性曲线来确定IBEQ和UBEQ • 基极偏置线:UBE=EC-IB*RB 与输入特性曲线的交点对 应的IBQ,UBEQ • 4) 利用输出特性曲线来确定ICQ和UCEQ • 直流负载线:UCE=EC-IC*RC 与输出特性曲线中IBQ 线 的交点确定ICQ、UCEQ
第4章 三极管及放大电路基础1

与 的关系
IC IC ICBO I E ICBO IC I B ICBO
(1 ) IC I B ICBO
I CBO IC IB 1 1
IE
N
P
N
I'C ICBO IC
IC I B (1 ) ICBO
共射直流电流放大倍数: IC I B 1.7 42.5 0.04 共射交流电流放大倍数: IC I B 2.5 1.7 40 0.06 0.04 说明: 例:UCE=6V时: 曲线的疏密反映了 的大小; IC(mA ) 160mA 电流放大倍数与工作点的位置有关; I 5 140mA CM 120mA 交、直流的电流放大倍数差别不大, 4 100mA 今后不再区别;
3 80mA
___
4. 集电极最大电流ICM 当值下降到正常值的三分之二时的 集电极电流即为ICM。
IC
2.5 2 1.7
1 0 2 4 6 8
IB 40mA
IB=60mA 20mA IB=0 10 UCE(V)
六、主要参数
5. 集-射极反向击穿电压U(BR)CEO 手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。 6. 集电极最大允许功耗PCM 集电极电流IC 流过三极管, 所发出的焦耳热为: PC =ICUCE 导致结温 上升,PC 有限制, PCPCM 7. 频率参数
扩散 I C 复合 I B
IC
C
N
IB
P N
EC
或者 IC≈IB
I E IC I B (1 ) I B
EB
E
IE
二、电流放大原理
第六章 晶体管放大电路基础

IE
电子到达基区,少数与空穴复 合形成基极电流 Ibn ,复合掉的 空穴由 VBB 补充。 多数电子在基区继续扩散,到达 集电结的一侧。
晶体管内部载流子的运动
第六章 晶体管放大电路基础
3.集电结加反向电压,漂移 运动形成集电极电流Ic
c
ICBO
IC
Rb
IB
b
集电结反偏,有利于收集基区 扩散过来的电子而形成集电极 电流 Icn。 其能量来自外接电源 VCC 。
理想二极管
利用估算法求解静态工作点,实质上利用了直流模型。
第六章 晶体管放大电路基础
二、 晶体管的h参数等效模型(交流等效模型)
• 在交流通路中可将晶体管看成 为一个二端口网络,输入回路、 输出回路各为一个端口。
u u BE f (iB, CE ) u iC f (iB, CE )
小功率管
图 1.3.1
中功率 三极管的外形
三极管有两种类型:NPN 型和 PNP 型。
大功率
主要以 NPN 型为例进行讨论。
第六章 晶体管放大电路基础
6.2.1 晶体管的结构及类型
常用的三极管的结构有硅平面管和锗合金管两种类型。
二氧化硅
e
b N
b
N 发射区 P 基区 N 集电区
e
P
P
c
c
(a)平面型(NPN)
uCE = 0V uCE 1V CE
iB
uBE - e UBB
uBE /V uBE /V 共射极放大电路
b +
c+
uCE
UCC
第六章 晶体管放大电路基础
i
B
二、输出特性曲线
UBB
半导体三极管及其放大电路专题

解: 原则:先求UBE,若等于0.6-0.7V,为硅管;若等于0.2-0.3V,为锗管。
2
1
03 6 ICEO
截止条件:
100A 发射结反偏(或零偏),集电结反偏。
80A
60A 特点:
40A (1)三极管无电流放大作用,相当于一
20A 个断开的开关。uBE小于死区电压,发射结 IB=0 反偏。
9 12 UCE(V) (2)IB=0,IC不为0,IC=ICEO≈0。
截止区
ICEO叫穿透电流。
三极管的开关特性
• 三极管同二极管一样,也可以作为电 子开关器件,构成电子开关电路。当三极管 用于开关电路中时,三极管工作在截止区和 饱和区。如下表是三极管开关特性说明。
开关状态 三极管工作状态 内阻特性
解说
开关接通 饱和状态 开关断开 截止状态
集电极与 发射极间 内阻很小
集电极与 发射极间 内阻很大
二、三极管的电流放大作用
1。放大作用的内部条件:
发射区掺杂浓度最高 基区掺杂浓度最低且最薄
2. 放大作用的外部条件: 集电区面积最大
发射结正偏、集电结反偏
从电位的角度看:
C
NPN
发射结正偏 集电结反偏
发射结正偏 集电结反偏
VB>VE
VC>VB PNP
VB<VE VC<VB
N
B
P
晶体三极管及其基本放大电路

22
2.4、三极管的主要参数
• 1、电流放大系数 • i)共射极电流放大系数
直流电流放大系数 IC
IB
交流电流放大系 数 Vic
Vib
h( fe 高频)
一般工作电流不十分大的情况下,可认为
Ma Liming
Electronic Technique
23
ii)共基极电流放大系数
共基极直流电流放大系数
3
6
9
IB=0 12 vCE(V)
区时, 有:VB>VC Rb
+
-
UBB
Ma Liming
+ 对于PNP型三极管,工作在饱和区 UCC 时, 有:VB<VC<VE
-
Electronic Technique
13
例:如图,已知三极管工作在放大状态, 求:1).是NPN结构还是PNP结构?
Ma Liming
Electronic Technique
20
方法二:用万用表的 hFE档检测 值
1. 拨到 hFE挡。
2.将被测晶体管的三个引脚分别插入相应的插孔 中(TO-3封装的大功率管,可将其3个电极接 出3根引线,再插入插孔),三个引脚反过来 再插一次,读数大的为正确的引脚。
3.从表头或显示屏读出该管的电流放大系数。
N
b
c PV
Rb
eN
+
-
UBB
Ma Liming
+
UCC 对于PNP型三极管,工作在放大区 - 时, 有:VC<VB<VE
Electronic Technique
10
iC(mA ) 4 3
2 1
(完整版)三极管及放大电路原理

测判三极管的口诀三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。
”下面让我们逐句进行解释吧。
一、三颠倒,找基极大家知道,三极管是含有两个PN结的半导体器件。
根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。
测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。
图2绘出了万用电表欧姆挡的等效电路。
由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。
假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。
测试的第一步是判断哪个管脚是基极。
这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。
在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。
二、PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型(图1)。
将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。
三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。
(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。
根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c 极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。
第03章-半导体三极管及放大电路基础
退出
放大电路的动态图解分析
(1)交流负载线 1.从B点通过输出特性曲线上的Q点做一条直线,
其斜率为-1/R'L 。 2.R'L= RL∥Rc,
是交流负载电阻。
3.交流负载线是有 交流 输入信号时Q 点的运动轨迹。
退出
三极管电流分配
半导体三极管在工作时一定要加上适当的直流偏置电压。 在放大工作状态: 发射结加正向电压,集电结加反向电压。
退出
三极的工作原理
发射结加正偏时,从发射区将
有大量的电子向基区扩散,形成
的电流为IEN。 从基区向发射区也有空穴的扩
散运动,但其数量小,形成的电
流为IEP。(这是因为发射区的掺杂浓
Av Vo /Vi
A I / I
i
oi
Ap Po / Pi Vo Io /Vi Ii
退出
(2) 输入电阻 Ri
输入电阻是表明放大电路从信号源 吸取电流大小的参数,Ri大放大电路 从信号源吸取的电流小,反之则大。
Ri
Vi Ii
退出
(3) 输出电阻Ro
输出电阻是表明放大电路带负载的能力,
Ro大表明放大电路带负载的能力差,反之则强。
退出
双极型三极管的参数
参数 型号
PCM
I CM
mW mA
3AX31D 125 125
3BX31C 125 125
3CG101C 100 30
3DG123C 500 50
3DD101D 5A
5A
3DK100B 100 30
3DKG23 250W 30A
第二章 三极管及放大电路基础
第二章三极管及放大电路基础教学重点1.了解三极管的外形特征、伏安特性和主要参数。
2.在实践中能正确使用三极管。
3.理解放大的概念、放大电路主要性能指标、放大电路的基本构成和基本分析方法。
4.掌握共发射极放大电路的组成、工作原理,并能估算电路的静态工作点、放大倍数、输入和输出电阻等性能指标。
5.能搭建分压式放大电路,并调整静态工作点。
教学难点1.三极管的工作原理。
2.放大、动态和静态以及等效电路等概念的建立。
3.电路能否放大的判断。
学时分配2.1三极管2.1.1三极管的结构与符号 通过实物认识常见的三极管三极管有三个电极,分别从三极管内部引出,其结构示意如图所示。
按两个PN 结组合方式的不同,三极管可分为PNP 型、NPN 型两类,其结构示意、电路符号和文字符号如图所示。
PNP 型 NPN 型有箭头的电极是发射极,箭头方向表示发射结正向偏置时的电流方向,由此可以判断管子是PNP 型还是NPN 型。
基区 发射区e基极 ceVTe基极 cecVT《电子技术基础与技能》配套多媒体CAI 课件 电子教案三极管都可以用锗或硅两种材料制作,所以三极管又可分为锗三极管和硅三极管。
2.1.2三极管中的电流分配和放大作用动画:三极管电流放大作用的示意做一做:三极管中电流的分配和放大作用观察分析实验参考数据:1)三极管各极电流分配关系:I E = I B + I C ,I E ≈ I C ≫I B2)基极电流和集电极电流之比基本为常量,该常量称为共发射极直流放大系数β,定义为:BCI I =β 3)基极电流有微小的变化量Δi B ,集电极电流就会产生较大的变化量Δi C ,且电流变化量之比也基本为常量,该常量称为共发射交流放大系数β,定义为:BCΔi i ∆=β1.三极管的电流放大作用,实质上是用较小的基极电流信号控制较大的集电极电流信号,实现“以小控大”的作用。
2.三极管电流放大作用的实现需要外部提供直流偏置,即必须保证三极管发射结加正向电压(正偏),集电结加反向电压(反偏)。
三极管及放大电路基础教案
一、教学目标:1. 让学生了解三极管的结构、种类和功能。
2. 让学生掌握三极管的导通和截止条件。
3. 让学生了解放大电路的原理和应用。
4. 让学生能够分析判断放大电路的工作状态。
二、教学内容:1. 三极管的结构和种类教学要点:三极管由发射极、基极和集电极组成,分为NPN型和PNP型。
2. 三极管的导通和截止条件教学要点:三极管导通需要基极-发射极电压大于一定值,集电极-发射极电压小于一定值;截止则相反。
3. 放大电路的原理教学要点:放大电路利用三极管的放大作用,将输入信号放大后输出。
4. 放大电路的应用教学要点:放大电路广泛应用于电子设备中,如音频放大、信号放大等。
5. 放大电路的工作状态分析教学要点:分析判断放大电路的工作状态,包括静态工作点和动态工作状态。
三、教学方法:1. 采用讲授法,讲解三极管及放大电路的基本概念、原理和应用。
2. 利用多媒体课件,展示三极管及放大电路的实物图片和电路图,增强学生的直观认识。
3. 进行实验演示,让学生亲自动手操作,观察放大电路的工作状态。
4. 案例分析,分析实际应用中的放大电路,提高学生的应用能力。
四、教学准备:1. 教学课件和教案。
2. 三极管实物和放大电路演示电路。
3. 实验器材和工具。
五、教学评价:1. 课堂问答:检查学生对三极管及放大电路的基本概念、原理和应用的理解。
2. 实验报告:评估学生在实验中的操作技能和分析判断能力。
3. 课后作业:巩固学生对三极管及放大电路的知识点掌握。
4. 期末考试:全面考核学生对三极管及放大电路的学习效果。
六、教学内容:6. 放大电路的类型教学要点:放大电路分为三种类型:共发射极放大电路、共基极放大电路、共集电极放大电路;其中共发射极放大电路应用最广泛。
7. 放大电路的静态工作点教学要点:静态工作点是指放大电路中的三极管在直流工作状态下,各极的电位处于一种稳定的状态,对于放大电路的性能有很大影响。
8. 放大电路的动态分析教学要点:动态分析是指在输入信号的作用下,放大电路中三极管的工作状态和工作参数的变化。
晶体三极管及基本放大电路
2.截止失真
若偏置电阻Rb偏大,此时基极电流IBQ很小,由示波器观察到的输出电压vo波 形将出现截止失真。
(a)实验电路
(b)截止失真波形
(c)图解分析
截止失真波形的观测
产生截止失真的原因是:IBQ偏小时,静态工作点偏低。在输入电压vi的负半 周时,三极管的发射结将在一段时间内处于反向偏置,造成ic负半周、vo的正半周 相应的波顶被削去。
3.分类
三极管的种类很多,通常按以下方法进行分类: 按半导体制造材料可分为:硅管和锗管。硅管受温度影响较小、工作稳定, 因此在自动控制设备中常用硅管。
按三极管内部基本结构可分为:NPN型和PNP型两类。目前我国制造的硅管
多为NPN型(也有少量PNP型),锗管多为PNP型。
按工作频率可分为:高频管和低频管。工作频率高于3MHz为高频管,工作
金属封装小功率管 金属封装大功率管
2.结构
三极管的核心是两个互相联系的PN结,按两个PN结的组合方式不同,可分为 NPN型和PNP型两类。
PNP型三极管
NPN型三极管
三极管内部有发射区、基区和集电区,引出电极分别为发射极e、基极b、集 电极c。发射区与基区之间的PN结称为发射结,集电区与基区之间的PN结称为集电 结。
电压放大倍数
输入电阻 ri=Rb1// Rb2//rbe
输出电阻 ro≈Rc
分压式偏置放大电路的交流通路
工程应用
要确保分压偏置电路的静态工作点稳定,应满足两个条件:I2»IBQ(实际可 取I2=10 IBQ);VBQ»VBEQ,(实际可取VBQ= 3VBEQ)。
要改变分压偏置电路的静态工作点,通常的方法是调整上偏置电阻Rb1的阻值。 若该电路的静态工作点正常,而放大倍数严重下降,应重点检查射极旁路电 容Ce是否开路或失效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.3 放大器的电量符号约定
• 放大器的静态:当输入的交流信号为零时,这时 三极管的基极、集电极和发射极中都只有直流电 流。
• 放大器的动态:当输入的交流信号不为零时,基 极、集电极和发射极中的电流既含有直流电流成 分又含有交流电流成分。
22
3.3 共射基本放大电路
3.3.1 电路结构和元器件的作用
(2)复合管的电流放大系数β近似为组成该复合管的各
三极管电流放大系数的乘积。
51
3.5.4 放大器的频率特性
• 放大器的对不同频率信号具有不同的放大 倍数、相移,描述这些特性称为放大器的 频率特性,由幅频特性和相频特性两部分 组成。
52
VCC=12V,Rb1=180KΩ,Re1=2.7KΩ, Rb21=100KΩ,Rb22=75KΩ,Rc2=2KΩ, Re2=1.6KΩ,Rs=1KΩ,RL=8KΩ,rbe1= rbe2=0.9KΩ,β1=β2=50。求ri、Au、Aus 和ro。
49
解
50
3.5.3 复合管
(1)复合管的类型与组成复合管的第一只三极管的类 型相同。
③当UBE >UTH,且0<iB<IBS,则三极管处在放大状态,iC=βiB。
12
例3-1
• 某音响设备内有一放大电路
如图3.6所示,β=50,
U=-36CV.C8=、k122VV,,、分5R析VB 时当=6,U8Sk晶B体分,管别R的为C 工作在哪一个区?已知图中 三极管是硅管,三极管导通 时U≈0C,E.3=UVUB。EC≈ES0(.7饱V,和饱压和降导)通时,
一个耳机放大器。
2
3.1三极管的结构和基本特性
• 三极管是有三个端子的器件,主要用于 信号的放大和控制。
• 三极管按其极性分有
– NPN型 – PNP型。
3
3.1.1 初识三极管
• 三极管的实物、符号、工作示意
4
3.1.2 三极管的基本结构
5
3.1.3 三极管的工作特点
6
3.1.4三极管的分类
44
3.5.1 多级放大器的级间耦 合方式
1. 阻容耦合方式
45
2. 变压器耦合方式
46
3. 直接耦合
47
3.5.2 多级放大器的分析计算
• 多级放大器的输入电阻就是第一级放大器的输入电阻, 其输出电阻就是最后一级放大器的输出电阻。
48
【例3-4】
• 两级组合放大电路如图3.24所示,已知
13
解
14
例3-1图
15
4.万用表检测三极管的工作状态
16
3.1.6 三极管的主要参数
17
3.2 放大电路的基本概念
• 放大电路的主要特征是:不失真地把输 入信号放大。
– 不失真:保真度 – 输出信号比输入信号大
18
3.2.1 放大电路的分类
• 按照放大器放大的信号电量不同分类,可分为: 电压放大器、电流放大器和功率放大器。
普通高等教育”十一五”国家级规划教材
模拟电子技术
徐丽香编著
1
第三章 晶体三极管及放大 电路基础
学习目标:
(1)了解三极管的电流放大作用。 (2)掌握万用表判别三极管的引脚和性能好坏的方
法。 (3)了解三极管的三种组态特点。掌握共射电路的
基本结构。 (4)了解放大电路性能指标。掌握用万用表调试三
极管各参数的方法。 (5) 制作放大电路,把微弱的信号进行放大,如做
7
【边学 边练】 用指针 式模拟 万用表 检测三 极管性
能。
8
3.1.5 三极管的工作状态
1.三极管的三种组态
9
2.共发射极放大电路的输入输出特性
10
三极管的工作状态说明
11
3.三极管截止和饱和时的等效电路
• 三极管的工作状态判断。
①I当c=U0B;E<UTH时,IB=0,三极管截止,C、E间相当于开关断开, ②当iB>IBS时,三极管饱和,C态工作点; (2)画出电路的微变等效电路; (3)放大器的电压放大倍数、输入电阻和输出电阻。
39
例3-3图
40
解
41
42
3.4 三种基本组态放大电路的比较
43
3.5 多级放大器
• 耦合,就是指多级放大器中级与级之间 的联结,耦合方式就是指联结方式。
• 常用的耦合方式有三种:阻容耦合、变 压器耦合和直接耦合。
30
4. 放大电路的静态分析
• 【例3.2】在图3.9中,电源电压VCC=12V, 集电极电阻RC=3kΩ,基极偏置电阻RB =300kΩ,三极管为3DG6,β=50。求: (1)放大器的静态工作点;(2)若 RB=30kΩ,求电路的工作状态。
31
解
32
工作点的影响因素之一
• 从上面分析中可知,RB的取值会影响三 极管的工作状态。调节RB可使三极管处 于合适的工作状态。三极管静态工作点 设置合适时,集-射间电压通常略高于二 分之一电源电压。
33
5.稳定工作点的放大电路
(1)稳定工作点的原理分析
34
(2)静态工作点的计算(静态分析)
35
6.配合万用表测试调整三极 管的静态工作点
36
3.3.6 三极管的动态分析
• 微变等效电路法分析
37
各参数的计算公式
38
【例3.3】
• 分压式偏置放大电路如图3.16所示.元件参数
如图中标注,三极管为3DG12,β=50。
23
3.3.2 共发射极放大电路的工作原理
I b ( I c I b ) ( U R I c C R C ) ( U R L V C C U R C )
24
3.3.3 三极管放大电路中的信号
25
3.3.4 三极管工作状态的影响因素
• 实验电路
26
1.基极偏置电阻对三极管工作状态的影响
• 按照放大器放大的信号频率不同分类,可分为: 低频放大器、高频放大器、超高频放大器。
• 按照放大器使用的放大元件所处的工作组态不 同分类,可分为:共基极放大器、共集电极放 大器、共发射极放大器。
19
3.2.2 放大电路的性能指标
• 输入电阻、输出电阻、放大倍数
20
3.2.2 放大电路的性能指标
27
2. 输入信号幅度对三极管 工作状态的影响
28
3.3.5 放大电路的静态工作点设置
1.直流通道:电容视为开路 2.交流通道:
(1) 耦合电容、旁路电容对交流来说可视为短路。 (2)直流电源对交流信号可视为短路。
29
工作点
• 静态时的三极管的IBQ、IEQ、ICQ、 UBEQ、UCEQ统称为工作点。