九年级二次函数题型总结
二次函数中考题型总结

二次函数常考知识点总结整理一、函数定义与表达式1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3.交点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化二、函数图像的性质——抛物线(1)开口方向——二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;(2)抛物线是轴对称图形,对称轴为直线一般式:2bx a=-对称轴顶点式:x=h一般式:2424b ac b aa ⎛⎫-- ⎪⎝⎭,顶点式:(h、k)顶点坐标y=-2x 2两根式:x=221x x +(3)对称轴位置一次项系数b 和二次项系数a 共同决定对称轴的位置。
(“左同右异”)a 与b 同号(即ab >0)对称轴在y 轴左侧a 与b 异号(即ab <0)对称轴在y 轴右侧(4)增减性,最大或最小值当a>0时,在对称轴左侧(当2bx a<-时),y 随着x 的增大而减少;在对称轴右侧(当2bx a<-时),y 随着x 的增大而增大;当a<0时,在对称轴左侧(当2bx a<-时),y 随着x 的增大而增大;在对称轴右侧(当2bx a<-时),y 随着x 的增大而减少;当a>0时,函数有最小值,并且当x=a b2-,2min 44ac b y a -=;当a<0时,函数有最大值,并且当x=ab2-,2max 44ac b y a -=;(5)常数项c常数项c 决定抛物线与y 轴交点。
初三二次函数压轴题题型归纳及方法

初三二次函数压轴题题型归纳及方法一、题型归纳初三二次函数压轴题主要包括以下几种题型:1. 解二次方程:给出一个二次方程,要求求出其解。
2. 求顶点坐标:给出一个二次函数,要求求出其顶点坐标。
3. 求零点:给出一个二次函数,要求求出其零点。
4. 求最值:给出一个二次函数,要求求出其最大值或最小值。
5. 综合应用:将上述各种题型结合起来进行综合应用。
二、方法1. 解二次方程(1)将方程化为标准形式ax²+bx+c=0;(2)判断Δ=b²-4ac的正负性:如果Δ>0,则有两个不相等的实数根;如果Δ=0,则有两个相等的实数根;如果Δ<0,则无实数根,但可以得到一对共轭复数根;(3)根据公式x1=(-b+√Δ)/2a和x2=(-b-√Δ)/2a求得解。
2. 求顶点坐标(1)将二次函数化为标准形式y=ax²+bx+c;(2)利用公式x=-b/2a求得顶点的横坐标;(3)将横坐标代入原函数中求得顶点的纵坐标。
3. 求零点(1)将二次函数化为标准形式y=ax²+bx+c;(2)令y=0,解出方程ax²+bx+c=0;(3)根据解出的方程,用上述方法求出零点。
4. 求最值(1)将二次函数化为标准形式y=ax²+bx+c;(2)如果a>0,则函数有最小值,最小值为y0=c-b²/4a,顶点坐标为(-b/2a,y0);如果a<0,则函数有最大值,最大值为y0=c-b²/4a,顶点坐标为(-b/2a,y0)。
5. 综合应用综合应用题目一般会给出一个实际问题,并要求利用二次函数进行建模和求解。
解决这类题目需要结合实际情况进行分析,并运用上述各种方法进行计算和推导。
三、注意事项1. 在解二次方程时,需要注意判别式Δ的正负性,以确定是否有实数根。
2. 在求顶点坐标时,需要注意顶点横坐标的符号和范围。
3. 在求零点时,需要注意解方程的过程和方法,并判断是否存在实数根。
九年级二次函数题型总结

.:.:增大而减小随在对称轴右侧,增大而增大;随在对称轴左侧,开口向下增大而增大随在对称轴右侧,增大而减小;随在对称轴左侧,开口向上x y x y x y x y 一、二次函数的定义1.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )A .y =x(x +1)B .xy =1C .y =2x 2-2(x +1)2D .132+=x y2.当m 时,函数y =(m -2)x 2+4x -5(m 是常数)是二次函数.3.若1222)3(---=m mx m m y 是二次函数,则m = .4.若函数y =3x 2的图象与直线y=kx +3的交点为(2,b),则k= ,b = .5.已知二次函数y =―4x 2-2mx+m 2与反比例函数24m y x+=的图象在第二象限内的一个交点的横坐标是―2,则m 的值是 .二、二次函数的图象与性质)(44)()(22),()44,2)(2222y x ab ac y ky h x a bx hx a bx k h ab ac a b a akh x a y c bx ax y 代入求或将值小最大值小最大时,最值:当时,最值:当对称轴:对称轴:顶点顶点(开口方向开口方向公式-===-==-=--↓↓+-=→----++=1.对于抛物线y =ax 2,下列说法中正确的是( ) A .a 越大,抛物线开口越大 B .a 越小,抛物线开口越大 C .|a |越大,抛物线开口越大 D .|a |越小,抛物线开口越大2.下列说法中错误的是( )A .在函数y =-x 2中,当x =0时,y 有最大值0B .在函数y =2x 2中,当x >0时,y 随x 的增大而增大C .抛物线y =2x 2,y =-x 2,221x y -=中,抛物线y =2x 2的开口最小,抛物线 y =-x 2的开口最大D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点),1(3yC ),,2(),,1(21y B y A --3.二次函数 y=2(x -3)2+5的图象的开口方向、对称轴和顶点坐标分别为( ) A .开口向下,对称轴x=-3,顶点坐标为(3,5)B .开口向上,对称轴x =3,顶点坐标为(3,5)C .开口向上,对称轴x=-3,顶点坐标为(-3,5)D .开口向下,对称轴x=-3,顶点坐标为(-3,-5)4.已知抛物线的解析式为y=(x -2)2+1,则抛物线的顶点坐标是 ( ) A .(-2,1) B .(2,1) C .(2,-1) D .(1,2)5.已知二次函数y =x 2-4x +5的顶点坐标为( ) A .(-2,-1) B .(2,1) C .(2,-1) D .(-2,1)6.抛物线y=x 2+2x-1的对称轴是 ,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.7.抛物线c bx x y ++=23的顶点坐标为)0,32(,则b= ,c= .8.函数y =x 2―2x -l 的最小值是 ;函数y =-x 2+4x 的最大值是 .9.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,则a = .二次函数的对称性二次函数)0(2≠++=a c bx ax y :(1)此函数的对称轴为直线ab x 2-=; (2)若函数与x 轴相交于点)0,(),0,(21x B x A ,则对称轴可表示为221x x x +=; (3)若函数与x 轴相交于点),(),,(21n x B n x A (特点是纵坐标相同),则对称轴可表示为221x x x +=.10.抛物线2)1(2++=x a y 的一部分图象如图所示,该抛物线在y 轴右侧部分与x 轴交点坐标是 .11.如图,抛物线的对称轴是x=1,与x 轴交于A 、B 两点,B 点坐标为)0,3(,则点A 的坐标是 .12.抛物线)0()1(2≠+-=a k x a y 与x 轴交于)0,3(),0,(1B x A 两点,则线段AB 的长 . 13.已知二次函数c x x y ++-=22,若点),(),,(2211y x B y x A 在此函数的图象上,且121<<x x ,则21,y y 的大小关系是 .14.已知二次函数c ax x y ++-=2的对称轴是直线1=x ,若点在此函数的图象上,则321,,y y y 的大小关系是15.已知二次函数c bx ax y ++=2中,其函数y 与自变量x 之间的部分对应值如下表:点),(),,(2211y x B y x A 在函数的图象上,则当211<<x ,432<<x 时,1y 与2y 的大小关系正确的是( )21212121....y y D y y C y y B y y A ≥≤<>三、二次函数的平移、旋转与对称1.把抛物线2y x =-向左平移一个单位,然后向上平移3个单位,则平移后抛物线的表达式( )3)1(.3)1(.3)1(.3)1(.2222-+-=---=++-=+--=x y D x y C x y B x y A2.抛物线2)1(32-+-=x y 经过平移得到抛物线23x y -=,平移的方法是A .向左平移1个单位,再向下平移2个单位B .向右平移1个单位,再向下平移2个单位C .向左平移1个单位,再向上平移2个单位D .向右平移1个单位,再向上平移2个单位3.在平面直角坐标系中,如果23x y =的图象不动,而把坐标轴分别向上平移2个单位,向右平移3个单位,那么新坐标系中此抛物线的解析式为 .4.将抛物线6422++-=x x y 的图象向左平移1个单位,再向下平移2个单位,平移后的解析式为 .5.将抛物线c bx x y ++=2的图象向右平移2个单位再向下平移2个单位,所得图象的关系式为322--=x x y ,则b= ,c= .6.已知抛物线5422--=x x y ,(1)将其绕着顶点旋转180°后抛物线关系式是 . (2)关于y 轴对称的抛物线关系式是 ;(3)关于x 轴对称的抛物线关系式是 ;(4)关于原点对称的抛物线关系式是 .四、确定二次函数的表达式用待定系数法求二次函数的解析式:(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:()()21x x x x a y --=.已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式.1.顶点为(—1,—3),与y 轴交点为(0,—5).2.与x 轴交于A (—1,0)、B (1,0),并经过点M(0,1).3.图像经过点A(0,1)、B(1,2)、C(2,1).4.顶点坐标为(1,3)且在x 轴上截得的线段长为4.5.图象经过点(1,0)、(0,-3),且对称轴是直线x=1.6.已知抛物线c bx x y ++-=2如图所示,求它对应的表达式.五、二次函数的应用 知识铺垫:最值问题 (一)开口向上 1.当对称轴abx 2-=在所给范围内,必在顶点处取得最小值,在离对称轴较远端点处取得最大值; 2.当对称轴abx 2-=不在所给范围内,在离对称轴较远端点处取得最大值,离对称轴较近端点处取得最小值. (二)开口向下 1.当对称轴a bx 2-=在所给范围内,必在顶点处取得最大值,在离对称轴较远端点30m处取得最小值; 2.当对称轴abx 2-=不在所给范围内,在离对称轴较远端点处取得最小值,离对称轴较近端点处取得最大值.1.当22≤≤-x 时,求函数322--=x x y 的最大值和最小值.2.当21≤≤x 时,求函数12+--=x x y 的最大值和最小值.3.当0≥x 时,求函数)2(x x y --=的最大值和最小值.几何问题4.在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上. (1)如果设矩形的一边AB=x m,那么AD 边的长度如何表示?(2)设矩形的面积为y m 2,当x 取何值时,y 的值最大?最大值是多少? (3)若将矩形改为图2所示的位置,其他条件不变,那么矩形的最大面积是多少?5.用长为80 m 的栅栏,再借助外墙围城一个矩形羊圈ABCD ,已知房屋外墙长50 m ,设矩形ABCD 的边AB=x m ,面积为S m 2.(1)写出S 与x 之间的关系式,并指出x 的取值范围;(2)当AB,BC 分别为多少米时,羊圈的面积最大?最大面积是多少?C40m6.有一座抛物线型拱桥,在正常水位时水面宽AB=20 m,当水位上升3 m时,水面宽CD=10 m.(1)按如图所示的直角坐标系,求此抛物线的函数表达式;(2)有一条船以5 km/h的速度向此桥径直行来,当船距离此桥35 km时,桥下水位正好在AB处,之后水位每小时上涨0.25 m,当水位达到CD处时,将禁止船只通行.如果该船的速度不变,那么它能否安全通过此桥?最大利润问题7.某旅馆有客房120间,每间客房的日租金为160元,每天都客满,经市场调查,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间。
二次函数中考常见题型及解析

二次函数中考常见题型及解析二次函数在中考数学中是一个非常重要的知识点,通常都会有相关的考题出现。
下面就为大家总结了二次函数中考常见的题型及解析,供大家参考。
一、基本形式的图像与性质题1.二次函数 $y=ax^2$ 的图像是什么?二次函数 $y=ax^2$ 的图像是一条开口朝上或朝下的抛物线。
2.二次函数 $y=ax^2$ 的对称轴方程是什么?二次函数 $y=ax^2$ 的对称轴方程是 $x=0$(对称轴为 $y$ 轴)。
3.二次函数 $y=ax^2$ 的零点是什么?当 $y=ax^2=0$ 时,$x=0$,所以二次函数 $y=ax^2$ 的零点是原点$(0,0)$。
4.二次函数 $y=ax^2$ 的单调性是什么?当 $a>0$ 时,二次函数 $y=ax^2$ 开口朝上,单调递增;当 $a<0$ 时,二次函数 $y=ax^2$ 开口朝下,单调递减。
二、变形图像与性质题1.二次函数 $y=a(x-h)^2+k$ 的图像是什么?二次函数 $y=a(x-h)^2+k$ 的图像是以 $(h,k)$ 为顶点的开口朝上或朝下的抛物线。
2.二次函数 $y=a(x-h)^2+k$ 的对称轴方程是什么?二次函数 $y=a(x-h)^2+k$ 的对称轴方程是 $x=h$(对称轴为以$(h,k)$ 为顶点的直线)。
3.二次函数 $y=a(x-h)^2+k$ 的零点是什么?当 $y=a(x-h)^2+k=0$ 时,$x=h\pm \sqrt{-\frac{k}{a}}$,所以二次函数$y=a(x-h)^2+k$ 的零点为 $x=h+\sqrt{-\frac{k}{a}}$ 和 $x=h-\sqrt{-\frac{k}{a}}$。
4.二次函数 $y=a(x-h)^2+k$ 的单调性是什么?当 $a>0$ 时,二次函数 $y=a(x-h)^2+k$ 开口朝上,单调递增;当$a<0$ 时,二次函数 $y=a(x-h)^2+k$ 开口朝下,单调递减。
初三二次函数经典题型及解析

初三二次函数经典题型及解析一、二次函数基础概念题型初三二次函数的概念可是很重要的哦。
比如说,给你一个函数表达式,像y = ax²+bx + c(a≠0),然后问你这个函数是不是二次函数。
这时候你就得瞅准了,a不能等于0哦,要是a等于0了,那就变成一次函数了。
就像y = 3x + 2,这就是一次函数,和二次函数可不一样啦。
还有那种给你实际问题,让你列出二次函数表达式的题。
比如说,一个小球从高处落下,它下落的高度h和时间t 的关系,根据物理知识和二次函数的概念,你就能列出h = 1/2gt²(这里g是重力加速度,是个常数)这样的表达式。
这种题就需要你理解二次函数在实际中的意义,把实际问题转化成数学表达式。
二、二次函数图像题型二次函数的图像那可太有趣了。
它的图像是一条抛物线呢。
当a>0的时候,抛物线开口向上,就像一个笑脸一样;当a<0的时候,抛物线开口向下,就有点像哭脸啦。
对称轴是x = -b/2a这个公式可一定要记住哦。
比如说,给你一个二次函数y = 2x² - 4x + 1,先求对称轴,把a = 2,b = -4代入对称轴公式,得到x = -(-4)/(2×2)=1。
然后你还可以求顶点坐标,把x = 1代入函数表达式,就能算出y的值啦。
还有那种通过图像判断a、b、c的取值范围的题。
如果抛物线开口向上,那a>0;如果对称轴在y轴左侧,那么b和a同号,如果对称轴在y轴右侧,b和a异号;当x = 0时,y = c,所以看图像与y轴交点就知道c的取值啦。
三、二次函数最值题型二次函数的最值问题也是经常考的呢。
对于二次函数y = ax²+bx + c(a≠0),当a>0时,函数有最小值,这个最小值就在顶点处取得,也就是y = (4ac - b²)/4a;当a<0时,函数有最大值,同样是在顶点处取得这个值。
比如说,有个二次函数y = -x²+2x + 3,因为 a = -1<0,所以这个函数有最大值。
初中二次函数经典题型

初中二次函数经典题型
初中二次函数的经典题型包括求解二次方程、求顶点、判断开口方向等。
以下是其中几个题型及解析:
1. 求解二次方程:
题目:解方程2x^2 - 5x + 3 = 0。
解析:可以使用因式分解、配方法或求根公式等方法来解这个方程。
其中,求根公式是一种常用的方法。
根据求根公式,对于一般形式的二次方程ax^2 + bx + c = 0,它的解为x = (-b ± √(b^2 - 4ac)) / (2a)。
将方程2x^2 - 5x + 3 = 0带入公式,可以求得x的解。
2. 求顶点:
题目:求二次函数y = 3x^2 + 4x - 2的顶点坐标。
解析:二次函数的顶点坐标可以通过公式x = -b / (2a)和将x带入函数中得到y来求解。
将函数y = 3x^2 + 4x - 2带入公式,可以求得x的值,然后将x带入函数中计算得到y的值,从而得到顶点坐标。
3. 判断开口方向:
题目:判断二次函数y = -2x^2 + 3x - 1的开口方向。
解析:二次函数的开口方向可以通过二次项的系数a来判断。
如果a > 0,则开口向上;如果a < 0,则开口向下。
对于函数y = -2x^2 + 3x - 1,由于二次项的系数a = -2小于0,所以开口方向是向下的。
这些是初中二次函数的一些经典题型及解析。
通过理解和掌握这些题型的解法,可以提高对二次函数的理解和应用能力。
同时,还可以通过做更多的练习题来巩固和提高解题技巧。
(完整word)九年级数学二次函数知识点总结及经典例题,推荐文档

二次函数知识点总结一、二次函数概念:21二次函数的概念:一般地,形如y ax bx c( a,b ,c是常数,a 0 )的函数,叫做二次函数。
里需要强调:和一元二次方程类似,二次项系数 a 0,而b,c可以为零•二次函数的定义域是全体实数.92. 二次函数y ax bx c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a ,b, c是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式21.二次函数基本形式:y ax的性质:a的绝对值越大,抛物线的开口越小。
22. y ax c的性质:上加下减。
23. y a x h的性质:左加右减。
24. y ax hk 的性质: a 的符号开口方向 顶点坐标 对称轴 性质a 0向上h , kX=hx h 时,y 随x 的增大而增大;x h 时,y 随 x 的增大而减小;x h 时,y 有最小值k •a 0向下 h , k X=hx h 时,y 随x 的增大而减小;x h 时,y 随 x 的增大而增大;x h 时,y 有最大值k •三、二次函数图象的平移1.平移步骤:2⑴将抛物线解析式转化成顶点式 y a x h k ,确定其顶点坐标 h , k ;⑵ 保持抛物线y ax 2的形状不变,将其顶点平移到 h ,k 处,具体平移方法如下:当x 2a 时,y 随x 的增大而减小; y=ax 2 A y=ax 2+k向右(h>0)【或左(*0)] 平移|k|个单位y=a(x h)2向右(h>0)【或左(h<0)] 平移|k|个单位2.平移规律在原有函数的基础上 概括成八个字“左加右减,h 值正右移,负左移;上加下减” •k 值正上移,负下移”六、 四、二次函数从解析式上看,b a x2a二次函数1. 4ac b 24a,其中 ax 2 bx c 的性质当a 0时,抛物线开口向上,对称轴为2axax 2 bx c 的比较bx c 是两种不同的表达形式, 后者通过配方可以得到前者,4ac b 2 4a盘,顶点坐标为b 4ac b 22a ' 4a向上(k>0)【或向下(k<0)】平移|k|个单位向上(k>0)【或下(k<0)】 平移|k 个单位向右(h>0)【或左(h<0)] 平移|k|个单位2当x佥时,y随x的增大而增大;x2a 时,y有最小值4ac b 2 4a2•当a 0时,抛物线开口向下, 对称轴为 x —,顶点坐标为2a b 4ac b 2 、[/ b ”亠方,F .当x 茲时,y 随 x 的增大而增大;当x 2a 时,b 4ac b 2y 随x 的增大而减小;当x 亦时,y 有最大值 f 七、 1. 二次函数解析式的表示方法一般式:y ax 2bx c ( a , b , c 为常数,a 0);2顶点式:y a (x h ) k ( a , h , k 为常数,a 0); 两根式(交点式):y a (x x i )(x X 2) ( a 0,为,x ?是抛物线与x 轴两交点的横坐标) 2. 3. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只 有抛物线与x 轴有交点,即b 2 4ac 0时,抛物线的解析式才可以用交点式表示. 二次函数解析式的这三种形式可以互化.八、 1. ⑴ ⑵ 二次函数的图象与各项系数之间的关系二次项系数a当a 0时,抛物线开口向上, 当a 0时,抛物线开口向下, a 的值越大,开口越小,反之 a 的值越小,开口越大; a 的值越小,开口越小,反之 a 的值越大,开口越大.2. 一次项系数b在二次项系数a 确定的前提下, 3. 常数项c⑴当c ⑵当c ⑶当c总结起来, 0时, 0时, 0时, b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴)抛物线与y 轴的交点在x 轴上方,即抛物线与 抛物线与抛物线与y 轴的交点在x 轴下方,即抛物线与 c决定了抛物线与y 轴交点的位置.y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为正; y轴交点的纵坐标为0 ; y 轴交点的纵坐标为负.九、二次函数与一元二次方程:i.二次函数与一元二次方程的关系(二次函数与 一二次方程ax 2 bx c 0是二次函数y x 轴的交点个数: 兀 图象与 ax 2 x 轴交点情况): bx c 当函数值y 0时的特殊情况.2b 4ac 0时,图象与x 轴交于两点Ax 1 ,0 ,B x 2 ,0 (x 1X 2),其中的X i , x 是一元二次方2ax bx 0的两根.• 1' 2' 0时, 0时, 当a 当a x 轴只有一个交点;x 轴没有交点. 0时,图象落在 0时,图象落在 图象与 图象与 x 轴的上方,无论 x 轴的下方,无论 x 为任何实数, x 为任何实数, 都有都有2.抛物线y 2axbx c 的图象与y 轴一定相交,交点坐标为 (0 , c);二次函数对应练习试题、选择题1.二次函数y2x 4x 7的顶点坐标是A.(2, —11)B. (-2, 7)C. (2, 11)D. (2, - 3)2.把抛物线y2x2向上平移1个单位, 得到的抛物线是(2A. y 2(x 1)B. y 2(x 2 21) C. y 2x 1 D. 2x2 12k3.函数y kx k和y (k 0)在同一直角坐标系中图象可能是图中的0)的图象如图所示,则下列结论:①a,b同号;②当x 1和x 3时,函数值相等;③4a b 0④当y 确的个数是()A.1个B.2 个C. 35.已知二次函数y ax2 bx c(a由图象可知关于兀二次方程axA. — 1 .6.已知二次函数A.第一象限C.第三象限7.方程2x x2A.0个8.已知抛物线过点A. y x2C. y x22时,x的值只能取0.其中正个个D. 4B.-2.3C.-0.3D.-3.32ax bx c的图象如图所示, 则点(ac,bc)在(B.第二象限D.第四象限-的正根的个数为xB.1A(2,0),B(-1,0), x 2 或y x2C.2与y轴交于点B.x 2 D.C,且0C=2.则这条抛物线的解析式为y x2 x 22 、2y x x 2 或y x x 2二、填空题9•二次函数y x2 bx 3的对称轴是x 2,则b ______________ 。
初中数学《二次函数》十大题型汇编含解析

二次函数【十大题型】【题型1 辨别二次函数】 (1)【题型2 由二次函数的定义求字母的值】 (3)【题型3 由二次函数的定义求字母的取值范围】 (4)【题型4 二次函数的一般形式】 (6)【题型5 求二次函数的值】 (7)【题型6 判断函数关系】 (9)【题型7 列二次函数关系式(几何图形)】 (11)【题型8 列二次函数关系式(增长率)】 (14)【题型9 列二次函数关系式(循环)】 (15)【题型10 列二次函数关系式(销售)】 (16)知识点1:二次函数的定义一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.【题型1 辨别二次函数】【例1】(23-24九年级上·江西南昌·阶段练习)下列函数解析式中,yy一定是xx的二次函数的是()A.yy=2aaxx2B.yy=2xx+aa2C.yy=2xx2−1D.yy=xx2+1xx【答案】C【分析】本题考查二次函数的识别,形如yy=aaxx2+bbxx+cc(aa≠0)的函数是二次函数,根据定义逐一判断即可得到答案.【详解】解:A,当aa=0时,yy=2aaxx2=0,不是二次函数,不合题意;B,yy=2xx+aa2,yy是xx的一次函数,不合题意;C,yy=2xx2−1,yy一定是xx的二次函数,符合题意;D,yy=xx2+1xx中含有分式,不是二次函数,不合题意;故选C.【变式1-1】(23-24九年级上·安徽安庆·阶段练习)下列函数是二次函数的是()A.yy=2xx−1B.yy=√xx2−1C.yy=xx2−1D.yy=12xx【答案】C【分析】本题考查了二次函数的定义,能熟记二次函数的定义是解此题的关键,注意:形如yy=aaxx2+bbxx+cc (aa、b、c为常数,aa≠0)的函数叫二次函数.根据二次函数的定义逐个判断即可.【详解】解:A、函数yy=2xx−1是一次函数,不是二次函数,故本选项不符合题意;B、函数yy=√xx2−1根号内含有x,不是二次函数,故本选项不符合题意;C、函数yy=xx2−1是二次函数,故本选项符合题意;D、函数yy=12xx分母中含有x,不是二次函数,故本选项不符合题意.故选:C.【变式1-2】(23-24九年级下·江苏·专题练习)下列函数关系式中,二次函数的个数有()(1)yy=3(xx−1)2+1;(2)yy=1xx2−xx;(3)SS=3−2tt2;(4)yy=xx4+2xx2−1;(5)yy=3xx(2−xx)+3xx2;(6)yy=mmxx2+8.A.1个B.2个C.3个D.4个【答案】B【分析】本题考查了二次函数的定义,一般地,形如yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的函数叫做二次函数.判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】解:(1)yy=3(xx−1)2+1是二次函数,故符合题意;(2)yy=1xx2−xx,不是二次函数,故不符合题意;(3)SS=3−2tt2是二次函数,故符合题意;(4)yy=xx4+2xx2−1不是二次函数,故不符合题意;(5)yy=3xx(2−xx)+3xx2=6xx不是二次函数,故不符合题意;(6)yy=mmxx2+8,不确定m是否为0,不一定是二次函数,故不符合题意;综上所述,二次函数有2个.故选:B.【变式1-3】(23-24九年级上·湖南长沙·期末)下列函数①yy=5xx−5;②yy=3xx2−1;③yy=4xx3−3xx2;④yy=2xx2−2xx+1;⑤yy=1xx2.其中是二次函数的是.【答案】②④/④②【分析】根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.【详解】解:①yy=5xx−5为一次函数;②yy=3xx2−1为二次函数;③yy=4xx3−3xx3自变量次数为3,不是二次函数;④yy=2xx2−2xx+1为二次函数;⑤yy=1xx2函数式为分式,不是二次函数.故答案为②④.【点睛】本题考查二次函数的定义,能够根据二次函数的定义判断函数是否属于二次函数是解决本题的关键.【题型2 由二次函数的定义求字母的值】【例2】(23-24九年级下·广东东莞·期中)已知函数yy=(mm−1)xx mm2+1是二次函数,则mm=.【答案】−1【分析】根据定义得:形如yy=aaxx2+bbxx+cc(aa、bb、cc是常数,且aa≠0)的函数是二次函数,列方程可求得答案.【详解】解:依题意得:mm2+1=2且mm−1≠0,解得mm=−1.故答案为:−1.【点睛】本题考查了二次函数的定义.注意:二次函数yy=aaxx2+bbxx+cc中,aa是常数,本题关键点为aa≠0.【变式2-1】(23-24九年级上·江苏扬州·阶段练习)如果yy=2xx|mm|+3xx−1是关于xx的二次函数,则mm=.【答案】±2【分析】本题主要考查了二次函数的定义,直接利用二次函数的定义得出答案.【详解】解:∵yy=2xx|mm|+3xx−1是关于x的二次函数,∴|mm|=2,解得:mm=±2.故答案为:±2.【变式2-2】(23-24九年级上·湖北·周测)如果函数yy=(kk−1)xx kk2−kk+2+kkxx−1是关于x的二次函数,则kk=.【答案】0【分析】本题考查了二次函数的定义.根据二次函数的定义得到kk−1≠0且kk2−kk+2=2,然后解不等式和方程即可得到k的值.【详解】解:根据题意,得kk−1≠0且kk2−kk+2=2,解得kk=0.故答案为:0.【变式2-3】(23-24九年级下·广东广州·期末)如果yy=(kk−3)xx�kk-1�+xx−3是二次函数,佳佳求出k的值为3,敏敏求出k的值为-1,她们俩中求得结果正确的是.【答案】敏敏【分析】本题考查了二次函数的定义,由定义得|kk−1|=2,kk−3≠0,即可求解;理解定义:“一般地,形如yy=aaxx2+bbxx+cc(a、b、c是常数,aa≠0)的函数叫做二次函数.” 是解题的关键.【详解】解:∵yy=(kk−3)xx�kk-1�+xx−3是二次函数,∴|kk−1|=2,解得kk1=3,kk2=−1,又∵kk−3≠0,即kk≠3,∴kk=−1,故敏敏正确.【题型3 由二次函数的定义求字母的取值范围】【例3】(23-24九年级上·上海嘉定·期末)如果函数yy=(kk−1)xx2+kkxx−1(kk是常数)是二次函数,那么kk的取值范围是.【答案】kk≠1【分析】根据:“形如yy=aaxx2+bbxx+cc(aa≠0),这样的函数叫做二次函数”,得到kk−1≠0,即可.【详解】解:由题意,得:kk−1≠0,∴kk≠1;故答案为:kk≠1.【变式3-1】(23-24九年级上·浙江嘉兴·开学考试)已知函数yy=(mm2−mm)xx2+(mm−1)xx−2(m为常数).(1)若这个函数是关于x的一次函数,求m的值.(2)若这个函数是关于x的二次函数,求m的取值范围.【答案】(1)mm=0;(2)mm≠1且mm≠0.【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题.【详解】(1)解:依题意mm2−mm=0且mm−1≠0,所以mm=0;(2)解:依题意mm2−mm≠0,所以mm≠1且mm≠0.【点睛】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,属于中考常考题型.【变式3-2】(23-24九年级上·广东江门·阶段练习)已知关于xx的二次函数yy=(aa2−1)xx2+xx−2,则aa的取值范围是()A.aa≠1B.aa≠−1C.aa≠±1D.为任意实数【答案】C【分析】根据二次函数定义可得aa2−1≠0,解出答案即可.【详解】因为关于xx的二次函数yy=(aa2−1)xx2+xx−2,∴aa2−1≠0,解得:aa≠±1.故选:C.【点睛】本题考查的是二次函数yy=aaxx2+bbxx+cc(aa≠0)概念,熟练掌握二次函数定义是解题关键.【变式3-3】(23-24九年级下·四川遂宁·期中)已知函数yy=(mm2-2)xx2+(mm+√2)xx+8.若这个函数是二次函数,求mm的取值范围【答案】mm≠√2且mm≠-√2【分析】根据二次函数的定义,即可得不等式mm2-2≠0,解不等式即可求得.【详解】解:∵函数yy=(mm2-2)xx2+(mm+√2)xx+8是二次函数,∴mm2-2≠0,解得mm≠±√2,故答案为:mm≠√2且mm≠-√2.【点睛】本题考查了二次函数的定义,熟练掌握和运用二次函数的定义是解决本题的关键.【题型4 二次函数的一般形式】【例4】(23-24九年级上·四川南充·阶段练习)二次函数yy=xx2−3xx+5的二次项是,一次项系数是,常数项是.【答案】xx2−3 5【分析】根据二次函数的定义判断即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.:.:增大而减小随在对称轴右侧,增大而增大;随在对称轴左侧,开口向下增大而增大随在对称轴右侧,增大而减小;随在对称轴左侧,开口向上x y x y x y x y 一、二次函数的定义1.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )A .y =x(x +1)B .xy =1C .y =2x 2-2(x +1)2D .132+=x y2.当m 时,函数y =(m -2)x 2+4x -5(m 是常数)是二次函数. 3.若1222)3(---=m mx m m y 是二次函数,则m = .4.若函数y =3x 2的图象与直线y=kx +3的交点为(2,b),则k= ,b = . 5.已知二次函数y =―4x 2-2mx+m 2与反比例函数24m y x+=的图象在第二象限内的一个交点的横坐标是―2,则m 的值是 .二、二次函数的图象与性质)(44)()(22),()44,2)(2222y x ab ac y ky h x a bx hx a bx k h ab ac a b a akh x a y c bx ax y 代入求或将值小最大值小最大时,最值:当时,最值:当对称轴:对称轴:顶点顶点(开口方向开口方向公式-===-==-=--↓↓+-=→----++=1.对于抛物线y =ax 2,下列说法中正确的是( )A .a 越大,抛物线开口越大B .a 越小,抛物线开口越大C .|a |越大,抛物线开口越大D .|a |越小,抛物线开口越大2.下列说法中错误的是( )A .在函数y =-x 2中,当x =0时,y 有最大值0B .在函数y =2x 2中,当x >0时,y 随x 的增大而增大C .抛物线y =2x 2,y =-x 2,221x y -=中,抛物线y =2x 2的开口最小,抛物线 y =-x 2的开口最大D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点3.二次函数 y=2(x -3)2+5的图象的开口方向、对称轴和顶点坐标分别为( ) A .开口向下,对称轴x=-3,顶点坐标为(3,5) B .开口向上,对称轴x =3,顶点坐标为(3,5)C .开口向上,对称轴x=-3,顶点坐标为(-3,5)D .开口向下,对称轴x=-3,顶点坐标为(-3,-5)4.已知抛物线的解析式为y=(x -2)2+1,则抛物线的顶点坐标是 ( )A .(-2,1)B .(2,1)C .(2,-1)D .(1,2) 5.已知二次函数y =x 2-4x +5的顶点坐标为( ) A .(-2,-1) B .(2,1) C .(2,-1) D .(-2,1)6.抛物线y=x 2+2x-1的对称轴是 ,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.7.抛物线c bx x y ++=23的顶点坐标为)0,32(,则b= ,c= .8.函数y =x 2―2x -l 的最小值是 ;函数y =-x 2+4x 的最大值是 . 9.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,则a = .配方),1(3y C ),,2(),,1(21y B y A --二次函数的对称性二次函数)0(2≠++=a c bx ax y : (1)此函数的对称轴为直线ab x 2-=; (2)若函数与x 轴相交于点)0,(),0,(21x B x A ,则对称轴可表示为221x x x +=;(3)若函数与x 轴相交于点),(),,(21n x B n x A (特点是纵坐标相同),则对称轴可表示为221x x x +=.10.抛物线2)1(2++=x a y 的一部分图象如图所示,该抛物线在y 轴右侧部分与x 轴交点坐标是 .11.如图,抛物线的对称轴是x=1,与x 轴交于A 、B 两点,B 点坐标为)0,3(,则点A 的坐标是 .12.抛物线)0()1(2≠+-=a k x a y 与x 轴交于)0,3(),0,(1B x A 两点,则线段AB 的长 . 13.已知二次函数c x x y ++-=22,若点),(),,(2211y x B y x A 在此函数的图象上,且121<<x x ,则21,y y 的大小关系是 .14.已知二次函数c ax x y ++-=2的对称轴是直线1=x ,若点在此函数的图象上,则321,,y y y 的大小关系是15.已知二次函数c bx ax y ++=2中,其函数y 与自变量x 之间的部分对应值如下表:x …… 0 1 2 3 4 …… y……414……点),(),,(2211y x B y x A 在函数的图象上,则当211<<x ,432<<x 时,1y 与2y 的大小关系正确的是( )21212121....y y D y y C y y B y y A ≥≤<>三、二次函数的平移、旋转与对称1.把抛物线2y x =-向左平移一个单位,然后向上平移3个单位,则平移后抛物线的表达式( )3)1(.3)1(.3)1(.3)1(.2222-+-=---=++-=+--=x y D x y C x y B x y A2.抛物线2)1(32-+-=x y 经过平移得到抛物线23x y -=,平移的方法是 A .向左平移1个单位,再向下平移2个单位 B .向右平移1个单位,再向下平移2个单位 C .向左平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向上平移2个单位3.在平面直角坐标系中,如果23x y =的图象不动,而把坐标轴分别向上平移2个单位,向右平移3个单位,那么新坐标系中此抛物线的解析式为 .4.将抛物线6422++-=x x y 的图象向左平移1个单位,再向下平移2个单位,平移后的解析式为 .5.将抛物线c bx x y ++=2的图象向右平移2个单位再向下平移2个单位,所得图象的关系式为322--=x x y ,则b= ,c= . 6.已知抛物线5422--=x x y ,(1)将其绕着顶点旋转180°后抛物线关系式是 .(2)关于y 轴对称的抛物线关系式是 ; (3)关于x 轴对称的抛物线关系式是 ;(4)关于原点对称的抛物线关系式是 .四、确定二次函数的表达式用待定系数法求二次函数的解析式:(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:()()21x x x x a y --=.已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式.1.顶点为(—1,—3),与y 轴交点为(0,—5).2.与x 轴交于A (—1,0)、B (1,0),并经过点M(0,1).3.图像经过点A(0,1)、B(1,2)、C(2,1).4.顶点坐标为(1,3)且在x 轴上截得的线段长为4.5.图象经过点(1,0)、(0,-3),且对称轴是直线x=1.6.已知抛物线c bx x y ++-=2如图所示,求它对应的表达式.五、二次函数的应用 知识铺垫:最值问题 (一)开口向上 1.当对称轴abx 2-=在所给范围内,必在顶点处取得最小值,在离对称轴较远端点处取得最大值; 2.当对称轴abx 2-=不在所给范围内,在离对称轴较远端点处取得最大值,离对称轴较近端点处取得最小值. (二)开口向下 1.当对称轴a bx 2-=在所给范围内,必在顶点处取得最大值,在离对称轴较远端点处取得最小值; 2.当对称轴abx 2-=不在所给范围内,在离对称轴较远端点处取得最小值,离对称轴较近端点处取得最大值.1.当22≤≤-x 时,求函数322--=x x y 的最大值和最小值.30m2.当21≤≤x 时,求函数12+--=x x y 的最大值和最小值.3.当0≥x 时,求函数)2(x x y --=的最大值和最小值.几何问题4.在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上. (1)如果设矩形的一边AB=x m,那么AD 边的长度如何表示?(2)设矩形的面积为y m 2,当x 取何值时,y 的值最大?最大值是多少? (3)若将矩形改为图2所示的位置,其他条件不变,那么矩形的最大面积是多少?5.用长为80 m 的栅栏,再借助外墙围城一个矩形羊圈ABCD ,已知房屋外墙长50 m ,设矩形ABCD 的边AB=x m ,面积为S m 2.(1)写出S 与x 之间的关系式,并指出x 的取值范围;(2)当AB,BC 分别为多少米时,羊圈的面积最大?最大面积是多少?6.有一座抛物线型拱桥,在正常水位时水面宽AB=20 m ,当水位上升3 m 时,水面宽CD=10 m.(1)按如图所示的直角坐标系,求此抛物线的函数表达式;(2)有一条船以5 km/h 的速度向此桥径直行来,当船距离此桥35 km 时,桥下水位正好在AB 处,之后水位每小时上涨0.25 m ,当水位达到CD 处时,将禁止船只通行.如果该船的速度不变,那么它能否安全通过此桥?C40m最大利润问题7.某旅馆有客房120间,每间客房的日租金为160元,每天都客满,经市场调查,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间。
不考虑其他因素,旅馆将每天的日租金提高多少元时,客房日租金的总收入最高?8.某人开始时,将进价为8元的某种商品按每件10元销售,每天可售出100件.他想采用提高最大售价的办法来增加利润.经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.每件定价多少元时,才能使一天的利润最大?最大利润是多少?9.某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出.(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式.(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.1x 2x 1x 1x六、二次函数与一元二次方程二次函数c bx ax y ++=2的图象与x 轴交点的坐标和一元二次方程02=++c bx ax 的根的关系:1.当∆>0时,抛物线与x 轴有两个交点,这两个交点的横坐标是方程02=++c bx ax 的两个不相等的实数根;2.当∆=0时,抛物线与x 轴有一个交点,这个交点的横坐标是方程02=++c bx ax 的两个相等的实数根,并且这一个交点即为抛物线的顶点;3.当∆<0时,抛物线与x 轴没有交点,这时方程02=++c bx ax 没有实数根.当a >0时,当1x x <或2x x >时,0>y ;当21x x x <<时,0<y . 当a <0时,当1x x <或2x x >时,0<y ;当21x x x <<时,0>y .5.当∆=0时,图象与x 轴只有一个交点)0,(1x . 当a >0时,x 为任何实数时,函数值0≥y ; 当a <0时,x 为任何实数时,函数值0≤y ;6.当∆<0时,图象与x 轴没有交点.当a >0时,图象落在x 轴的上方,x 为任何实数时,都有y>0; 当a <0时,图象落在x 轴的下方,x 为任何实数时,都有y<0.1.抛物线y=x 2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为 .2.抛物线y=x 2+bx+4与x 轴只有一个交点则b= .3.二次函数y=x 2-2(m+1)x+4m 的图象与x 轴( )A.没有交点B.只有一个交点C.只有两个交点D.至少有一个交点4.二次函数 y=kx 2-7x -7的图象与x 轴有交点,则k 的取值范围是 .5. 已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:则下列判断中正确的是( )A .抛物线开口向上B .抛物线与y 轴交于负半轴、C .当x =4时,y >0D .方程02=++c bx ax 的正根在3与4之间 6.抛物线c bx x y ++-=2的部分图象如图所示,若y>0,则x 的 取值范围是( )A .-4<x<1B . -3<x<1C .x<-4或x>1D .x<-3或x>1七、二次函数中c b a ,,的意义二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0. (2)b 由对称轴和a 的符号确定:由对称轴公式abx 2-=判断符号,左同右异. (3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;过原点,c=0.(4)b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0;没有交点,b 2-4ac <0.(5)当x=1时,可确定a+b+c 的符号;当x= -1时,可确定a-b+c 的符号; 当x=2时,可确定4a+2b+c 的符号,当x=-2时,可确定4a-2b+c 的符号.(6)由对称轴公式abx 2-=与x=1和x= -1比较,可确定2a+b ,2a-b 的符号.1.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③2.二次函数y=ax 2+bx+c 的图象如图所示,那么关于此二次函数的下列四个结论:①a <0;②c >0;③b 2﹣4ac >0;④<0中,正确的结论有( )A. 1B. 2C. 3D. 43.如图,二次函数y=x 2+(2﹣m )x+m ﹣3的图象交y 轴于负半轴,对称轴在y 轴的右侧,则m 的取值范围是( )A. m >2B. m <3C. m >3D. 2<m <34.如图为二次函数y=ax 2+b x +c 的图象,在下列说法中正确的说法有 .①ac <0; ②方程ax 2+b x +c=0的根是x 1= -1, x 2= 3 ③a +b +c >0 ④当x >1时,y 随x 的增大而增大.5.二次函数y=ax 2+b x +c 的图象如图所示,对称轴是直线x=1.有以下结论: (1)abc>0; (2)4ac<b 2; (3)2a+b=0; (4)a-b+c>2.其中正确的结论的个数是( ) A. 1 B. 2 C. 3 D. 4第4题 第5题 -第6题 6.如图所示,二次函数2(0)y ax bx c a =++≠的图象经过点(12)-,,且与x 轴交点的横坐标分别为12x x ,,其中121x -<<-,201x <<,下列结论中正确的有( ) ①420a b c -+<;②20a b -<;③1a <-;④284b a ac +>. A .1个B .2个C .3个D .4个7.如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为(21,1),下列结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论个数是( ) A.1 B.2 C.3 D.48.已知:二次函数y=ax 2+bx+c 的图象如图所示,下列结论中:①b >0;②c<0;③4a+2b+c > 0;④(a+c )2<b 2,其中正确的个数是 ( )A.4个 B.3个 C.2个 D.1个9.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A B C D10.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②⑤ B.①②④ C.①③⑤ D.②④⑤八、二次函数与几何图形(一)二次函数与三角形类型一:三角形的某一条边在坐标轴上或与坐标轴平行这类题目的做题步骤:1.求出二次函数的解析式;2.求出相关点的坐标;3.求出相关线段的长;4.选择合适方法求出图形的面积。