初中毕业数学试题.doc

合集下载

初中毕业考数学试卷及答案

初中毕业考数学试卷及答案

一、选择题(每题4分,共40分)1. 已知函数f(x) = x^2 - 2x + 1,则f(3)的值为()A. 4B. 5C. 6D. 7答案:A解析:将x=3代入函数f(x) = x^2 - 2x + 1,得到f(3) = 3^2 - 23 + 1 = 4。

2. 下列哪个数是负数?()A. -1/2B. 0C. 1/2D. 2答案:A解析:负数是小于0的数,只有A选项的-1/2是负数。

3. 已知等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为()A. 20cmB. 22cmC. 24cmD. 26cm答案:C解析:等腰三角形的两腰相等,所以周长=底边长+两腰长=6cm+8cm+8cm=24cm。

4. 下列哪个图形是轴对称图形?()B. 长方形C. 等腰三角形D. 等边三角形答案:A解析:轴对称图形是指通过某条直线将图形分成两部分,两部分完全重合。

正方形满足这个条件。

5. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的解为()A. x1=2,x2=3B. x1=3,x2=2C. x1=-2,x2=-3D. x1=-3,x2=-2答案:A解析:通过因式分解或配方法解得方程的解为x1=2,x2=3。

二、填空题(每题5分,共50分)6. 若a+b=5,ab=6,则a^2+b^2的值为______。

答案:37解析:根据公式(a+b)^2 = a^2 + 2ab + b^2,可得a^2+b^2 = (a+b)^2 - 2ab = 5^2 - 26 = 25 - 12 = 13。

7. 在直角三角形ABC中,∠A=90°,∠B=30°,则sinC的值为______。

答案:√3/2解析:在直角三角形中,sinC = 对边/斜边。

∠C=90°-∠B=60°,所以sinC = √3/2。

8. 若一个正方形的边长为a,则该正方形的面积为______。

解析:正方形的面积=边长×边长=a×a=a^2。

2021年安徽省中考数学真题 (word版,含解析)

2021年安徽省中考数学真题 (word版,含解析)

2021年安徽省初中毕业水平考试数学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。

2.本试券包括“试题卷”和“答题卷”两部分。

“试题卷"共4页,“答题卷"共6页。

3.请务必在“答题卷”上答题,在“试题卷"上答题是无效的。

4.考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合要求的.1.﹣9的绝对值是( )A .9B .﹣9C .91D .91- 2.《2020年国民经济和社会发展统计公报》显示,2020年我国共资助8990万人参加基本医疗保险,其中8990万用科学记数法表示为( )A. 6109.89⨯B. 71099.8⨯C. 81099.8⨯D. 910899.0⨯3.计算()32x x -⋅的结果是( ) A. 4x B. 6-x C. 5x D. 5-x4.几何体的三视图如图所示,这个几何体是( )A. B. C. D.5. 两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB 与DF 交于点M ,若BC ∥EF,则∠BMD 的大小为( )A.60°B.67.5°C.75°D.82.5°6.某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系,若22码鞋子的长度为16 cm ,44码鞋子的长度为27 cm 。

则38码鞋子的长度为( )A. 23 cmB. 24 cmC.25 cmD. 26 cm7.设c b a ,,为互不相等的实数,且c a b 5154+=,则下列结论正确的是( ) A. c b a >> B.a b c >> C.()c b b a -=-4 D. ()b a c a -=-58.如图,在菱形ABCD 中,AB=2,∠A=120°,过菱形ABCD 的对称中心O 分别作边AB,BC 的垂线,交各边于点E,F,G,H.则四边形EFGH 的周长为( )A.33+B.322+C.32+D.321+9.如图,在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以围成一个矩形,从这些矩形中任选一个,则所选矩形含点A 的概率是( )A .41B .31C .83D .9410.在△ABC 中△ACB=90°,分别过点B ,C 作△BAC 平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME.则下列结论错误..的是( ) A. CD=2MEB. ME△ABC. BD=CDD. ME=MD二、填空题(本大题共4小题,每小题5分,满分20分)12.埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,底面正方形的边长与侧面等腰三角形底边上的高的比值是15-,它介于整数n 和n+1之间,则n 的值是_______. 13.如图,圆O 的半径为1,△ABC 内接于圆O ,若△A=60°,△B=75°,则AB=_______.14. 设抛物线()a x a x y +++=12,其中a 为实数. (1)若抛物线经过点()m ,1-,则=m _______.(2)将抛物线()a x a x y +++=12向上平移2个单位,所得抛物线顶点的纵坐标的最大值是_______.三、(本大题2个小题,每小题8分,共16分)15.解不等式:x−13−1>0AB C(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n的代数式表示).【问题解决】(3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?五、(本大题2个小题,每小题10分,共20分)19.已知正比例函数y=kx(k≠0)与反比例函数y=6x的图像都经过点A(m,2).(1)求k,m的值;(2)在图中画出正比例函数y=kx的图像,并根据图像,写出正比例函数值大于反比例函数值时x的取值范围.20.如图,圆O中两条互相垂直的弦AB,CD交于点E.(1)M是CD的中点,OM等于3,CD=12,求圆O的半径长;(2)点F在CD上,且CE=EF,求证:AF⊥BD.o21.为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:kM·h)调查,按月用电量50~100,100~150,100~200,200~250,250~300,300~350进行分组,绘制频数分布直方图如下:(1)求频数分布直方图中x的值;(2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);(3)设各组居民月平均用电量如下表:根据上述信息,估计该市居民用户月用电量的平均数.22.已知抛物线y=ax2−2x+1(a≠0)的对称轴为直线x=1.(1)求a的值;(2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且-1<x1<0,1<x1<2.比较y1和y2的大小,并说明理由;(3)设直线y=m(m>0)与抛物线y=ax2−2x+1交于A、B,与抛物线y=3(x−1)2交于C、D,求线段AB 与线段CD的长度之比.八、(本题满分14分)23.如图1,在四边形ABCD中,∠ABC=∠BCD,点E在边BC上,且AE∥CD,DE∥AB,CF∥AD交线段AE于点F,连接BF.(1)求证:△ABF≌△EAD;(2)如图2,若AB=9,CD=5,∠ECF=∠AED,求BE的长;的值.(3)如图3,若BF的延长线经过AD的中点M,求BEEC第23题图2021年安徽省初中学业水平考试数学试题注意事项:1. 你拿到的试卷满分为150分,考试时间为120分钟。

2024年浙江义乌市初中毕业生学业水平考试数学试题

2024年浙江义乌市初中毕业生学业水平考试数学试题

2024年浙江义乌市初中毕业生学业水平考试数学试题一、单选题1.2024-的绝对值是( ) A .2024B .12024-C .2024-D .120242.下列计算正确的是( ) A .()426a a =B .22(3)6a a =C .842a a a ÷=D .()2326ab a b -=3.如图,由相同的小正方体搭成的几何体的俯视图是( )A .B .C .D .4.据统计,目前我国每年直接浪费掉的粮食达到3500万吨,浪费掉的粮食就足够满足两亿人一年的口粮.将数据3500万用科学记数法表示为( ) A .73.510⨯B .80.3510⨯C .83.510⨯D .73510⨯5.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )A .15B .25C .35D .456x 的取值范围是( ) A .3x ≥B .3x ≥-C .3x ≤-D .3x ≤7.如图,已知直线m n ∥,将一块含30︒角的直角三角板ABC 按如图方式放置()30B ∠=︒,其中点A 落在直线m 上,直线n 分别交边,AB BC 于点,D E .若140∠=︒,则2∠的度数为( )A .40︒B .50︒C .60︒D .70︒8.如图,Rt ABC △中,已知90,30,2BAC B AC ∠=︒∠=︒=.现以AC 为一边向外侧作等边三角形ACN ,分别取,BC CN 的中点记为,D E ,连接DE .则DE 的长为( )A .BC .D 9.已知1y 和2y 是关于x 的函数,当x a =时,函数值分别是1R 和2R ,若存在实数a ,使得122R R =+,则称函数1y 和2y 是“奇妙函数”.以下函数1y 和2y 不是“奇妙函数”的是( )A .212y x =+和22y x =B .1y x =和2221y x x =+-C .11y x=和22y x =+ D .12y x=-和25y x =-10.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式,后人借助此分割方法所得图形证明了勾股定理.如图所示,矩形ABCD 就是由两个这样的图形拼成(无重叠、无缝隙).下面给出的条件中,一定能求出矩形ABCD 面积的是( )A .BM 与DM 的积B .BE 与DE 的积C .BM 与DE 的积D .BE 与DM 的积二、填空题11.8-的立方根是.12.因式分解:23mn mn +=.13.已知某班一合作学习小组6名同学一周在家劳动的时间(单位:h )分别为:3,4,5,4,6,5,则这组数据的中位数是.14.一个圆锥的侧面展开图是半径为9cm ,圆心角为120︒的扇形,则此圆锥底面圆的半径为cm .15.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,8BC =,OC 是AB 边上的中线,点E 在CB 上,连结AE ,将C A E V 沿着AE 向ABC V 内部翻折得到PAE △.若PE O C ∥,则CE =.16.如图,抛物线23y x bx =+-的图象与x 轴交于点A ,与y 轴交于点B ,且1OA =.(1)b =.(2)已知点P 为该抛物线上一点且设其横坐标为(0)t t <,记该抛物线在点B 与点P 之间(包含点B 和点P )这部分图象的最高点和最低点到x 轴的距离分别为12,d d .若121d d -=,则t 的取值范围为.三、解答题1701(2024)2sin30π--+-︒. 18.先化简,再求值:()2213363x y x y -+-.其中1,2x y =-=. 19.小汪解答解分式方程:“2312x x x+--=-”的过程如下:你认为他的解题过程正确吗?若正确,请检验;若不正确,请指出错误(从第几步开始错),并写出正确的解答过程.20.为了着力解决小眼镜、小胖墩和学生心理健康问题等建议,某校开设了以“小课间大运动大课间小比赛”的活动课程,学校要求每位学生在“丢沙包”“滚保龄球”“踢毽子”与“跳绳”四门课程中选且只能选其中一门并随机调查了本校部分学生的选课情况,绘制了两幅不完整的统计图,请根据图表信息回答下列问题:(1)这次活动一共调查了________名学生,并补全条形统计图. (2)求图2中“丢沙包”扇形圆心角的度数.(3)若该学校共有1500名学生,请估计该校有多少名学生喜欢“滚保龄球”. 21.如图,已知四边形ABCD 是菱形,延长AD 至点E ,使2AE BC =.(1)求证:90ACE ∠=︒.(2)若16,10AC BC ==,求四边形ABCE 的面积. 22.草莓种植大棚是一种具有保温性能的框架结构.如图示,一般使用钢结构作为骨架,上面覆上一层或多层塑料膜,这样就形成了一个温室空间.大棚的设计要保证通风性且利于采光.(1)如图1,已知某草莓园的种植大棚横截面可以看作抛物线OPN ,其中点P 为抛物线的顶点,大棚高4m PE =,宽12m ON =.现以点O 为坐标原点,ON 所在直线为x 轴,过点O 且垂直于ON 的直线为y 轴建立平面直角坐标系.求此抛物线的解析式.(2)如图2,为方便进出,在大棚横截面中间开了两扇正方形的门,其中AB BE EC CD===.求门高AB的值.(3)若在某一时刻,太阳光线(假设太阳光线为平行线)透过A点恰好照射到N点,此时大棚横截面在地面上的阴影为线段OQ,求此时OQ的长.23.【基础巩固】(1)如图1,在ABCV中,点D是AB上的一点,且ACD B∠=∠,求证:2AC AB AD=⋅.【尝试应用】(2)如图2,在(1)的条件下,过点D作DE AC∥,交CB于点E.若:1:3A D D B=,8BC=,求CD的长.【拓展提高】(3)如图3,在ABCDY中,点E是CD的中点,连结BE,AE交BD于点F,且DFA EBA∠=∠.若sin BDC∠=tan C的值.24.如图1,已知AB是Oe的直径,点C为»AB的中点,点D为Oe上一点(不与A B C,,重合).连结AC,CD,DB,过点A作AE CD∥,交直线BD于点E.(1)当点D 在»BC上时, ①求CDB ∠的度数.②若2BEBD=,CD AE 的值. (2)如图2,记CD a =,作点D 关于直径AB 的对称点F ,连结DF ,CF .若CDF V 为等腰三角形,请直接写出AE 的值(用含a 的代数式表示).。

2010-2023历年初中毕业升学考试(吉林长春卷)数学(带解析)

2010-2023历年初中毕业升学考试(吉林长春卷)数学(带解析)

2010-2023历年初中毕业升学考试(吉林长春卷)数学(带解析)第1卷一.参考题库(共10题)1.二次函数的图象与轴有交点,则的取值范围是【】A.B.C.D.2.5名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm):,,,,,则这组数据的极差为cm.3.如图,将△ABC绕点A逆时针旋转80°得到△AB′C′.若∠BAC=50°,则∠CAB′的度数为A.30°.B.40°.C.50°.D.80°.4.计算:5a-2a= .5.我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为A.14×106B.1.4×107C.1.4×108D.0.14×1086.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为(用含n的代数式表示).7.如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为A.30° B.45° C.60°D.75°8.观察下列银行标志,从图案看是中心对称图形的有()个A.1个B.2个C.3个D.4个9.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图,三个汉字可以看成是轴对称图形.(1)请在方框中再写出2个类似轴对称图形的汉字;(2)小敏和小慧利用“土”、“口”、“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)小敏获胜,否则小慧获胜.你认为这个游戏对谁有利?请用列表或画树状图的方法进行分析并写出构成的汉字进行说明.10.菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为A.(,1).B.(1, ).C.(+1,1).D.(1,+1).第1卷参考答案一.参考题库1.参考答案:D2.参考答案:4极差:(1)定义:一组数据中最大值与最小值的差;(2)计算公式:极差=最大值-最小值。

初中毕业考试数学试题(4)解析

初中毕业考试数学试题(4)解析

初中毕业考试数学试题(4)解析满分:150分 时间:120分钟一.选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.自贡恐龙博物馆是世界三大恐龙博物馆之一.今年“五一黄金周”共接待游客8.87万人次,人数88700用科学记数法表示为( )A.50.88710⨯B.38.8710⨯C.48.8710⨯D.388.710⨯2.如图是一个正方体的展开图,把展开图叠成小正方体后,有“迎”字一面的向对面上的字是( )A.百B.党C.年D.喜3.下列运算正确的是( )A.22541a a -=B.23246()a b a b -=C.933a a a ÷= D.222(2)4ab a b -=-4.下列图形中,是轴对称图形且对称轴条数最多的是( )5.如图,AC 是正五边形ABCDE 的对角线,∠ACD 的度数是( ) A.72° B.36° C.74° D.88°6.学校为了解“阳光体育”活动展开情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:这些学生一周参加体育锻炼时间的众数、中位数分别是( ) A.16,15 B.11,15 C.8,8.5 D.8,97.已知23120,x x --=则代数式2395x x -++的值是( ) A.31 B.-31 C.41 D.-418.如图,A (8,0),C (-2,0),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A.(0,5)B.(5,0)C.(6,0)D.(0,6)9.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,下列说法正确的是( ) A.函数解析式为13I R=B.蓄电池的电压是18VC.当10I ≤A 时, 3.6R ≥ΩD.当6R =Ω时,4I A =时10.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点F ,OE ⊥AC 于点E ,若OE=3,OB=5,则CD 的长度是( )A.9.6B. D.1011.如图,在正方形ABCD 中,AB=6,M 是AD 边上的一动点,AM :MD=1:2,将△BMA 沿BM 对折至△BMN ,连接DN ,则DN 的长是( )A.5212.如图,直线22y x =-+与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动点,过点P 作y 轴的平行线交直线3y x =-+于点Q ,△OPQ 绕点O 顺时针旋转45°,边PQ 扫过区域(阴影部分)面积的最大值是( )A.23π B.12π C.1116π D.2132π二、填空题(共6个小题,每小题4分,共24分)13.请写出一个满足不等式7x >的整数解 .14.某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%.小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是 .15.化简:22824a a -=-- . 16.如图,某学校“桃李餐厅”把WIFI 密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络,那么她输入的密码是 .17.如图,△ABC 的顶点均在正方形网格格点上,只用不带尺度的直尺,作出△ABC 角平分线BD (不写作法,保留作图痕迹)18.当自变量13x -≤≤时,函数||y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为 .三.解答题(共8个题,共78分)19.本题满分(80|7|(2-+.20.(本题满分8分)如图,在矩形ABCD 中,E ,F 分别是AB ,CD 的中点.求证:DE=BF21.(本题满分8分)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是53°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,,1.73)22.(本题满分8分)随着我国科技事业的不断发展,国产无人机大量进入快递行业,现有A ,B 两种型号的无人机都被用来送快递,A 型机比B 型机平均每小时多运送20件,A 型机运送700件所有时间与B 型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件? 23. (本题满分8分)为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩为:A (优秀)、B (优良)、C (合格)、D (不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制成了如下统计图(1)本次抽样调查的样本容量是 ,请补全条形统计图;(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.24. (本题满分8分)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.结合自己已有的学习经验,画出函数284xy x =-+的图象,并探究其性质. 列表如下:(1)直接写出表中a ,b 的值,并在平面直角坐标系中画出该函数的图象; (2)观察函数284xy x =-+的图象,判断下列关于该函数性质的命题: ①当22x -≤≤时,函数图象关于直线y x =对称; ②2x =时,函数有最小值,最小值为-2 ③11x -<<时,函数y 的值随x 的增大而减小.其中正确的是 (请写出所有正确命题的番号) (3)结合图象,请直接写出不等式2844xx >+的解集为 .25.(本题满分12分)如图,点D 在以AB 为直径的⊙O 上,过D 作⊙O 的切线交AB 的延长线于点C ,AE ⊥CD 于点E ,交⊙O 于点F ,连接AD ,FD. (1)求证:∠DAE=∠DAC ; (2)求证:DF ·AC=AD ·DC ; (3)若sin ∠C=14,AD=,求EF 的长.26.(本题满分14分)如图,抛物线(x 1)(x a)y =+-(其中1a >)与x 轴交于A 、B 两点,交y 轴于点C.(1)直接写出∠OCA 的度数和线段AB 的长(用a 表示);(2)若点D 为△ABC 的外心,且△BCD 与△ACO 4,求此抛物线的解析式;(3)在(2)的前提下,试探究抛物线(x 1)(x a)y =+-上是否存在一点P ,使得∠CAP=∠DBA ?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案与解析一.选择题1.【解析】科学记数法表示为a ×10N ,其中1≤|a|<10,故答案为C 2.【解析】根据正方体展开图可得,“迎”与“党”相对,故答案为B3.【解析】A 正确答案为a 2,B 选项正确,C 选项答案为a 6,D 选项为a 2−4ab +4b2,故答案为B4.【解析】A 选项,对称轴1条,B 选项和C 选项为中心对称图形,D 选项对称轴两条,故答案为D5.【解析】正5边形每一个内角为(n 2)180108n-︒=︒,∵AB=BC ,∴∠ACB=36°,∴∠ACD=72°,故答案为A6.【解析】众数是出现次数最多的数,故众数为8,中位数即将数据排序后,中间两个数(8和9)的平均数8.5,故答案为C7.【解析】2223=12393639531x x x x x x -⇒-+=-⇒-++=-,故答案为B8.【解析】AB=AC=10,AO=8,在Rt △AOB 中,根据勾股定理可得OB=6,故B (0,6),故答案为D 9.【解析】函数解析式为36y x=故A 选项错误,蓄电池电压是49=36⨯V ,D 选项,当6R =Ω时,6I A =,故答案为C10.【解析】在Rt △ACF 中,sin ∠BAC=CFAC,在Rt △AOE 中,sin ∠BAC=OE OA=35,故CD 的长度为245=4.8,故答案为A11.【解析】过N 作直线∥AB ,交AD 于H ,交BC 于G ,由翻折性质可知△AMB ≌△NMB ,∴∠BNM=90°,进而可得△MNH ∽△NBG ,∴MNNB =NH BG =13,设NH=y ,则BG=3y ,MH=3y-2,在Rt △MHN 中,MH 2+NH 2=MN 2,∴(3y −2)2+y 2=22,∴y =65,∴DH=CG=125,在Rt △DNH 中,DH ²+NH 2=DN 2,∴DN =6√55,故答案为D12.【解析】由旋转性质可知,该阴影部分的的面积等于以OQ 为大圆半径R ,OP 为小圆半径r 且圆心角为45°的扇形环的面积,即S 阴影=S 环=πR 28−πr 28,由题意可得,R 2=x 2+(−x +3)²r 2=x 2+(−2x +2)²,且0<x <1,∴R 2−r 2=−3(x −3)2+163,当x =13时,取得最大值163,故阴影部分面积最大值为2π3,故答案选A.二、填空题13.【解析】x >7−√2,故答案很多,最小整数为6,只需填6以上整数即可,答案不唯一 14.【解析】加权平均数计算方法为90×30%+80×70%=83,故答案为83 15.【解析】2(a+2)a 2−4−8a 2−4=2(a−2)(a+2)(a−2)=2a+2,故答案为2a+216.【解析】根据观察a ∗b 6=ac ,bc ,c (a+b )运算的结果进行的顺序排列,故密码为244872. 17.【解析】以B 为圆心,任意长为半径画圆弧交∠B 两边于两点,再分别以这两点为圆心,大于这两点间距离为半径画圆弧产生的交点与点B 所连线段即为所求,18.【解析】当k ≥3时,x=3时函数取得最小值,∴k-3=k+3,不成立,当k ≤-1时,x=-1取得最小值,此时-k-1=k+3,∴k=-2满足题意,当-1<k <3时,x=k 时取得最小值,∴k+3=0,k=-3不满足题意,综上所述,k=-2 三.解答题19.【解析】5-7+1=-120.【解析】证明:∵四边形ABCD 为矩形,∴DC ∥AB 且DC=AB ,∵E 、F 分别为AB 、CD 的中点,∴BE=12AB ,DF=12CD ,∴DF ∥BE 且DF=BE ,∴四边形EBFD 为平行四边形,∴DE=BF.21.【解析】∵在B 处测得D 处的俯角为53°,∴∠BDA=53°,在Rt △BAD 中,tan ∠BDA=BAAD ,∴AD =24tan53°,在Rt △CAD 中,tan ∠CAD=CDAD ,且∠CAD=30°,CD =√3∴CD =√3tan53°≈8.0米22.【解析】设B 型机每小时运送x 件,则A 型机每小时运送x+20件 根据题意可得700x+20=500x,解之可得x =50,经检验x =50是方程的根,也符合实际意义,∴A 型机每小时运送70件,B 型机每小时运送50件 23.【解析】(1)100,补全图形如下:(2)作出树状图如下所示:随机回访两位竞赛成绩合格的同学共20种情况,其中一男一女共12种情况,所以恰好回访到一男一女的概率为1220=35(3)2000×0.35=700人,估计该校竞赛成绩“优秀”人数为700人 24.【解析】(1)作出函数图象如图所示(2)②③ (3)将不等式284x x x >+两边同时乘以-1可得284xx x -<-+可得不等式的解集为 2x <-或02x <<25.【解析】(1)连接OD ,∵DC 为⊙O 的切线,∴OD ⊥CD ,即∠ODC=90° ∵AE ⊥CD ,∴∠AED=90°,∴∠AED=∠ODC=90°,∴AE ∥OD ,∴∠ODA=∠DAE又∵OD=OA=r,∴∠ODA=∠DAC,∴∠DAE=∠DAC(2)证明:连接BD,设∠DAE=α,又(1)可知∠CAD=∠DAE=α,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△ADB中,∠BAD+∠ABD=90°,∴∠ABD=90°-α,又∵四边形ABDF为⊙O的内接四边形,∴∠AFD+∠ABD=180°,∴∠AFD=90°+α∵∠CDO=90°,∴∠ADC=90°+α在△AFD和△ADC中有∠AFD=∠ADC,∠FAD=∠DAC,∴△AFD∽△ADC∴DFDC =ADAC,即DF·AC=AD·DC(3)设OD=x,在Rt△COD中sin∠C=14,∴OC=4x,根据勾股定理可得CD=√15x,∵OA、OB、OD均为⊙O的半径,∴OA=x,∵OD∥AE,∴△COD∽△CAE,∴ODAE =OCCA=CDCE,∴AE=54x,CE=5√154x,故DE=√154x.由(2)可知△AFD∽△ADC,∴ADAC =AFAD,且AD=4√10,可得AF=32x在Rt△ADE中,AE2+DE2=AD2,∴2516x2+1516x2=160,∴x=8∴AF=32x =4,AE=54x=10,∴EF=AE-AF=10-4=626.【解析】(1)A(a,0),C(0,-a),可得OC=OA=a,∴△AOC为等腰直角三角形,∴∠OCA=45°,AB=√2a.(2)∵D为△ABC的外心,∴∠BAC为⊙D中弧BC所对的圆周角,∠BDC为弧BC所对圆心角,∴∠BDC=2∠BAC=90°,∴△BDC和△AOC均为等腰直角三角形,故△BCD∽△ACO∴△BCD与△ACO的周长之比等于相似比,记⊙D半径为R,∴Ra =√104,∴R=√104a∵在等腰直角△BCD中,BC=√1+a2,且BC=√2R,∴R=√1+a2√2∴√1+a 2√2=√104a ,解得a 2=4,又a >1,∴a=2,,故二次函数的解析式为y =x 2−x −2(3)当P 在AC 下方时,∠CBD=∠CAD=45°,且∠CAP=∠DBA ,∴∠PAO=∠CBO.tan ∠CBO=43,作PF ⊥x 轴于F ,∴43PF AF =,设AF=3m ,则PF=4m ,∴(23,4)P m m --代入二次函数可得59m =,∴120(,)39P -当P 在AC 上方时,作120(,)39-关于直线2y x =-对称点25(,)93M --,∴直线AM 的方程为3342y x =-,联立3342(1)(2)y x y x x ⎧=-⎪⎨⎪=+-⎩得1212,4x x ==-,∴此时P 点横坐标为14-,将14-代入抛物线可得,P 点纵坐标为2716,所以此时P 127(,)416- 综上所述,存在P 点的坐标为120(,)39-和127(,)416-。

江苏省徐州巿2022年中考数学试题真题含答案Word版

江苏省徐州巿2022年中考数学试题真题含答案Word版

江苏省徐州巿2022年中考数学试题真题含答案Word版2022年中考试题徐州巿2022年初中毕业、升学考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B铅笔填涂在答题卡上.2.作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有一个是正确的)....1.4的平方根是A.?2B.2C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元3.函数y?1x?1中自变量x的取值范围是A. x≥-1B. x≤-1C. x≠-1D. x =-1 4.下列运算中,正确的是A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x?x2=x-1 5.如果点(3,-4)在反比例函数y?kx的图象上,那么下列各点中,在此图象上的是A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方....盒的是A1B2022年中考试题C D7.⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是A.内含B. 内切C.相交D.外切8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数(第10题图)10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B.13 C.12 D.14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上)................11.因式分解:2x2-8=______▲________12.徐州巿部分医保定点医院2022年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若x1,x2为方程x2?x?1?0的两个实数根,则x1?x2?___▲___. 14.边长为a的正三角形的面积等于______▲______.15.如图,AB是⊙O的直径,点C在AB的延长线上,CD 与⊙O相切于点 D.若,若∠C=18°,则∠CDA=______▲_______.(第15题图)(第16题图)16.如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于____▲_____cm.第Ⅱ卷22022年中考试题三、解答题(每小题5分,共20分)17.计算:(?1)202218.已知x?x119.解不等式组?2?2x?1?5(x?1)??3?1,求x2??01?1?()?338.?2x?3的值.,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:四、解答题(本题有A、B两类题,A类题4分,B类题6分,你可以根据自己的学习情况,在两类题中任意选做一题,如果两类题都做,则以A类题计分)......21.(A类)已知如图,四边形ABCD中,AB=BC,AD =CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B车的平均速度之比为10∶7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各3BDAB45?30?21.414,31.732A6mD14m(第20题图)C(第21题图)C2022年中考试题题:项目金额/元金额/元60504030短信费月功能费4%基本话费40%月功能费5 基本话费长途话费短信费20220月功能费基本话费长途话费短信费长途话费36%项目(1)该月小王手机话费共有多少元?(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1,②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;42022年中考试题④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.Ay六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2022年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c为常数)行驶路程不超过3km的部分超过3km不超出6km的部分超出6km的部分每公里 2.1元每公里c元O367xyD13.3BxC收费标准调价前起步价6元调价后起步价a 元11.2C7AEBF每公里b元6 设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:①填空:a=______,b=______,c=_______.②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.52022年中考试题26.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断① OA=OC ② AB=CD ③ ∠BAD=∠DCB ④ AD∥BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题,画图并给出证明;...②构造一个假命题,举反例加以说明. ...七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B 两点随图象移至A′、B′,求△O A′B′的面积.28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30° 【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF...绕点旋转,并使边DE与边AB交于点P,边EF与边BC于点Q ..E...【探究一】在旋转过程中,(1)如图2,当CEEA=1时,EP与EQ满足怎样的数量关系?并给出证明.62022年中考试题(2)如图3,当CEEA=2时EP与EQ满足怎样的数量关系?,并说明理由.CEEA=m(3)根据你对(1)、(2)的探究结果,试写出当系式时,EP与EQ满足的数量关为_________,其中m的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.A(D)AFEPBC(E)BDQFCAEPDBQCF(图1)(图2)(图3)72022年中考试题徐州巿2022年初中毕业、升学考试数学试题参考答案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(x?2)(x?16.m17.解:原式=1+1-3+2=1 18.解:x222) 12. 3750元13.-1 14.34a2 15.126°?2x?3?(x?3)(x?1)3?1?3)(,将x?3?1代入到上式,则可得x?2x?3?(3?1?1)?(3?2)(3?2)??1?x119.解:?2?2x?1?5(x?1)? ?x??2?x??22?x?2?2x?1?5x?5x?2??20.解:如图所示,过点A、D分别作BC的垂线AE、DF分别交BC于点E、F,所以△ABE、△CDF均为Rt△,又因为CD=14,∠DCF=30°,所以DF=7=AE,且FC=73A6mD14m12.145?B30?C所以BC=7+6+12.1=25.1m. 21.证明:(A)连结AC,因为AB=AC,所以∠BAC=∠BCA,同理AD=CD 得∠DAC=∠DCAE FA所以∠A=∠BAC+∠DAC=∠BCA+∠DCAC(B)如(A)只须反过来即可.22.解方程的思想.A车150km/h,B车125km/h. 23.解:(1)125元的总话费(2)72° (3)项目金额/元月功能费5 基本话费50 长途话费45 短信费25 BD=∠C 82022年中考试题(4)24.(4)对称中心是(0,0)25.解:(1) a=7, b=1.4, c=2.1 (2)y1?2.1x?0.3A1A2B2BB1C1xCC2金额/元6050403020220月功能费基本话费长途话费短信费项目解:如下图所示,yA(3)有交点为(317,9)其意义为当x?317时是方案调价前合算,当x?317时方案调价后合算.26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1)y??x?2x?32(2)(0,3),(-3,0),(1,0)(3)略911/ 11。

初中毕业考试卷全套数学

初中毕业考试卷全套数学

一、选择题(每题2分,共20分)1. 已知x² - 3x + 2 = 0,则x的值为:A. 1B. 2C. 1或2D. 无解2. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标为:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)3. 若a,b,c是等差数列,且a+b+c=12,则ab+bc+ac的值为:A. 36B. 24C. 18D. 94. 已知函数f(x) = 2x + 3,则f(-1)的值为:A. -1B. 1C. 0D. 35. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为:A. 75°B. 105°C. 120°D. 135°6. 若m² - 6m + 9 = 0,则m的值为:A. 3B. -3C. 3或-3D. 无解7. 已知一次函数y = kx + b的图象经过点(1,3),则k+b的值为:A. 4B. 2C. 1D. 08. 在等腰三角形ABC中,AB=AC,∠BAC=50°,则∠ABC的度数为:A. 50°B. 60°C. 70°D. 80°9. 若x² - 4x + 4 = 0,则x的值为:A. 2B. -2C. 2或-2D. 无解10. 已知函数f(x) = x² - 2x + 1,则f(2)的值为:A. 1B. 0C. 3D. 4二、填空题(每题2分,共20分)11. 已知一元二次方程x² - 5x + 6 = 0,则该方程的解为__________。

12. 在直角坐标系中,点P(-3,2)关于原点的对称点坐标为__________。

13. 若a,b,c是等差数列,且a+b+c=18,则ab+bc+ac的值为__________。

14. 已知函数f(x) = 3x - 2,则f(1)的值为__________。

中考数学试题及答案(word版)55

中考数学试题及答案(word版)55

ABCDFG初中毕业暨高中招生考试数学试题一、选择题(本大题共10小题,每小题4分,满分40分)1.4的倒数是( )A .4B .-4C .14D .2 2.计算2a 2÷a 的结果是( )A .2B .2aC .2a 3D .2a 2 3.一次函数y =―3x ―2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下左图的几何体的俯视图是( )5.两圆的圆心距为7cm ,半径分别为5cm 和2cm ,则两圆的位置关系是( ) A .内切 B .外切 C .外离 D .内含 6.为了描述我县城区某一天气温变化情况,应选择( )A .扇形统计图B .条形统计图C .折线统计图D .直方图 7.直角坐标系内点P (-2,3)关于原点的对称点Q 的坐标为( ) A .(2,-3) B .(2,3) C .(-2,3) D .(-2,-3)8.2010年“地球停电一小时”活动的某地区烛光晚餐中,设座位有x 排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( ) A .30x -8=31x +26 B .30x +8=31x +26 C .30x -8=31x -26 D .30x +8=31x -269.如图,在矩形ABCD 中,AB =4,BC =3,点P 从起点B 出发,沿BC 、CD 逆时针方向向终点D 匀速运动.设点P 所走过的路程为x ,则线段AP 、AD 与矩形围成的图形面积为y ,则下列图象能大致反映y 与x 的函数关系的是( )10.如图,在□ABCD 中,分别以AB 、AD 为边向外作等边△ABE 、△ADF ,延长CB 交AE 于点G (点G 在点A 、E 之间),连接CE 、CF 、EF ,则以下四个 结论一定正确的是( )①△CDF ≌△EBC ②∠CDF =∠EAF ③△CDF 是等边三角形 ④CG ⊥AEA .只有①②B .只有①②③C .只有③④D .①②③④A B CDA BPCDBCD1A 二、填空题(本大题共6小题,每小题4分,满分24分)11.上海世博会的口号是:“城市,让生活更美好”.到2010年5月30日止,参观上海世博会的人数累计为8004300人.数字8004300用科学记数法表示为 .12.不等式组⎩⎨⎧2x +1>-1x +2<≤3的整数解为 .13.如图,A 、B 、C 、D 是圆上四点,∠1=68º,∠A =40º.则∠D = . 14.分式方程3 x 2+x = 1x 2-x的解是x = . 15.有一个可以改变体积的密闭容器内装有一定质量的CO 2,当改变容器的体积时,气体的密度也会随之改变:密度ρ(kg/m 3)是体积V (m 3)的反比例函数,它的图象如图所示,当V =2m 3时,气体的密度是 kg/m 3.16.观察下列三角形的三个顶点所标的数字规律,那么2010这个数在第 个三角形的 顶点处(第二空填“上”、“左下”或“右下”).三、解答题(本大题共4小题,每小题6分,满分24分)17.计算:310)2(21)2(|2|-+⎪⎭⎫⎝⎛+----π.18.解方程:x 2―2x ―1=0.19.尺规作图:如图,已知△ABC .求作:△ABC ,使A 1B 1=AB ,∠B 1=∠B ,B 1C 1=BC . 要求:写已知、求作,不写作法,不证明,保留作图痕迹. 已知: 求作:123 456789 101112第一个三角形第二个三角形第三个三角形第四个三角形…ABC20.2010年5月18日“全国首届农村地区基础教育课程改革研讨会”在綦江召开,我县的“2+x ”拓展课程受到专家的高度评价.在100多项“2+x ”拓展课程中,教育行政主管部门对其中若干学生参加球类、棋类、绘画、书法、摄影、舞蹈活动的人数比例情况进行调查,所得的部分数据绘制了下面两幅不完整的统计图.请你根据图中提供的休息,回答下列问题:(1)求出扇性统计图中的a 的值,并求出被调查学生的总人数; (2)求出参加棋类活动的学生人数,并补全频数分布直方图.四、解答题(本大题共4小题,每小题10分,满分40分)21.先化简,再求值:x 2-x x +1÷ xx +1,其中x =3+1.22.据交管部门统计,高速公路超速行使是引发交通事故的主要原因.我县某校数学课外小组的几位同学想尝试用自己的知识检测车速,他们选择了渝黔高速公路某路段进行观测,该路段限速是每小时80千米(即最高速度不得超过80千米).如图,他们将观测点设在到公路的距离为0.1千米的P 处.这时,一辆轿车由綦江向重庆匀速直线驶来,测得此车从A 处到B 处所用的时间为3秒,并测得∠APO =59º,∠BPO =45º. 试计算AB 并判断此车是否超速?(精确到0.001) (参考数据:sin59º≈0.8572,cos59º≈0.5150,tan59º≈1.6643)球类书法棋类 绘画舞蹈摄影 30%15%10% 15%5%aA EB F CD 23.甲、乙两人玩游戏,他们准备了一个可以自由转动的转盘和一个不透明的袋子,转盘被分成面积相等的三个扇形,并在每一个扇形内标上数字-1、-2、-3;袋子中装有除数字以外其他均相同的三个乒乓球,球上标有数字1、2、3.游戏规则:转盘转动,当转盘停止后,指针所指区域(如果指针恰好在分界线上,那么指针指向某一区域为止)的数字与随机从袋子中摸出乒乓球的数字之和为0(1)用树状图或列表法求甲获胜的概率;(2)这个游戏规则对甲乙双方公平吗?请判断并说明理由.24.如图,在直角梯形ABCD 中,AD ∥BC ,∠A =90º,AB =AD =6,DE ⊥CD 交AB 于E ,DF 平分∠CDE 交BC 于F ,连接EF .(1)证明:CF =EF ;(2)当tan ∠ADE = 13时,求EF 的长.五、解答题(本大题共2小题,第25题10分,第26题12分,满分22分)25.“震再无情人有请”,玉树地震牵动了全国人民的心,武警部队接到命令,运送一批救灾物资到灾区,货车在公路A 处加满油后,以60千米/小时的速度匀速行使,前往与A 处相距360千米的灾区B 处.下表记录的是货车一次加满油后油箱内余油量y (升)与行(1)请你用学过的函数中的一种建立y 与x 之间的函数关系式,并说明选择这种函数的理由(不要求写出自变量的取值范围);(2)如果货车的行使速度和每小时的耗油量都不变,货车行使4小时后到达C 处,C 的前方12千米的D 处有一加油站,那么在D 处至少加多少升油,才能使货车到达灾区B 处卸去货物后能顺利返回D 处加油?(根据驾驶经验,为保险起见,油箱内余油量应随时不少于10升)26.已知抛物线y=ax2+bx+c(a>0)经过点B(12,0)和C(0,-6),对称轴为x=2.(1)求该抛物线的解析式.(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一个动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若存在,请说明理由.(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中毕业数学试题
一. 选择题(每小题3分,共30分)
1.已知y=√x - 3 中,自变量x 的取值范围是( ) (A)x>3 (B)x> -3 (C)x>3 (D)x>-3
2.已知α是锐角,cos α=√3 /2,则α等于( )
(A) 300 (B)450 (C)6O 0 (D)900
3.一次函数y=ax+b,若a+b=1,则它的图象必经过点( )
(A) (-1,-1) (B) (-1, 1) (C) (1, -1) (D) (1, 1)
4.已知十个数据如下:63, 65, 67, 69, 66, 64,66, 64, 65, 68, 对这些数据编制频率分布表,其中64.5---66.5这组的频率是( )
(A) 0.4 (B) 0.5 (C) 4 (D) 5 5.已知⊙o 的半径为3cm,则与⊙o 内切且半径为2cm 的圆的圆心的轨迹是( ) (A)到点0的距离为1cm 的一条直线 (B)以点0为圆心,1cm 长为半径的圆
(C)到点0的距离为5cm 的一条直线 (D)以点0为圆心,5cm 长为半径的圆
6.不等式组的解为 ( )
(A)X<-2 (B)-2<X<-1/2 (C)X>-1/2 (D)X>-1/2或X<-2
7.粮仓顶部是圆锥形,这个圆锥的底面直径为4m,母线长为3m,为防雨需在仓顶部铺上油毡,这块油毡面积是( )
(A)6m 2 (B)6πm 2 (C)12m 2 (D)12πm 2
8.菱形、矩形、正方形都具有的性质是( )
(A)对角线相等 (B)对角线互相垂直 (C)对角线互相平分 (D)对角线平分一组对角
9.将棱长相等的正方体按如图所示的形状摆放,从上往下依次为第一层、第二层、第三层…….则第2004层正方体的个数为( )
(A)2009010 (B)2005000
(C )2007005 (D)2004
10.向高为10cm 的容器中注水,注满为止,若注水量V(cm 3)与水深h(cm)之间的关系的图象大
致如下图,则这个容器是下列四个图中的
V/cm
10 h/cm (D)
二. 填空题(每小题3分,共24分)
11.点P(-1, 3 )关于原点对称的点的坐标是 .
12.抛物线y= ( x – 1)2 – 7的对称轴是直线 ..
13.有一面积为60的梯形,其上底长是下底的1/3,若下底的长为x,高为y,则y 与x 的函数关系式为 .
14.某种商品原价50元.因销售不畅,3月份降价10%,从4月份开始涨价,5月份的售价为64.8元,则4、5月份两个月平均涨价率为 .
15.如图, ⊙o 的割线PAB 交⊙o 于点A 、B ,PA=7cm ,AB=5cm 。

PO=10cm ,则⊙o 的半径为 。

P C A
B O
16.若半径为6cm 和5cm 的两圆相交,且公共弦长为6cm.则两圆的圆心距为 .
17.掷一颗普通的正方形骰子,点数为偶数的概率为 .
18.将一张长方形的纸对折,如图所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕,如果对折n 次,可以得到 条折痕.
三. 解答题(第19---23题各4分,第24题5分.25题6分26题7分27题8分共46分)
19.计算:( - 2)2- (1 - √2 )0
20.解方程:
21.已知, x 1 , x 2 是方程 3x 2 +2x – 1=0的两根, 求x 12 +x 22 的值.
22.如图,已知D 、E 是等腰△ABC 底边BC 上两点,且BD=CE.
求证:∠ADE=∠AED
23.把一个等腰直角三角形和一个正三角形分别分割成3个三角形,使等腰直角三角形中的3 个小三角形和正三角形中的3 个小三角形分别相似请画出三角形的分割线,在小三角形的各个角上标出度数.
21.如图,一艘轮船在海上以每小时36海里的速度向正西方向航行,上午8时,在B 处测得小岛A 在北偏东300方向,之后轮船继续向正西方向航行,于上午9时到达C 处,这时测得小岛A 在北偏东600方向.如果轮船仍继续向正西方向航行,于上午11时到达D 处,这时轮船与小岛A
相距多远?
第一次对折 第二次对折 第三次对折
A C 正三角形 等腰直角三角形北 北 600
300 – =1
25.如图,AB 为⊙o 直径,过弦AC 的点C 作CF ⊥AB 于点D,交AE
(1) 求证:AC 2=AE •AF ;
(2) 当弦AC 绕点A 沿顺时针旋转(C 、F 不与A 、B 、E 重合)时,请画出 满足题意的其它的全部图形; (3) 猜想每个图形是否还有(1)中的结论,并就其中的一个图形证明你的猜想.
26.已知抛物线y=x 2+bx –a 2.
(1) 请你选定a 、b 适当的值,然后写出这条抛物线与坐标轴的三个交点,并画出过三个交点
的圆.
(2) 试讨论此抛物线与坐标轴交点分别是1个,2个,3个时,a 、b 的取值范围,并且求出交点
坐标.
27.如图:等边三角形ABC 的边长为1 ,P 为AB 边上的一个动点(不包括A 、B),过P 作PQ ⊥BC 于Q,过Q 作QR ⊥AC 于R,再过R 作RS ⊥AB 于S .设AP=x,AS=y.
(1) 求y 与x 之间的函数关系式,并写出自变量取值范围.
(2) 若SP=1/4,求AP 的长.
(3) 若S 、P 重合点为T ,试说明当P 、S 不重合时,P 、S 中的哪一个更接近T 点?将上述操
作,即按逆时针方向,过垂足作相邻边的垂线,若操作不断进行,试依据你的结论,猜想无论P 的初始位置如何,P 、S ……等这些点最终将会出现怎样的趋势?(只要直接写出
结果)
E。

相关文档
最新文档