一元二次函数分类练习题
中考数学提高题专题复习一元二次方程练习题附答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的方程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0.【解析】【分析】在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数.【详解】若存在n 满足题意.设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2, 由方程②得,(x+n-1)[x-2(n+1)]=0, ①若4n 2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍. ②若4n 2+3n+2=2(n+2),解得n=0或n=-14(舍), 综上所述,n=0.2.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1, ∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣13.发现思考:已知等腰三角形ABC 的两边分别是方程x 2﹣7x+10=0的两个根,求等腰三角形ABC 三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.涵涵的作业解:x 2﹣7x+10=0a=1 b=﹣7 c=10∵b 2﹣4ac=9>0∴2b b 4ac -±-732± ∴x 1=5,x 2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC 的两边是关于x 的方程x 2﹣mx+m 2﹣14=0的两个实数根. (1)当m=2时,求△ABC 的周长;(2)当△ABC 为等边三角形时,求m 的值.【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC 的周长为72;(2)当△ABC 为等边三角形时,m 的值为1.【解析】【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m )2﹣4(m 2﹣14)=m 2﹣2m+1,可求得m. 【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5. 错误原因:此时不能构成三角形.(1)当m=2时,方程为x 2﹣2x+34=0, ∴x 1=12,x 2=32.当12为腰时,12+12<32,∴12、12、32不能构成三角形;当32为腰时,等腰三角形的三边为32、32、12,此时周长为32+32+12=72.答:当m=2时,△ABC的周长为72.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.4.从图象来看,该函数是一个分段函数,当0≤x≤m时,是正比例函数,当x>m时是一次函数.【小题1】只需把x代入函数表达式,计算出y的值,若与表格中的水费相等,则知收取方案.5.解下列方程:(1)2x2-4x-1=0(配方法);(2)(x+1)2=6x+6.【答案】(1)x1=1x2=11=-1,x2=5.【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x2-2x=12,∴x2-2x+1=32.∴(x-1)2=32.∴x-1=.∴x 1=1+2,x 2=1-2. (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.∴x +1=0或x +1-6=0.∴x 1=-1,x 2=5.6.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .【解析】【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n.【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.7.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x 元(40≤x ≤60),每星期的销售量为y 箱.(1)求y 与x 之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y =-10x +780;(2) 57;(3)当售价为59元时,利润最大,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x 元,则多销售的数量为60-x, (2)解一元二次方程即可求解,(3)表示出最大利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x 元(40≤x≤60),则y=180+10(60-x )=-10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w ,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10<0,二次函数向下,函数有最大值,当x=59时, 利润最大,为3610元.【点睛】本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.8.关于x 的一元二次方程x 2﹣2x ﹣(n ﹣1)=0有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.【答案】(1)n >0;(2)x 1=0,x 2=2.【解析】【分析】(1)根据方程有两个不相等的实数根可知240b ac ∆=-> ,即可求出n 的取值范围; (2)根据题意得出n 的值,将其代入方程,即可求得答案.【详解】(1)根据题意知,[]224(2)41(1)0b ac n ∆=-=--⨯⨯-->解之得:0n >;(2)∵0n > 且n 为取值范围内的最小整数,∴1n =,则方程为220x x -=,即(2)0x x -=,解得120,2x x ==.【点睛】本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.9.已知关于x 的方程x 2-(m +2)x +(2m -1)=0。
一元二次函数经典例题及练习

一元二次函数经典例题及练习
一元二次函数是数学中重要的概念之一,掌握它的求解方法对
学生来说至关重要。
本文将为您提供一些经典的一元二次函数例题
及练,以帮助您更好地理解和掌握这个概念。
例题一:
已知一元二次函数 y = ax^2 + bx + c,且函数图像经过点(1, 3)和(-2, 0),求函数的表达式及顶点坐标。
解答:
首先,我们可以利用给定的点(1, 3)和(-2, 0)来列方程组
解函数的系数。
代入点(1, 3)得到 a + b + c = 3,代入点(-2, 0)
得到 4a - 2b + c = 0。
通过求解这个方程组,我们可以得到函数的表
达式。
其次,我们可以知道,顶点的 x 坐标可以通过 x = -b/2a 来求解。
将函数的表达式代入该公式,即可求得顶点的 x 坐标。
随后,将 x
坐标代入函数的表达式中,即可求得顶点的 y 坐标。
练一:
已知一元二次函数的函数表达式为 y = 2x^2 - 3x + 1,求该函数的顶点坐标和对称轴。
练二:
已知一元二次函数的顶点坐标为(-1, 4),且经过点(2, 5),求该函数的表达式。
练三:
已知一元二次函数的顶点坐标为(3, -2),且经过点(-1, 0),求该函数的表达式及对称轴。
通过解题和练,您能够逐步掌握一元二次函数的求解方法和相
关概念,加深对该主题的理解和熟练度。
希望这些例题及练习对您有帮助!。
初中数学二次函数一元二次方程练习题(附答案)

初中数学二次函数一元二次方程练习题 一、单选题1.如果方程()()23330m x m x --++=是关于x 的一元二次方程,那么m 不能取的值为( )A.3±B.3C.3-D.都不对2.下面关于x 的方程中①20ax bx c ++=;②223(9)(1)1x x --+=;③2150x x++=;④232560x x -+-=;⑤2233(2)x x =-;⑥12100x -=是一元二次方程的个数是( )A.1B.2C.3D.43.一元二次方程220x x -=的两根分别为1x 和2x ,则12x x 为( )A.2-B.1C.2D.04.下列函数解析式中,一定为二次函数的是( )A. 31y x =-B. 2y ax bx c =++C. 2221s t t =-+D. 21y x x=+5.已知(2)2m y x m x =+-+是关于x 的二次函数,那么m 的值为( ) A.2- B.2 C.2± D.06.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.7.在同一平面直角坐标系中,函数2y ax bx =-与y bx a =+的图象可能是( ) A. B. C. D.8.一种药品原价每盒25元,经过两次降价后每盒16元设两次降价的百分率都为x ,则x 满足()A.16(12)25x +=B.25(12)16x -=C.216(1)25x +=D.225(1)16x -=9.如图,二次函数2(0)y ax bx c a =++≠的图象与x 轴的交点坐标为(1,0)-和(3,0).给出下列结论:①0a >;②20a b +=;③0a b c ++>;④当13x -<<时,0y >.其中正确的个数为( )A.1B.2C.3D.4二、证明题10.如图,四边形ABCD 是平行四边形, E 、F 是对角线BD 上的点, 12∠=∠.1.求证: BE DF =;2.求证: //AF CE . 11.已知抛物线212y x bx c =++经过点3(10),0,2⎛⎫ ⎪⎝⎭, 1.求该抛物线的函数解析式;2.将抛物线212y x bx c =++平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的图象所对应的函数表达式。
中考数学专题复习分类练习 一元二次方程组综合解答题含答案解析

中考数学专题复习分类练习一元二次方程组综合解答题含答案解析一、一元二次方程1.解方程:(x+1)(x﹣3)=﹣1.【答案】x1=1+3,x2=1﹣3【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,解得:x1=1+3,x2=1﹣3.2.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.3. y与x的函数关系式为:y=1.7x(x≤m);或( x≥m) ;4.从图象来看,该函数是一个分段函数,当0≤x≤m时,是正比例函数,当x>m时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.5.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.6.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴∴x1x 2.7.已知1x 、2x 是关于x 的方程222(1)50x m x m -+++=的两个不相等的实数根.(1)求实数m 的取值范围;(2)已知等腰ABC ∆的一边长为7,若1x 、2x 恰好是ABC ∆另外两边长,求这个三角形的周长.【答案】(1)m>2; (2)17【解析】试题分析:(1)由根的判别式即可得;(2)由题意得出方程的另一根为7,将x =7代入求出x 的值,再根据三角形三边之间的关系判断即可得.试题解析:解:(1)由题意得△=4(m +1)2﹣4(m 2+5)=8m -16>0,解得:m >2; (2)由题意,∵x 1≠x 2时,∴只能取x 1=7或x 2=7,即7是方程的一个根,将x =7代入得:49﹣14(m +1)+m 2+5=0,解得:m =4或m =10.当m =4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17; 当m =10时,方程的另一个根为15,此时不能构成三角形;故三角形的周长为17.点睛:本题主要考查判别式、三角形三边之间的关系,熟练掌握韦达定理是解题的关键.8.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.(1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.【答案】(1)a ≤174;(2)x =1或x =2 【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b 2﹣4ac≥0,建立关于a 的不等式,即可求出a 的取值范围;(2)根据(1)确定出a 的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a ﹣2)≥0,解得a ≤174; (2)由(1)可知a ≤174, ∴a 的最大整数值为4,此时方程为x 2﹣3x +2=0,解得x =1或x =2. 【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x 米2, 根据题意得:4600022000x -﹣46000220001.5x-= 4 解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x 米,根据题意得,(20﹣3x )(8﹣2x )=56 解得:x=2或x=263(不合题意,舍去). 答:人行道的宽为2米.10.已知关于x 的方程(x-3)(x-2)-p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值.【答案】(1)详见解析;(2)p=±1.【解析】【分析】(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把2212123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,解方程即可求解.【详解】证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0,x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2,∵无论p 取何值时,总有4p 2≥0,∴1+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)x 1+x 2=5,x 1x 2=6﹣p 2,∵2212123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2,∴52=5(6﹣p 2),∴p=±1.考点:根的判别式;根与系数的关系.11.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法. 例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n 中黑点的个数分别是 、 .请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有 个圆圈;第n 个点阵中有 个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n 个;(1)61;3n 2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.12.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件:(1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m的值.【答案】(1)销售单价至少为35元;(2)m=16.【解析】试题分析:(1)根据利润的公式列出方程,再求解即可;(2)销售价为原销售价×(1﹣m%),销售量为(150+m),列出方程求解即可.试题解析:(1)设销售单价至少为x元,根据题意列方程得,150(x﹣20)=2250,解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m)=5670,150+m﹣150×m%﹣m%×m=162,m﹣m2=12,60m﹣3m2=192,m2﹣20m+64=0,m1=4,m2=16,∵要使销售量尽可能大,∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.13.已知关于x的方程x2﹣(2k+1)x+4(k﹣12)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?【答案】(1)详见解析;(2)k=32或2.【解析】【分析】(1)计算判别式的值,利用完全平方公式得到△=(2k﹣3)2≥0,然后根据判别式的意义得到结论;(2)利用求根公式解方程得到x1=2k﹣1,x2=2,再根据等腰三角形的性质得到2k﹣1=2或2k﹣1=3,然后分别解关于k的方程即可.【详解】(1)∵△=(2k+1)2﹣4×4(k﹣12)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)() 2k12k3 x=2±+﹣∴x1=2k﹣1,x2=2,∵a 、b 、c 为等腰三角形的三边,∴2k ﹣1=2或2k ﹣1=3,∴k =32或2. 【点睛】 本题考查了根的判别式以及等腰三角形的性质,分a 是等腰三角形的底和腰两种情况是解题的关键.14.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游?【答案】(1)2280;(2)15【解析】【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值.【详解】(1)2280()2因为1020020002625⨯=<.因此参加人比10人多,设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=.解得 15x = 225x =,∵2005150x -≥,∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游.【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.15.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.。
一元二次函数经典题目带答案附解析

一元二次函数经典题目带答案附解析一元二次函数经典题目及解析一、单选题(共7题;共14分)1.如图,已知二次函数 $y=ax^2+bx+c$ 的图象与 $x$ 轴分别交于 $A$、$B$ 两点,与 $y$ 轴交于 $C$ 点,$OA=OC$。
则由抛物线的特征写出如下结论()。
A。
$abc>0$。
B。
$4ac-b^2>0$。
C。
$a-b+c>0$。
D。
$ac+b+1=0$2.已知二次函数 $y=ax^2+bx+c$ ($a≠0$)的图象如图所示,则下列结论正确的是()。
A。
$abc0$。
D。
$2a+b=0$3.“学雷锋”活动月中,“XXX”班将组织学生开展志愿者活动,XXX和XXX从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()。
A。
$\frac{1}{3}$。
B。
$\frac{1}{9}$。
C。
$\frac{1}{6}$。
D。
$\frac{1}{2}$4.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球。
已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为()。
A。
27.B。
23.C。
22.D。
185.如图,平面直角坐标系中,点 $B$ 在第一象限,点$A$ 在 $x$ 轴的正半轴上,$\angle AOB=\angle B=30°$,$OA=2$,将 $\triangle AOB$ 绕点 $O$ 逆时针旋转90°,点$B$ 的对应点的坐标是()。
A。
$(\sqrt{3},-2)$。
B。
$(\sqrt{3},2)$。
C。
$(-\sqrt{3},2)$。
D。
$(-\sqrt{3},-2)$6.如图,一条公路的转弯处是一段圆弧 $(AB)$,点$O$ 是这段弧所在圆的圆心,$AB=40m$,点 $C$ 是 $AB$ 的中点,且 $CD=10m$,则这段弯路所在圆的半径为()。
一元二次函数练习题

二次函数基础题: 1、若函数y =1)1(++a x a 是二次函数,则=a 。
2、二次函数开口向上,过点(1,3),请你写出一个满足条件的函数 。
3、二次函数y =x 2+x-6的图象:1)与y 轴的交点坐标 ; 2)与x 轴的交点坐标 ;3)当x 取 时,y <0;4)当x 取 时,y >0。
5、函数y =x 2-k x+8的顶点在x 轴上,则k = 。
6、抛物线y=3-x 2①左平移2个单位,再向下平移4个单位,得到的解析式是 ,顶点坐标 。
②抛物线y=3-x 2向右移3个单位得解析式是7、如果点(1-,1)在y =2ax +2上,则=a 。
8、函数y=21-x 21- 对称轴是_______,顶点坐标是_______。
9、函数y=21-2)2(-x 对称轴是______,顶点坐标____,当 时y 随x 的增大而减少。
10、函数y =x 223+-x 的图象与x 轴的交点有 个,且交点坐标是 _。
11、①y =x 2(-1+x )2②y =21x③2+-=x y ④y=21-2)2(-x 二次函数有 个。
15、二次函数c x ax y ++=2过)1,1(-与(2,2-)求解析式。
13、把二次函数y=2x 26-x+4;1)配成y =a (x-h )2+k 的形式,(2)画出这个函数的图象;(3)写出它的开口方向、对称轴和顶点坐标. 二次函数中等题:1.当1x =时,二次函数23y x x c =-+的值是4,则c =.2.二次函数2y x c =+经过点(2,0),则当2x =-时,y = . 3.矩形周长为16cm ,它的一边长为x cm ,面积为y cm 2,则y 与x 之间函数关系式为 .4.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积增加y cm 2,则y 关于x 的函数解析式为 . 5.二次函数2y ax bx c=++的图象是 ,其开口方向由________来确定. 6.与抛物线223y x x =-++关于x轴对称的抛物线的解析式为 。
一元二次函数经典题目带答案还有解析

一元二次函数经典题目带答案一、单选题(共7题;共14分)1.如图,已知二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于C点,OA=OC则由抛物线的特征写出如下结论,错误的是()A. abc>0B. 4ac-b2>0C. a-b+c>0D. ac+b+1=0【答案】B【解析】【解答】解:①从图象中易知a>0,b<0,c<0,所以abc>0,故①正确;②由抛物线与x轴有两个不同的交点可知:b2-4ac>0, 所以4ac-b2<0 ,故②错误;③当x=-1时,y=a-b+c,由图象知(-1,a-b+c)在第二象限,∴a-b+c>0,故③正确;④设C(0,c),则OC=|c|,∵OA=OC=|c|,∴点A(c,0)将A(c,0)代入抛物线得ac2+bc+c=0,又c≠0,∴ac+b+1=0,故④正确;故答案为:B。
【分析】①、结合其图象的开口方向、与y轴的交点以及对称轴分别判断出a、b、c的正负,进而可判断出abc的正负性;②、由抛物线与x轴有两个不同的交点可知:b2-4ac>0,根据不等式的性质3即可得出4ac-b2<0 ,故②错误;③、令x=-1,代入解析式计算即可得到a-b+c>0 ,故③正确;④、可设C(0,c),又OA=OC,由此得出点A的坐标,代入二次函数解析式根据等式的性质即可得出ac+b+1=0,故④正确。
2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A. abc<0B. b2﹣4ac<0C. a﹣b+c<0D. 2a+b=0【答案】 D【解析】【解答】解:由图可知a>0,与y轴的交点c<0,对称轴x=1,∴b=﹣2a<0;∴abc>0,A不符合题意;由图象可知,函数与x轴有两个不同的交点,∴△>0,B不符合题意;当x=﹣1时,y>0,∴a﹣b+c>0,C不符合题意;∵b=﹣2a,D符合题意。
故答案为:D。
数学一元二次函数练习题(含答案)

中职数学一元二次函数专项练习填空题:1.一元二次函数的顶点坐标为____________,两个根分别为______,______,对称轴方程为_________________.2.已知一元二次函数的图象与轴的交点为(-2,0)(1,0),并且经过(2,4)点,则它的解析式为____________________.3.不等式<0的解集为__________________.选择题:4.函数的顶点的坐标是( ).(A)(2,-3) (B)(-2,3) (C)(-2,-3) (D)(2,3)5.函数的最小值是( ).(A)3 (B)4 (C)2 (D)-36.二次函数=2(+5)-2图象的顶点是( ).(A)(5,2) (B)(-5,-2) (C)(-5,2) (D)(5,-2)7.设函数=(-1<≤1),那么它是( ).(A)偶函数,不是奇函数(B)奇函数,不是偶函数(C)既是奇函数,又是偶函数(D)既不是奇函数,又不是偶函数解答题:8.求下列函数的定义域:(1);(2). 9.用配方法将函数化成的形式,并指出它的图象的开口方向、顶点坐标和对称轴方程及函数的最大(或最小)值.11.求下列函数图象顶点的坐标、函数的最大值或最小值:(1);(2).12.求函数=-2-3的图象与轴的交点与顶点的坐标.13.已知二次函数=-+4-3.(1)指出函数图象的开口方向;(2)当为何值时,=0;(3)求函数图象顶点的坐标和对称轴.14.当为何值时,函数的图象与轴不相交. 15.已知下列二次函数,分别求>0,<0时的取值范围:(1);(2).16.求下列函数的定义域:(1);(2). 17.当在什么范围内取值时,方程+2(-1)+3-11=0.(1)有实数根;(2)没有实数根.18.已知函数,(0)=-10,(1)=0,(-5)=0,求这个函数.19.已知函数,(3)=0,(-1)=0,(-2)=0,求这个函数.20.若一次函数满足[]=2+1,求.答案、提示和解答:1.(1,1);=0,=2;=1.2.=+-2.3.{|-1<<3}.4.C. 5.A. 6.B. 7.D.8.(1);(2)[-2,6].9.解:.∵,∴函数图象开口向下,顶点坐标为(-2,8),对称轴方程为=-2,函数的最大值为8. 10.(1)=2,=4;=,≈;=-,≈;(2)≈,(-≈;(3)=2时,=或=-,=时,=或=-;(4),;(5)略.11.(1)顶点坐标(2,-7),=-7;(2)顶点坐标(1,5),=5.12.与轴交点(-1,0),(3,0),顶点坐标(1,-4).13.(1)曲线开口向下;(2)=1,=3;(3)顶点坐标(2,1),对称轴=2.14.>.15.(1)当时,>0,当时,<0;(2)当时,<0,当时,>0. 16.(1);(2).17.(1)-3≤≤2;(2)<-3或>2.18..19..20.或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次函数分类复习题 【二次函数的定义】(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =(4,x) ; ⑧y=-5x 。
2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。
3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。
4、若函数y=(m -2)x m -2+5x+1是关于x 的二次函数,则m 的值为 。
6、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
7..函数245(5)21a a y a xx ++=-+-, 当a =_______时, 它是一次函数; 当a =_______时, 它是二次函数. 8.将121222--=x x y 变为n m x a y +-=2)(的形式,则n m ⋅=_____。
9,已知二次函数)1(3)1(2-++-=a a x x a y 的图象过原点则a 的值为【二次函数的对称轴、顶点、最值】---- ★★★二次函数的图像抛物线的时候应抓住以下五点:a,开口方向; b,对称轴; c,顶点; d,与x 轴的交点; e,与y 轴的交点 填空题a,开口方向问题:1,二次函数52-+=a ax y 的图象顶点在Y 轴负半轴上。
且函数值有最小值,则a 的取值范围是2,若抛物线22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( ) A.1a > B.1a < C.1a ≥ D.1a ≤b,对称轴问题:1,若二次函数k ax y +=2,当X 取X1和X2(21x x ≠)时函数值相等,则当X 取X1+X2时,函数值为2.抛物线y=(k-1)x 2+(2-2k)x+1,那么此抛物线的对称轴是直线_________,它必定经过________和____ 3.若二次函数3622+-=x x y 当X 取两个不同的值X1和X2时,函数值相等,则X1+X2= c,顶点:1.抛物线42++=ax x y 的顶点在X 轴上,则a 值为:_________.2.若函数k h x y ---=2)(的顶点在第二象限,则h 0 ,k 0 3.已知二次函数当x=2时Y 有最大值是1.且过(3.0)点求解析式?4.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( ) (A )8 (B )14 (C )8或14 (D )-8或-145.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( )(A )12 (B )11 (C )10 (D )96..若0<b ,则二次函数12-+=bx x y 的图象的顶点在 ( ) (A )第一象限(B )第二象限 (C )第三象限(D )第四象限7实数X,Y 满足0332=-++y x x 则X+Y 的最大值为 . d,与x 轴的交点:已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。
1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴6.已知抛物线y =x 2+(m -1)x -14的顶点的横坐标是2,则m 的值是_ .7.抛物线y=x 2+2x -3的对称轴是 。
8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。
9.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口________.10.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0. 11.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。
12.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。
13.抛物线5)43()1(22+--++=x m m x m y 以Y 轴为对称轴则。
M =14.抛物线y= (k 2-2)x 2+m-4kx 的对称轴是直线x=2,且它的最低点在直线y= -21+2上,求函数解析式。
【函数y=ax 2+bx+c 的图象和性质】1.抛物线y=x 2+4x+9的对称轴是 。
2.抛物线y=2x 2-12x+25的开口方向是 ,顶点坐标是 。
3.试写出一个开口方向向上,对称轴为直线x =-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。
4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)y=12 x 2-2x+1 ; (2)y=-3x 2+8x -2; (3)y=-14x 2+x -45.把抛物线y=x 2+bx+c 的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x 2-3x+5,试求b 、c 的值。
6.把抛物线y=-2x 2+4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。
7.某商场以每台2500元进口一批彩电。
如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?【函数y=a(x -h)2的图象与性质】1.填表:向标()223--=x y ()2321+=x y2.已知函数y=2x 2,y=2(x -4)2,和y=2(x+1)2。
(1)分别说出各个函数图象的开口方、对称轴和顶点坐标。
(2)分析分别通过怎样的平移。
可以由抛物线y=2x 2得到抛物线y=2(x -4)2和y=2(x+1)2?3.试写出抛物线y=3x 2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
(1)右移2个单位;(2)左移23 个单位;(3)先左移1个单位,再右移4个单位。
4.试说明函数y=12 (x -3)2 的图象特点及性质(开口、对称轴、顶点坐标、增减性、最值)。
5.二次函数y=a(x -h)2的图象如图:已知a=12 ,OA =OC ,试求该抛物线的解析式。
【二次函数的增减性】1.二次函数y=3x 2-6x+5,当x>1时,y 随x 的增大而 ;当x<1时,y随x 的增大而 ;当x=1时,函数有最 值是 。
2.已知函数y=4x 2-mx+5,当x> -2时,y 随x 的增大而增大;当x< -2时,y 随x 的增大而减少;则x =1时,y 的值为 。
3.已知二次函数y=x 2-(m+1)x+1,当x ≥1时,y 随x 的增大而增大,则m 的取值范围是 .4.已知二次函数y=-12 x 2+3x+52 的图象上有三点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)且3<x 1<x 2<x 3,则y 1,y 2,y 3的大小关系为 .5.抛物线2)13(-=x y 当x 时,Y 随X 的增大而增大.6.已知点11()x y ,,22()x y ,均在抛物线21y x =-上,下列说法中正确的是( )A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >7..若),41(),,45(),,413(321y C y B y A --为二次函数245y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .213y y y<< 8.右图是二次函数y 1=ax 2+bx+c 和一次函数y 2=mx+n 的 图像,•观察图像写出y 2≥y 1时,x 的取值范围_______.【二次函数图象的平移】向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2口诀:左加右减,上加下减。
(要在括号内进行)具体如下:1,将一般式函数y=ax 2+bx+c (a ≠0)右移m ,下移n 个单位,变成:y=a (x-m )2+b (x-m )+c-n 左移m 个单位,变成:y=a (x+m )2+b (x+m )+c-n 上述,如果上移n 个单位,则:y=a (x-m )2+b (x-m )+c+n 2,将顶点式y=a(x-h) 2+k (a ≠0)右移m ,下移n 个单位,变成: y=a(x-h-m) 2+k-n 左移m 个单位,变成: y=a(x-h+m) 2+k-n技法:只要两个函数的a 相同,就可以通过平移重合。
将二次函数一般式化为顶点式y=a(x -h)2+k ,平移规律:左加右减,对x ;上加下减,直接加减6.抛物线y= -32 x 2向左平移3个单位,再向下平移4个单位,所得到的抛物线的关系式为 。
7.抛物线y= 2x 2, ,可以得到y=2(x+4}2-3。
8.将抛物线y=x 2+1向左平移2个单位,再向下平移3个单位,所得到的抛物线的关系式为 。
9.如果将抛物线y=2x 2-1的图象向右平移3个单位,所得到的抛物线的关系式为 。
10.将抛物线y=ax 2+bx+c 向上平移1个单位,再向右平移1个单位,得到y=2x 2-4x -1则a = ,b = ,c = .11.将抛物线y =ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为 _.12.抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2【函数图象与坐标轴的交点】11.抛物线y=x 2+7x+3与直线y=2x+9的交点坐标为 。