二次函数大题分类题型
专题1.3 二次函数的图象与性质(二)【八大题型】(举一反三)(浙教版)(解析版)

专题1.3 二次函数的图象与性质(二)【八大题型】【浙教版】【题型1 利用二次函数的图象与性质比较函数值的大小】 (1)【题型2 利用二次函数的图象特征求参数的值或取值范围】 (4)【题型3 根据规定范围内二次函数函数的最值求参数的值】 (6)【题型4 根据规定范围内二次函数函数的最值求参数取值范围】 (9)【题型5 根据二次函数的性质求最值】 (11)【题型6 二次函数的对称性的运用】 (13)【题型7 二次函数的图象与一次函数图象共存问题】 (16)【题型8 利用二次函数的图象与系数的关系判断结论】 (19)【题型1利用二次函数的图象与性质比较函数值的大小】【例1】(2023春·天津滨海新·九年级校考期中)已知点A(−2,y1),B(1,y2),C(5,y3)在二次函数y=−3x2+k 的图象上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y2【答案】C【分析】根据题意可得二次函数y=−3x2+k的图象的对称轴为y轴,从而得到点A(−2,y1)关于对称轴的对称点为(2,y1),再由当x>0时,y随x的增大而减小,即可求解.【详解】解:∵二次函数y=−3x2+k的图象的对称轴为y轴,∴点A(−2,y1)关于对称轴的对称点为(2,y1),∵−3<0,∴当x>0时,y随x的增大而减小,∵1<2<5,∴y3<y1<y2.故选:C【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.【变式1-1】(2023春·九年级单元测试)若点C(x1,m)、D(x2,n)在抛物线y=−2(x−3)2的图象上,且x1>x2 >3,则m与n的大小关系为______.【答案】m<n【分析】根据二次函数解析式,求得二次函数的对称轴,开口方向,再根据二次函数的性质求解即可.【详解】解:由抛物线y=−2(x−3)2可得,a<0,开口向下,对称轴为x=3,∴当x>3时,y随x的增大而减小,又∵x1>x2>3,∴m<n故答案为:m<n【点睛】此题考查了二次函数的图象与性质,解题的关键是熟练掌握二次函数的有关性质.【变式1-2】(2023春·福建漳州·九年级统考期末)已知点(x1,y1),(x2,y2),(x3,y3)都在二次函数y=ax2−2ax−3a(a≠0)的图像上,若−1<x1<0,1<x2<2,x3>3,则下列关于y1,y2,y3三者的大小关系判断一定正确的是()A.y1可能最大,不可能最小B.y3可能最大,也可能最小C.y3可能最大,不可能最小D.y2不可能最大,可能最小【答案】B【分析】求出函数图像的对称轴,与x轴的交点,分a>0和a<0两种情况,根据已知三点与对称轴的距离,结合开口方向分析即可.【详解】解:在y=ax2−2ax−3a(a≠0)中,=1,对称轴为直线x=−−2a2a令ax2−2ax−3a=0,解得:x1=−1,x2=3,∴函数图像与x轴交于(−1,0),(3,0),∵−1<x1<0,1<x2<2,x3>3,∴(x3,y3)离对称轴最远,(x2,y2)离对称轴最近,当a>0时,开口向上,∴y3>y1>y2;当a<0时,开口向下,∴y3<y1<y2;∴y2和y3可能最大,也可能最小,故选B.【点睛】本题考查了二次函数的图像与性质,解题的关键是根据表达式求出对称轴和与x轴交点,利用性质进行分析.【变式1-3】(2023·浙江温州·校考三模)已知二次函数y =x 2−2x 的图象过A (a,y 1),B (2a,y 2)两点,下列选项正确的是( )A .若a <0,则y 1>y 2B .若0<a <23,则y 1<y 2C .若23<a <1,则y 1<y 2D .若a >1,则y 1>y 2【答案】C【分析】根据根据二次函数的解析式得到对称轴为直线x =1,再利用二次函数的性质对各项判断即可解答.【详解】解:∵二次函数y =x 2−2x 的图象过A (a,y 1),B (2a,y 2)两点,∴二次函数的顶点式为:y =x 2−2x =(x−1)2−1,∴当x <1时,y 随x 的增大而减小,当x >1时,y 随x 的增大而增大;∵a <0,∴2a <0,∴a >2a ,∴y 1<y 2,故A 错误;∵二次函数的顶点式为:y =x 2−2x =(x−1)2−1,∴抛物线的对称轴为直线x =1,若a 2a 2=1,∴解得:a =23,∴当a =23时,a 和2a 关于x =1对称,∴当0<a <23时,y 1>y 2;当23<a <1时,y 1<y 2,故B 错误,C 正确;当a >1时,y 随x 的增大而增大,∵a <2a ,∴y 1<y 2,故D 错误;故选C.【点睛】本题考查了二次函数的性质,二次函数的对称轴,掌握二次函数的性质是解题的关键.【题型2利用二次函数的图象特征求参数的值或取值范围】【例2】(2023·江苏苏州·模拟预测)若二次函数y=x2−2x−3的图象上有且只有三个点到x轴的距离等于m,则m的值为___________.【答案】4【分析】由抛物线解析式可得抛物线对称轴为直线x=1,顶点为(1,−4),由图象上恰好只有三个点到x轴的距离为m可得m=4.【详解】解:∵y=x2−2x−3=(x−1)2−4,∴抛物线开口向上,抛物线对称轴为直线x=1,顶点为(1,−4),∴顶点到x轴的距离为4,∵函数图象有三个点到x轴的距离为m,∴m=4,故答案为:4.【点睛】本题考查了二次函数图象上点的坐标特征,能够理解题意,掌握求二次函数对称轴和顶点坐标的方法是解题的关键.【变式2-1】(2023·江苏南通·统考二模)若抛物线y=−x2+4x−n的顶点在x轴的下方,则实数n的取值范围是______.【答案】n>4【分析】先将抛物线解析式化为顶点式,再利用顶点在x轴下方,即可求出n的范围.【详解】解:y=−x2+4x−n,化为顶点式为:y=−(x−2)2+4−n,∵4−n<0,∴n>4,故答案为:n>4.【点睛】本题考查了抛物线的顶点式解析式,解题关键是理解当顶点纵坐标小于0时,顶点位于x轴下方.【变式2-2】(2023·黑龙江大庆·大庆一中校考模拟预测)二次函数y=kx2−x−4k(k为常数且k≠0)的图象始终经过第二象限内的定点A.设点A的纵坐标为m,若该函数图象与y=m在1<x<3内没有交点,则k 的取值范围是______.【答案】0<k<1或−1<k<0【分析】先计算二次函数过两个定点,确定m=2,根据函数图象与y=m在1<x<3内没有交点,分k>0和k<0两种情况列不等式即可解答.【详解】解:∵y=kx2−x−4k=k(x2−4)−x,∴x2−4=0,∴x=±2,当x=2时,y=−2,当x=−2时,y=2,∴二次函数y=kx2−x−4k(k为常数且k≠0)的图象始终经过定点−2,2,2,−2,∴m=2,∵函数y=kx2−x−4k的图象与y=2在1<x<3内没有交点,∴分两种情况:①当k>0时,x=3时,y<2,即9k−3−4k<2,∴k<1,∴0<k<1,②当k<0时,当x=1时,y<2,即k−1−4k<2,∴k>−1,∴−1<k<0,综上所述,k的取值范围是0<k<1或−1<k<0,故答案为:0<k<1或−1<k<0.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是理解题意,计算定点A的坐标.【变式2-3】(2023·陕西西安·陕西师大附中校考模拟预测)如图,抛物线y=ax2+bx+c的图象过点(−1,0)和(0,−1),则a+b+c的取值范围是()A .−2<a +b +c <0B .−2<a +b +c <−1C .−32<a +b +c <0D .−32<a +b +c <−1【答案】A【分析】由函数图象的开口方向可知a >0,由抛物线与y 轴的交点判断c 的值,当x =1时,二次函数的值小于零,由此可求出a 的取值范围,将a +b +c 用a 表示即可得出答案.【详解】由图象开口向上,可得a >0,∵图象过点(0,−1),∴c =−1,∵图象过点(−1,0),∴a−b−1=0,∴b =a−1,∵对称轴在y 轴的右侧,∴当x =1时,y =a +b +c =a +a−1−1=2a−2<0,∴a <1,∴0<a <1,∴−2<2a−2<0,即−2<a +b +c <0,故选:A .【点睛】本题考查了二次函数图象和性质,二次函表达式系数符号的确定,熟练掌握知识点是解题的关键.【题型3 根据规定范围内二次函数函数的最值求参数的值】【例3】(2023春·九年级单元测试)二次函数y =ax 2−4x +1有最小值−3,则 a 的值为( )A .1B .−1C .±1D .2【答案】A【分析】把二次函数y =ax 2−4x +1变成顶点式,根据二次函数的图象性质,得出结论.【详解】∵y=ax2−4x+1∴y=ax2−4x+1=ax−−4a+1∵二次函数y=ax2−4x+1有最小值−3,∴a>0−4a+1=−3∴a=1故选:A【点睛】本题主要考查了二次函数图象的性质,把二次函数的一般式变成顶点式,求二次函数的最值,熟练掌握二次函数图象的相关性质是解本题的关键.【变式3-1】(2023春·浙江·九年级校联考期中)已知函数y=−x2+bx−3(b为常数)的图象经过点(−6,−3).当m≤x≤0时,若y的最大值与最小值之和为2,则m的值为()A.−2或−3+B.−2或−4C.−2或D.【答案】C【分析】将点(−6,−3)代入y=−x2+bx−3即可求得b的值,进而求得抛物线的最大值,结合二次函数图象的性质,分类讨论得出m的取值范围即可.【详解】把(−6,−3)代入y=−x2+bx−3,得b=−6,∴y=−x2−6x−3,∵y=−x2−6x−3=−(x+3)2+6∴当x=−3时,y有最大值为6;①当−3<x≤0时,当x=0时,y有最小值为−3,当x=m时,y有最大值为y=−m2−6m−3∵y的最大值与最小值之和为2,∴−m2−6m−3+(−3)=2,∴m=−2或m=−4(舍去)。
二次函数九大题型

二次函数九大题型1. 函数的定义二次函数是指形如y=ax2+bx+c的函数,其中a,b,c是常数且a≠0。
它是一个二次多项式,其自变量x的最高次数为2。
二次函数通常用来描述曲线和抛物线的形状。
2. 九大题型2.1 基本形式基本形式的二次函数是y=ax2,其中a是常数。
这种形式的二次函数图像是一个开口朝上或朝下的抛物线,关于 y 轴对称。
2.2 平移变换平移变换是通过改变二次函数的参数来改变其图像在坐标平面上的位置。
具体地说,对于二次函数y=ax2+bx+c,平移变换可以通过调整参数 b 和 c 来实现。
•当 b > 0 时,图像向左平移;•当 b < 0 时,图像向右平移;•当 c > 0 时,图像向上平移;•当 c < 0 时,图像向下平移。
2.3 翻转变换翻转变换是通过改变二次函数的参数来改变其图像在坐标平面上的方向。
具体地说,对于二次函数y=ax2+bx+c,翻转变换可以通过调整参数 a 来实现。
•当 a > 0 时,图像开口朝上;•当 a < 0 时,图像开口朝下。
2.4 缩放变换缩放变换是通过改变二次函数的参数来改变其图像在坐标平面上的大小。
具体地说,对于二次函数y=ax2+bx+c,缩放变换可以通过调整参数 a 的绝对值来实现。
•当 |a| > 1 时,图像纵向压缩;•当 |a| < 1 时,图像纵向拉伸。
2.5 对称轴和顶点对称轴是指二次函数图像的中心轴线,它与抛物线的开口方向垂直。
对称轴的方程。
顶点是抛物线的最低点可以通过求解二次函数的一阶导数为零得到:x=−b2a(当 a > 0)或最高点(当 a < 0),它位于对称轴上。
2.6 零点和交点零点是指二次函数图像与 x 轴相交的点。
求解零点可以将二次函数设置为零并解方程得到:ax2+bx+c=0。
交点是指二次函数图像与其他直线或曲线相交的点。
2.7 极值和最值极值是指二次函数图像的最高点(当 a > 0)或最低点(当 a < 0)。
二次函数大题分类练习

二次函数大题分类练习一、简单求解析式题1、已知二次函数y=ax2+bx+c的图象如图所示,求这个二次函数的解析式.2、如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值.3、已知如图,二次函数y=ax2+bx+c的图象过A、B、C三点(1)观察图象写出A、B、C三点的坐标;(2)求出二次函数的解析式.4、(太原)已知二次函数y=ax2+bx+c的部分对应值如下表,求这个函数的解析式,并写出其图象的顶点坐标和对称轴.二、先求点再求解析式类5、已知二次函数y=ax 2+bx+c 的图象经过点(1,0),(﹣5,0),顶点的纵坐标为92,求这个二次函数的解析式. (注意隐含条件)6、如图,二次函数y=ax 2+bx ﹣2的图象与正比例函数y=﹣2x 的图象相交于A 、B 两点,与y 轴相交于点C ,已知AC ∥x 轴,OB=2OA .求:(1)点A 的坐标;(2)二次函数的解析式.7、如图,已知平行四边形ABOC 的顶点A 、B 、C 在二次函数y=ax 2+bx+c 的图象上,又点A 、B 分别在y 轴和x 轴上,∠ABO=45°.图象顶点的横坐标为2,求二次函数解析式.(经典题).8、已知:如图,点A (﹣2,﹣6)在反比例函数的图象上,如果点B 也在此反比例函数图象上,直线AB 与y 轴相交于点C ,且BC=2AC .(1)求点B 的坐标;(有几种情况呢?)(2)如果二次函数y=ax 2+bx ﹣9的图象经过A 、B 两点,求此二次函数的解析式.(必须算完)9、(江苏)如图,已知二次函数y=x2﹣2x﹣1的图象的顶点为A.二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2﹣2x﹣1的图象的对称轴上.(1)求点A与点C的坐标;(2)当四边形AOBC为菱形时,求函数y=ax2+bx的关系式.10、如图,已知二次函数y=ax2+bx+c的图象经过点A、点B(﹣1,0)和点C(5,0),且∠ABO=60度.(1)该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点D在该函数图象上,且与点A这两点关于抛物线的对称轴对称,写出点D坐标和四边形ABCD的形状.11、已知二次函数y=ax2+bx﹣1的图象经过点(2,﹣1),且这个函数有最小值﹣3,求这个函数的关系式.(有隐含条件,要注意挖掘哦)三、二次函数图像范围问题12、已知二次函数y=ax2+bx+c的图象如图:①对称轴方程是:;②点A(x1,y1),B(x2,y2)是图象上的两个点,且x1<x2<1,则y1y2③求函数解析式.13、如图,二次函数y=ax2+bx+c的图象过A、B、C三点.(1)求出抛物线解析式和顶点坐标;(2)当﹣2<x<2时,求函数值y的范围;(3)根据图象回答,当x取何值时,y>0?14、已知二次函数y=ax2+bx+c(a≠0)的图象如图;(1)求此函数的解析式;(2)用配方法求抛物线的顶点坐标;(3)根据图象回答,当x为何值时,y>0,当X为何值时,y<0.15、二次函数y=ax2+bx+c的部分对应值如下表:(1)二次函数图象所对应的顶点坐标为;(2)当x=4时,y=;(3)由二次函数的图象可知,当函数值y<0时,x的取值范围是.16、如图,二次函数y1=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B(1,0),交y轴点C,C、D是二次函数图象上的一对对称点,一次函数y2=mx+n的图象经过B、D两点.(1)求二次函数的解析式及点D的坐标;(2)根据图象写出y2>y1时,x的取值范围.17、二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:当k时,方程ax2+bx+c=k有两个不相等的实数根.四、二次函数大题18、如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(3,0)、B(2,3),C(0,3).(1)求这个二次函数的解析式;(2)连接AB、AC、BC,求△ABC的面积;(3)求tan∠BAC的值.(考察计算,必须算完)19、如图,二次函数y=ax2+bx的图象与一次函数y=x+2的图象交于A、B两点,点A的横坐标是﹣1,点B的横坐标是2.(1)求二次函数的表达式;(2)设点C在二次函数图象的OB段上,求四边形OABC面积的最大值.(经典题型)20(杭州)二次函数y=ax 2+bx+c 的图象的一部分如图,已知它的顶点M 在第二象限,且经过点A (1,0)和点B (0,1).(1)请判断实数a 的取值范围,并说明理由;(2)设此二次函数的图象与x 轴的另一个交点为C ,当△AMC 的面积为△ABC 面积的54倍时,求a 的值.(难点计算,必须算完哦)21、(荆门)如图,二次函数y=x 2经过三点A 、B 、O ,其中O 为坐标原点.点A 的坐标为(1,1),∠BAO=90°,AB 交y 轴于点C .(压轴题,认真做哦,不太难哦)(1)求点C 、点B 坐标;(2)若二次函数y=ax 2+bx+c (a≠0)的图象经过A 、B 两点,且对称轴经过Rt △BAO 的外接圆圆心,求该二次函数解析式;(3)若二次函数y=ax 2+bx+c (a >0)的图象经过A 、B 两点,且与x 轴有两个不同的交点,试求出满足此条件的一个二次函数的解析式.。
二次函数(十二大题型综合归纳 )(学生版)--新九年级数学

二次函数(十二大题型综合归纳)题型1:二次函数的概念1以下函数式二次函数的是()A.y=ax2+bx+cB.y=2x-12-4x2C.y=ax2+bx+c a≠0D.y=x-1x-22二次函数y=2x x−3的二次项系数与一次项系数的和为()A.2B.-2C.-1D.-4题型2:二次函数的值3已知二次函数y=x2+2x-5,当x=3时,y=.4已知二次函数y=ax2+2c,当x=2时,函数值等于8,则下列关于a,c的关系式中,正确的是()A.a+2c=8B.2a+c=4C.a-2c=8D.2a-c=45二次函数y=ax2+bx-3a≠0的图象经过点2,-2,则代数式2a+b的值为.题型3:二次函数的条件6已知y=mx m-2+2mx+1是y关于x的二次函数,则m的值为()A.0B.1C.4D.0或47关于x的函数y=a-bx2+1是二次函数的条件是()A.a≠bB.a=bC.b=0D.a=0题型4:列二次函数关系式8已知有n个球队参加比赛,每两队之间进行一场比赛,比赛的场次数为m,则m关于n的函数解析式为.题型5:特殊二次函数的图像和性质9关于二次函数y =-34x 2-1的图像,下列说法错误的是()A.抛物线开口向下B.对称轴为直线x =0C.顶点坐标为0,-1D.当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大10抛物线y =34x 2与抛物线y =-34x 2+3的相同点是()A.顶点相同B.对称轴不相同C.开口方向一样D.顶点都在y 轴上11如果二次函数y =ax 2+m 的值恒大于0,那么必有()A.a >0,m 取任意实数B.a >0,m >0C.a <0,m >0D.a ,m 均可取任意实数12对于二次函数y =-3(x -2)2的图象,下列说法正确的是()A.开口向上B.对称轴是直线x =-2C.当x >-2时,y 随x 的增大而减小D.顶点坐标为2,013二次函数:①y =-13x 2+1;②y =12(x +1)2-2;③y =-12(x +1)2+2;④y =12x 2;⑤y =-12(x -1)2;⑥y =12(x -1)2.(1)以上二次函数的图象的对称轴为直线x =-1的是(只填序号);(2)以上二次函数有最大值的是(只填序号)﹔(3)以上二次函数的图象中关于x 轴对称的是(只填序号).14设函数y 1=x -a 12,y 2=x -a 22,y 3=x -a 3 2.直线x =b 的图象与函数y 1,y 2,y 3的图象分别交于点A b ,c 1,B b ,c 2 ,C b ,c 3,()A.若b <a 1<a 2<a 3,则c 2<c 3<c1B.若a 1<b <a 2<a 3,则c 1<c 2<c 3C.若a 1<a 2<b <a 3,则c 3<c 2<c 1 D.若a 1<a 2<a 3<b ,则c 3<c 2<c 115已知二次函数y =(x -m )2,当x ≤1时,y 随x 的增大而减小,则m 的取值范围是.16已知关于x 的一元二次方程x 2-(2m +1)x +m 2-1=0有实数根a ,b ,则代数式a 2-ab +b 2的最小值为.题型6:与特殊二次函数有关的几何知识17在平面直角坐标系中,点A是抛物线y=a x-42+k与y轴的交点,点B是这条抛物线上的另一点,且AB⎳x轴,则以AB为边的等边三角形ABC的周长为.18在平面直角坐标系内有线段PQ,已知P(3,1)、Q(9,1),若抛物线y=(x-a)2与线段PQ有交点,则a的取值范围是.19二次函数y=-x+3的图象上任意二点连线不与x轴平行,则t的取值范围2+h t≤x≤t+2为.题型7:二次函数y=ax2+bx+c的图像和性质20下列抛物线中,与抛物线y=x2-2x+8具有相同对称轴的是()A.y=4x2+2x+4B.y=x2-4xC.y=2x2-x+4D.y=-2x2+4x21若抛物线y=x2+ax+1的顶点在y轴上,则a的值为()A.2B.1C.0D.-222抛物线y=x-1x+5图象的开口方向是(填“向上”或“向下”).23当二次函数y=ax2+bx+c有最大值时,a可能是()A.1B.2C.-2D.324已知抛物线y=x2-2bx+b2-2b+1(b为常数)的顶点不在抛物线y=x2+c(c为常数)上,则c应满足()A.c≤2B.c<2C.c≥2D.c>225已知二次函数y=x2-2mx+m的图象经过A1,y1,B5,y2两个点,下列选项正确的是()A.若m<1,则y1>y2B.若1<m<3,则y1<y2C.若1<m<5,则y1>y2D.若m>5,则y1<y2题型8:二次函数y=ax2+bx+c的最值与求参数范围问题26已知直线y=2x+t与抛物线y=ax2+bx+c a≠0,且点B、B m,n有两个不同的交点A3,5是抛物线的顶点,当-2≤a≤2时,m的取值范围是.27已知抛物线y=x2+bx+c经过点(1,-2),(-2,13).(1)求抛物线解析式及对称轴.(2)关于该函数在0≤x<m的取值范围内,有最小值-3,有最大值1,求m的取值范围.28已知二次函数y=mx2-4m2x-3(m为常数,m>0).(1)若点(-2,9)在该二次函数的图象上.①求m的值:②当0≤x≤a时,该二次函数值y取得的最大值为18,求a的值;(2)若点P(x,y)是该函数图象上一点,当0≤x p≤4时,y p≤-3,求m的取值范围.题型9:根据二次函数y=ax2+bx+c的图像判断有关信息29函数y=ax2+bx+c a≠0与y=kx的图象如图所示,现有以下结论:①c=3;②k=3;③3b+c+6=0;④当1<x<3时,x2+b-1x+c<0.其中正确的为.(填写序号即可)30如图,已知二次函数y=ax2+bx+c a≠0的图象与x轴交于点A-1,0,与y轴的交点在0,-2和0,-1之间(不包括这两点),对称轴为直线x=1,下列结论:①4a+2b+c>0;②4ac-b2<8a;③13<a<23;④b>c;⑤直线y=k i(k i>0,i=1,2,3,⋯,2023)与抛物线所有交点的横坐标之和为4046;其中正确结论的个数有()A.2个B.3个C.4个D.5个题型10:二次函数的应用31如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m ,两侧距地面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个门洞内部顶端离地面的距离为()A.7.5B.8C.649D.64732某炮兵部队实弹演习发射一枚炮弹,经x 秒后的高度为y 米,且时间x 与高度y 的关系为y =ax 2+bx .若此炮弹在第5秒与第16秒时的高度相等,则在下列哪一个时间段炮弹的高度达到最高.()A.第8秒B.第10秒C.第12秒D.第15秒33在2023年中考体育考试前,小康对自己某次实心球的训练录像进行了分析,发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y (单位:米)与飞行的水平距离x (单位:米)之间具有函数关系y =-116x 2+58x +32,则小康这次实心球训练的成绩为()A.14米B.12米C.11米D.10米34某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m ).有下列结论:①AB =30m ;②池底所在抛物线的解析式为y =145x 2-5;③池塘最深处到水面CD 的距离为3.2m ;④若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离变为1.2m .其中结论错误的是()A.①B.②C.③D.④35某建筑工程队借助一段废弃的墙体CD,CD长为18米,用76米长的铁栅栏围成两个相连的长方形仓库,为了方便取物,在两个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门,现有如下两份图纸(图纸1点A在线段DC的延长线上,图纸2点A在线段DC上),设AB =x米,图纸1,图纸2的仓库总面积分别为y1平方米,y2平方米.(1)分别写出y1,y2与x的函数关系式;(2)小红说:“y1的最大值为384.y2的最大值为507.”你同意吗?请说明理由.题型11:二次函数的解答证明题36已知二次函数y=-x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标.②当-1≤x≤3时,求y的取值范围.(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.37如图,已知二次函数y=-12x2+bx+c的图象与x轴交于A1,0,B,与y轴交于点C0,-52.CD∥x轴交抛物线于点D.(1)求b,c的值.(2)已知点E在抛物线上且位于x轴上方,过E作y轴的平行线分别交AB,CD于点F,G,且GE= 2GD,求点E的坐标.38在直角坐标系中,设函数y=ax2+bx+c(a,b,c是常数,a≠0).(1)已知a=1.①若函数的图象经过0,3和-1,0两点,求函数的表达式;②若将函数图象向下平移两个单位后与x轴恰好有一个交点,求b+c的最小值.(2)若函数图象经过-2,m,-3,n和x0,c,且c<n<m,求x0的取值范围.题型12:二次函数压轴题39在平面直角坐标系中,抛物线y=-x2-4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为-5,0.(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求三角形ACP面积的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。
专题5.4 求二次函数解析式常考类型(六大题型)(原卷版)

专题5.4 求二次函数解析式常考类型(六大题型)【题型1 开放型】【题型2 一般式】【题型3 顶点式】【题型4两根式】【题型5平移变换型】【题型6 对称变换型】【题型1 开放型】【典例1】(2023秋•海淀区期中)写出一个顶点在坐标原点,开口向下的抛物线的表达式.【变式1-1】(2023秋•昌平区期中)请写出一个开口向下,对称轴为直线x=3的抛物线的解析式.【变式1-2】(2022秋•伊川县期末)请写出一个开口向上,并且与y轴交于点(0,2)的抛物线的表达式:.【变式1-3】(2023•苏州二模)已知抛物线顶点坐标为(2,3),则抛物线的解析式可能为()A.y=﹣(x+2)2﹣3B.y=﹣(x﹣2)2﹣3C.y=﹣(x+2)2+3D.y=﹣(x﹣2)2+3【题型2 一般式】【方法点拨】当题目给出函数图像上的三个点时,设为一般式2=++(a,y ax bx ca≠),转化成一个三元一次方程组,以求得a,b,c的值;b,c为常数,0【典例2】(2023•宁波)如图,已知二次函数y=x2+bx+c图象经过点A(1,﹣2)和B(0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤﹣2时,请根据图象直接写出x的取值范围.【变式2-1】(2022秋•新罗区校级月考)求经过A(﹣1,﹣5)、B(0,﹣4)、C(1,1)三点的抛物线的表达式?【变式2-2】(2023春•海淀区校级期末)已知抛物线y=2x2+bx+c过点(1,3)和(﹣1,5),求该抛物线的解析式.【变式2-3】(2023秋•崆峒区校级月考)已知二次函数过点A(﹣1,2),B(1,﹣4),C(0,3)三点,求这个二次函数的解析式.【变式2-4】(2023秋•博乐市月考)已知抛物线y=﹣x2+bx+c经过A(﹣1,0),B(5,0)两点,顶点为P.(1)求抛物线的解析式;(2)求△ABP的面积.【方法点拨】若已知抛物线的顶点或对称轴、最值,则设为顶点式()k-=2.这顶点坐标为(h,k),对称轴直线x = h,最值为当x = h y+axh时,y最值=k来求出相应的系数.【典例3】(2023秋•龙马潭区月考)若抛物线的顶点坐标是A(﹣1,﹣3),并且抛物线经过点B坐标为(1,﹣1).(1)求出该抛物线的关系式;(2)当x满足什么条件时,y随x的增大而增大.【变式3-1】(2023秋•临潼区月考)已知二次函数的图象顶点为P(﹣2,2),且过点A(0,﹣2).(1)求该抛物线的解析式;(2)试判断点B(1,﹣6)是否在此函数图象上.【变式3-2】(2023秋•越秀区校级月考)已知二次函数图象的顶点坐标为A(2,﹣3),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(3,﹣4)、D(1,0)是否在该函数图象上,并说明理由.【方法点拨】已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.【典例4】(2023•荔湾区校级一模)如图,二次函数y =ax 2+bx +c 经过点A (﹣1,0),B (5,0),C (0,﹣5),点D 是抛物线的顶点,过D 作x 轴垂线交直线BC 于E .(1)求此二次函数解析式及点D 坐标.(2)连接CD ,求三角形CDE 的面积.(3)ax 2+bx +c >0时,x 的取值范围是 .【变式4-1】(2023秋•广西月考)若二次函数的图象经过(﹣1,0),(3,0),(0,3)三点,求这个二次函数的解析式.【变式4-2】(2023秋•长沙月考)已知二次函数y =ax 2+bx +c 的图象经过点A (0,﹣3)、(1,0)和C (﹣3,0).求此二次函数的解析式.【变式4-3】(2023•南山区三模)如图,抛物线y=ax2+bx+c经过点A(﹣1,0),点B(3,0),且OB=OC.(1)求抛物线的表达式;(2)如图,点D是抛物线的顶点,求△BCD的面积.【题型5平移变换型】【方法点拨】将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a( x – h)2 + k,当图像向左(右)平移n个单位时,就在x – h上加上(减去)n;当图像向上(下)平移m个单位时,就在k上加上(减去)m.其平移的规律是:h值正、负,右、左移;k值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a得值不变.【典例5】将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,求平移后的抛物线解析式.【变式5-1】(2022秋•洪山区期中)将二次函数y=(x﹣1)2﹣4的图象沿直线y=1翻折,所得图象的函数表达式为()A.y=﹣(x﹣1)2+4B.y=(x+1)2﹣4C.y=﹣(x+1)2﹣6D.y=﹣(x﹣1)2+6【变式5-2】(秋•普陀区校级期中)将抛物线y=2x2先向下平移3个单位,再向右平移m(m>0)个单位,所得新抛物线经过点(1,5),求新抛物线的表达式及新抛物线与y轴交点的坐标.【变式5-3】已知a+b+c=0且a≠0,把抛物线y=ax2+bx+c向下平移一个单位长度,再向左平移5个单位长度所得到的新抛物线的顶点是(﹣2,0),求原抛物线的表达式.【变式5-4】抛物线y=x2+2x﹣3与x轴正半轴交于A点,M(﹣2,m)在抛物线上,AM交y轴于D点,抛物线沿射线AD方向平移√2个单位,求平移后的解析式.【题型6 对称变换型】【方法点拨】根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.【典例6-1】(2022秋•上城区月考)已知y=﹣3(x﹣2)2﹣7将它的图象沿着x轴对折后的函数表达式是.【典例6-2】(2022秋•汉阳区校级月考)抛物线y=x2﹣6x+7绕其顶点旋转180°后得到抛物线y=ax2+bx+c,则a=,b=,c=.【变式6-1】(2022秋•萧山区月考)抛物线y=(x+3)2﹣4关于y轴对称的抛物线解析式为.【变式6-2】(2022秋•汉川市月考)若抛物线y=ax2+c与y=﹣4x2+3关于x轴对称,则a+c=.【变式6-3】(2021秋•镇海区期末)把二次函数y=(x﹣1)2+2的图象关于y 轴对称后得到的图象的函数关系式为.【变式6-4】(2021秋•闽侯县期中)二次函数y=2(x﹣3)2+1图象绕原点旋转180°得新图象的解析式为.【变式6-5】(2023•雁塔区校级三模)已知抛物线L:y=x2+bx+c经过点A(﹣2,0),点B(4,﹣6).抛物线L′与L关于x轴对称,点B在L'上的对应点为B′.(1)求抛物线L的表达式;(2)抛物线L'的对称轴上是否存在点P,使得△AB′P是以AB′为直角边的直角三角形?若存在,求点P的坐标;若不存在,请说明理由.【变式6-6】(2022•岳阳)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B(1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.。
专题22.3 二次函数的性质【六大题型】(人教版)(原卷版)

专题22.3 二次函数的性质【六大题型】【人教版】【题型1 利用二次函数的性质判断结论】 (1)【题型2 利用二次函数的性质比较函数值】 (2)【题型3 二次函数的对称性的应用】 (3)【题型4 利用二次函数的性质求字母的范围】 (3)【题型5 利用二次函数的性质求最值】 (4)【题型6 二次函数给定范围内的最值问题】 (5)【题型1 利用二次函数的性质判断结论】【例1】(2022•新华区校级一模)已知函数y=2mx2+(1﹣4m)x+2m﹣1,下列结论错误的是()A.当m=0时,y随x的增大而增大B.当m=12时,函数图象的顶点坐标是(12,−14)C.当m=﹣1时,若x<54,则y随x的增大而减小D.无论m取何值,函数图象都经过同一个点【变式1-1】(2022秋•遂川县期末)关于抛物线y=x2﹣(a+1)x+a﹣2,下列说法错误的是()A.开口向上B.当a=2时,经过坐标原点OC.不论a为何值,都过定点(1,﹣2)D.a>0时,对称轴在y轴的左侧【变式1-2】(2022秋•金牛区期末)对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4【变式1-3】(2022•赤壁市一模)对于二次函数y=x2﹣2mx﹣3,有下列结论:①它的图象与x轴有两个交点;②如果当x≤﹣1时,y随x的增大而减小,则m=﹣1;③如果将它的图象向左平移3个单位后过原点,则m=1;④如果当x=2时的函数值与x=8时的函数值相等,则m=5.其中一定正确的结论是.(把你认为正确结论的序号都填上)【题型2 利用二次函数的性质比较函数值】【例2】(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3【变式2-1】(2022秋•金安区校级月考)抛物线y=x2+x+2,点(2,a),(﹣1,﹣b),(3,c),则a,b,c的大小关系是()A.c>a>b B.b>a>cC.a>b>c D.无法比较大小【变式2-2】(2022春•鼓楼区校级月考)已知点A(b﹣m,y1),B(b﹣n,y2),C(b+m+n2,y3)都在二次函数y=﹣x2+2bx+c的图象上,若0<m<n,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y1<y3<y2【变式2-3】(2022•朝阳区校级一模)在平面直角坐标系xOy中,已知抛物线:y=ax2﹣2ax+4(a>0).若A(m﹣1,y1),B(m,y2),C(m+2,y3)为抛物线上三点,且总有y3>y1>y2.结合图象,则m的取值范围是.【题型3 二次函数的对称性的应用】【例3】(2022秋•望江县期末)在二次函数y=﹣x2+bx+c中,函数y与自变量x的部分对应值如下表:x…﹣1134…y…﹣6m n﹣6…则m、n的大小关系为()A.m<n B.m>n C.m=n D.无法确定【变式3-1】(2022秋•甘州区校级期末)二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32【变式3-2】(2022•随州校级模拟)已知二次函数y=2x2﹣9x﹣34,当自变量x取两个不同的值x1,x2时,函数值相等,则当自变量x取x1+x2时的函数值应当与()A.x=1时的函数值相等B.x=0时的函数值相等C.x=14的函数值相等D.x=94的函数值相等【变式3-3】(2022•临安区模拟)已知二次函数的解析式为y=(x﹣m)(x﹣1)(1≤m≤2),若函数过(a,b)和(a+6,b)两点,则a的取值范围()A.﹣2≤a≤−32B.﹣2≤a≤﹣1C.﹣3≤a≤−32D.0≤a≤2【题型4 利用二次函数的性质求字母的范围】【例4】(2022•西湖区一模)设函数y=kx2+(4k+3)x+1(k<0),若当x<m时,y随着x的增大而增大,则m的值可以是()A.1B.0C.﹣1D.﹣2【变式4-1】(2022•盐城)若点P(m,n)在二次函数y=x2+2x+2的图象上,且点P到y轴的距离小于2,则n的取值范围是.【变式4-2】(2022秋•鹿城区校级期中)已知抛物线y=﹣(x﹣2)2+9,当m≤x≤5时,0≤y≤9,则m 的值可以是()A.﹣2B.1C.3D.4【变式4-3】(2022•绵竹市模拟)若抛物线y=(x﹣m)(x﹣m﹣3)经过四个象限,则m的取值范围是()A.m<﹣3B.﹣1<m<2C.﹣3<m<0D.﹣2<m<1【题型5 利用二次函数的性质求最值】【例5】(2022秋•丹阳市期末)若实数m、n满足m+n=2,则代数式2m2+mn+m﹣n的最小值是_______.【变式5-1】(2022秋•宁明县期中)已知抛物线y=﹣x2﹣3x+t经过A(0,3).(1)求抛物线的解析式;(2)设点P(m,n)在该抛物线上,求m+n的最大值.【变式5-2】(2022•雁塔区校级四模)抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B 到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是()A.m≤2或m≥3B.m≤3或m≥4C.2<m<3D.3<m<4【变式5-3】(2021•永嘉县校级模拟)已知抛物线y=a(x﹣2)2+1经过第一象限内的点A(m,y1)和B (2m+1,y2),1<y1<y2,则满足条件的m的最小整数是()A.1B.2C.3D.4【题型6 二次函数给定范围内的最值问题】【例6】(2022秋•让胡路区期末)若二次函数y =﹣x 2+mx 在﹣1≤x ≤2时的最大值为3,那么m 的值是( ) A .﹣4或72B .﹣2√3或72C .﹣4 或2√3D .﹣2√3或2 √3【变式6-1】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【变式6-2】(2022•岳阳)已知二次函数y =mx 2﹣4m 2x ﹣3(m 为常数,m ≠0),点P (x p ,y p )是该函数图象上一点,当0≤x p ≤4时,y p ≤﹣3,则m 的取值范围是( ) A .m ≥1或m <0B .m ≥1C .m ≤﹣1或m >0D .m ≤﹣1【变式6-3】(2022秋•南充期末)若二次函数y =x 2﹣2x +5在m ≤x ≤m +1时的最小值为6,那么m 的值是 .。
中考二次函数题型总结

中考二次函数题型总结
在中考数学中,二次函数是一个重要的知识点,通常会被涉及到小题和大题中。
以下是一些常见的中考二次函数题型总结:
1. 小题类
小题类通常包括以下题型:二次函数的定义域、值域、对称轴、顶点、最值等。
这些题型通常需要根据题意进行图像分析,然后利用函数性质进行求解。
2. 大题类
大题类通常包括以下题型:二次函数的图像和性质、二次函数的最值、二次函数与一元二次方程的联系、二次函数的应用等。
这些题型通常需要结合图像、性质和方程等方面进行求解。
3. 综合类
综合类通常包括以下题型:二次函数与一次函数的关系、二次函数与三角形的关系、二次函数的应用等。
这些题型通常需要结合函数、几何和方程等方面进行求解。
在考试中,二次函数的题型种类虽然多样,但都可以通过对函数图像、性质和方程等方面的掌握来进行求解。
因此,在中考数学中,对于二次函数的掌握是非常重要的。
初中数学《二次函数》十大题型汇编含解析

二次函数【十大题型】【题型1 辨别二次函数】 (1)【题型2 由二次函数的定义求字母的值】 (3)【题型3 由二次函数的定义求字母的取值范围】 (4)【题型4 二次函数的一般形式】 (6)【题型5 求二次函数的值】 (7)【题型6 判断函数关系】 (9)【题型7 列二次函数关系式(几何图形)】 (11)【题型8 列二次函数关系式(增长率)】 (14)【题型9 列二次函数关系式(循环)】 (15)【题型10 列二次函数关系式(销售)】 (16)知识点1:二次函数的定义一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.【题型1 辨别二次函数】【例1】(23-24九年级上·江西南昌·阶段练习)下列函数解析式中,yy一定是xx的二次函数的是()A.yy=2aaxx2B.yy=2xx+aa2C.yy=2xx2−1D.yy=xx2+1xx【答案】C【分析】本题考查二次函数的识别,形如yy=aaxx2+bbxx+cc(aa≠0)的函数是二次函数,根据定义逐一判断即可得到答案.【详解】解:A,当aa=0时,yy=2aaxx2=0,不是二次函数,不合题意;B,yy=2xx+aa2,yy是xx的一次函数,不合题意;C,yy=2xx2−1,yy一定是xx的二次函数,符合题意;D,yy=xx2+1xx中含有分式,不是二次函数,不合题意;故选C.【变式1-1】(23-24九年级上·安徽安庆·阶段练习)下列函数是二次函数的是()A.yy=2xx−1B.yy=√xx2−1C.yy=xx2−1D.yy=12xx【答案】C【分析】本题考查了二次函数的定义,能熟记二次函数的定义是解此题的关键,注意:形如yy=aaxx2+bbxx+cc (aa、b、c为常数,aa≠0)的函数叫二次函数.根据二次函数的定义逐个判断即可.【详解】解:A、函数yy=2xx−1是一次函数,不是二次函数,故本选项不符合题意;B、函数yy=√xx2−1根号内含有x,不是二次函数,故本选项不符合题意;C、函数yy=xx2−1是二次函数,故本选项符合题意;D、函数yy=12xx分母中含有x,不是二次函数,故本选项不符合题意.故选:C.【变式1-2】(23-24九年级下·江苏·专题练习)下列函数关系式中,二次函数的个数有()(1)yy=3(xx−1)2+1;(2)yy=1xx2−xx;(3)SS=3−2tt2;(4)yy=xx4+2xx2−1;(5)yy=3xx(2−xx)+3xx2;(6)yy=mmxx2+8.A.1个B.2个C.3个D.4个【答案】B【分析】本题考查了二次函数的定义,一般地,形如yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的函数叫做二次函数.判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】解:(1)yy=3(xx−1)2+1是二次函数,故符合题意;(2)yy=1xx2−xx,不是二次函数,故不符合题意;(3)SS=3−2tt2是二次函数,故符合题意;(4)yy=xx4+2xx2−1不是二次函数,故不符合题意;(5)yy=3xx(2−xx)+3xx2=6xx不是二次函数,故不符合题意;(6)yy=mmxx2+8,不确定m是否为0,不一定是二次函数,故不符合题意;综上所述,二次函数有2个.故选:B.【变式1-3】(23-24九年级上·湖南长沙·期末)下列函数①yy=5xx−5;②yy=3xx2−1;③yy=4xx3−3xx2;④yy=2xx2−2xx+1;⑤yy=1xx2.其中是二次函数的是.【答案】②④/④②【分析】根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.【详解】解:①yy=5xx−5为一次函数;②yy=3xx2−1为二次函数;③yy=4xx3−3xx3自变量次数为3,不是二次函数;④yy=2xx2−2xx+1为二次函数;⑤yy=1xx2函数式为分式,不是二次函数.故答案为②④.【点睛】本题考查二次函数的定义,能够根据二次函数的定义判断函数是否属于二次函数是解决本题的关键.【题型2 由二次函数的定义求字母的值】【例2】(23-24九年级下·广东东莞·期中)已知函数yy=(mm−1)xx mm2+1是二次函数,则mm=.【答案】−1【分析】根据定义得:形如yy=aaxx2+bbxx+cc(aa、bb、cc是常数,且aa≠0)的函数是二次函数,列方程可求得答案.【详解】解:依题意得:mm2+1=2且mm−1≠0,解得mm=−1.故答案为:−1.【点睛】本题考查了二次函数的定义.注意:二次函数yy=aaxx2+bbxx+cc中,aa是常数,本题关键点为aa≠0.【变式2-1】(23-24九年级上·江苏扬州·阶段练习)如果yy=2xx|mm|+3xx−1是关于xx的二次函数,则mm=.【答案】±2【分析】本题主要考查了二次函数的定义,直接利用二次函数的定义得出答案.【详解】解:∵yy=2xx|mm|+3xx−1是关于x的二次函数,∴|mm|=2,解得:mm=±2.故答案为:±2.【变式2-2】(23-24九年级上·湖北·周测)如果函数yy=(kk−1)xx kk2−kk+2+kkxx−1是关于x的二次函数,则kk=.【答案】0【分析】本题考查了二次函数的定义.根据二次函数的定义得到kk−1≠0且kk2−kk+2=2,然后解不等式和方程即可得到k的值.【详解】解:根据题意,得kk−1≠0且kk2−kk+2=2,解得kk=0.故答案为:0.【变式2-3】(23-24九年级下·广东广州·期末)如果yy=(kk−3)xx�kk-1�+xx−3是二次函数,佳佳求出k的值为3,敏敏求出k的值为-1,她们俩中求得结果正确的是.【答案】敏敏【分析】本题考查了二次函数的定义,由定义得|kk−1|=2,kk−3≠0,即可求解;理解定义:“一般地,形如yy=aaxx2+bbxx+cc(a、b、c是常数,aa≠0)的函数叫做二次函数.” 是解题的关键.【详解】解:∵yy=(kk−3)xx�kk-1�+xx−3是二次函数,∴|kk−1|=2,解得kk1=3,kk2=−1,又∵kk−3≠0,即kk≠3,∴kk=−1,故敏敏正确.【题型3 由二次函数的定义求字母的取值范围】【例3】(23-24九年级上·上海嘉定·期末)如果函数yy=(kk−1)xx2+kkxx−1(kk是常数)是二次函数,那么kk的取值范围是.【答案】kk≠1【分析】根据:“形如yy=aaxx2+bbxx+cc(aa≠0),这样的函数叫做二次函数”,得到kk−1≠0,即可.【详解】解:由题意,得:kk−1≠0,∴kk≠1;故答案为:kk≠1.【变式3-1】(23-24九年级上·浙江嘉兴·开学考试)已知函数yy=(mm2−mm)xx2+(mm−1)xx−2(m为常数).(1)若这个函数是关于x的一次函数,求m的值.(2)若这个函数是关于x的二次函数,求m的取值范围.【答案】(1)mm=0;(2)mm≠1且mm≠0.【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题.【详解】(1)解:依题意mm2−mm=0且mm−1≠0,所以mm=0;(2)解:依题意mm2−mm≠0,所以mm≠1且mm≠0.【点睛】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,属于中考常考题型.【变式3-2】(23-24九年级上·广东江门·阶段练习)已知关于xx的二次函数yy=(aa2−1)xx2+xx−2,则aa的取值范围是()A.aa≠1B.aa≠−1C.aa≠±1D.为任意实数【答案】C【分析】根据二次函数定义可得aa2−1≠0,解出答案即可.【详解】因为关于xx的二次函数yy=(aa2−1)xx2+xx−2,∴aa2−1≠0,解得:aa≠±1.故选:C.【点睛】本题考查的是二次函数yy=aaxx2+bbxx+cc(aa≠0)概念,熟练掌握二次函数定义是解题关键.【变式3-3】(23-24九年级下·四川遂宁·期中)已知函数yy=(mm2-2)xx2+(mm+√2)xx+8.若这个函数是二次函数,求mm的取值范围【答案】mm≠√2且mm≠-√2【分析】根据二次函数的定义,即可得不等式mm2-2≠0,解不等式即可求得.【详解】解:∵函数yy=(mm2-2)xx2+(mm+√2)xx+8是二次函数,∴mm2-2≠0,解得mm≠±√2,故答案为:mm≠√2且mm≠-√2.【点睛】本题考查了二次函数的定义,熟练掌握和运用二次函数的定义是解决本题的关键.【题型4 二次函数的一般形式】【例4】(23-24九年级上·四川南充·阶段练习)二次函数yy=xx2−3xx+5的二次项是,一次项系数是,常数项是.【答案】xx2−3 5【分析】根据二次函数的定义判断即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数中求线段距离之和最小,两种方法:第一种我们平常讲的几种题型最短路径的题型第二种运用点坐标将线段长度之和表示出来,进而转化成二次函数的最值问题以及二次函数中的最值问题优先考虑的方法就是将所求的用未知数表示出来,最大最小值转化为求二次函数的最大最小值“造桥选址”直线∥,在、,上分别求点M、N,使MN⊥,且AM+MN+BN的值最小.将点A向下平移MN的长度单位得A',连A'B,交于点N,过N作NM⊥于M.直线上求两点M、N(M在左),使,并使AM+MN+NB的值最小.在直线l上求一点P,使的值最大.如图,抛物线y=x2-3x+54与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E (1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标正方形OABC 的边长为4,对角线相交于点P ,抛物线L 经过O 、P 、A 三点,点E 是正方形内的抛物线上的动点. (1)建立适当的平面直角坐标系, ①直接写出O 、P 、A 三点坐标; ②求抛物线L 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C 1:y 1=-2x 2+4x+2与C 2:y 2=-x 2+mx+n 为“友好抛物线”. (1)求抛物线C 2的解析式.(2)点A 是抛物线C 2上在第一象限的动点,过A 作AQ ⊥x 轴,Q 为垂足,求AQ+OQ 的最大值.(3)设抛物线C 2的顶点为C ,点B 的坐标为(-1,4),问在C 2的对称轴上是否存在点M ,使线段MB 绕点M 逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C 2上?若存在求出点M 的坐标,不存在说明理由.已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4,(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM-AM|的最大值时点M的坐标,并直接写出|PM-AM|的最大值.如图,直线l:y=-3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2-2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).离分别为d1、存在等腰三角形和直角三角形的问题,首先将对应的三个点的坐标表示出来,表示出来必须是只有一个未知数,再根据题目的需要分类讨论那条边等于那条边,或者那条边平方等于哪两条边的平方和如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.二次函数中存在等腰直角三角形问题:构造全等三角形如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S 的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC 为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=-3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C 1:y 1=-2x 2+4x+2与C 2:y 2=-x 2+mx+n 为“友好抛物线”. (1)求抛物线C 2的解析式.(2)点A 是抛物线C 2上在第一象限的动点,过A 作AQ ⊥x 轴,Q 为垂足,求AQ+OQ 的最大值.(3)设抛物线C 2的顶点为C ,点B 的坐标为(-1,4),问在C 2的对称轴上是否存在点M ,使线段MB 绕点M 逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C 2上?若存在求出点M 的坐标,不存在说明理由.二次函数与四边形问题:首先存在平行四边形问题,其一已知两个点,并已知第三个点的横坐标或者纵坐标,求第四个点的坐标,则运用平移的知识来解答。
其二如果仅仅已知两个点的坐标,求第三个点或者第四个点的坐标,这时我们需要设第三个点(一般会告诉你这个点在哪条直线上)的坐标并把第四个点的坐标表示出来,再根据第一第二个点的距离等于第三第四个点的距离列方程,这里有两种情况,第三第四个点的距离是绝对值。
存在矩形或者菱形注意分析其中特殊的角或者边的存在。
如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;2)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标点P是第一象限抛物线上的一点,连接PA、PB、PO,若△POA的面积是△POB面积的倍.①求点P的坐标;;(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N 为顶点的四边形是平行四边形时,请直接写出点M的坐标.在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;;(3)在(1)的情况下,若P为抛物线上一动点,N为x轴上的一动点,点Q 坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.如图,抛物线y=x2+bx+c与直线y=x-3交于A、B两点,其中点A在y轴上,点B坐标为(-4,-5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x 轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.如图,抛物线y=ax2+bx+c的图象经过点A(-2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(-1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).二次函数与全等三角形的结合如图,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标如图,抛物线y=x2-mx-3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.二次函数图像平移问题:根据题目意思左右平移还是上下平移,将平移后的函数解析式表达出来,在按照题目的要求进行解答已知二次函数y=x2+bx+c的图象与y轴交于点C(0,-6),与x轴的一个交点坐标是A(-2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移52个单位长度,当y<0时,求x的取值范围.如图,已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点A(3,1),点C (0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD 相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC的边界),求h的取值范围;如图,已知抛物线y=ax 2+bx+c (a ≠0)经过A (-3,0)、B (5,0)、C (0,5)三点,O 为坐标原点(1)求此抛物线的解析式;(2)若把抛物线y=ax 2+bx+c (a≠0)向下平移313个单位长度,再向右平移n (n >0)个单位长度得到新抛物线,若新抛物线的顶点M 在△ABC 内,求n 的取值范围;(3)设点P 在y 轴上,且满足∠OPA+∠OCA=∠CBA ,求CP 的长.如图,在平面直角坐标系中,已知抛物线C 1:y=x 2+6x +2的顶点为M ,与y轴相交于点N ,先将抛物线C 1沿x 轴翻折,再向右平移p 个单位长度后得到抛物线C 2:直线l :y=kx+b 经过M ,N 两点.(1)结合图象,直接写出不等式x 2+6x+2<kx+b 的解集;(2)若抛物线C 2的顶点与点M 关于原点对称,求p 的值及抛物线C 2的解析式; (3)若直线l 沿y 轴向下平移q 个单位长度后,与(2)中的抛物线C 2存在公共点,求3-4q 的最大值.二次函数中的角相等如何解决的问题如图,抛物线y=ax2+bx+c的图象经过点A(-2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x 轴下方.(1)如图1,若P(1,-3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;.(比较难,需要构造正切值)如图,抛物线y=ax2+bx-5(a≠0)与x轴交于点A(-5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△A B E=S△A B C时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.二次函数与相似三角形的结合以下例题也有虽然有的题目看着难,但是只要按照正常思路尝试去做就做的出来二次函数与相似:当运用坐标表示长度进而写出线段之间的比时,如果横坐标之间的长度比比较难算,则运用纵坐标之间的长度进行比较。