2015-2016学年第一学期数学检测考试答案 (1) - 副本 - 副本 - 副本

合集下载

2015-2016学年第一学期期末教学质量监测七年级数学试题附答案

2015-2016学年第一学期期末教学质量监测七年级数学试题附答案

2C.2102015-2016学年第一学期期末教学质量监测七年级数学试题2016.1亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共4页,满分100分,考试时间90分钟.2.答案必须写在答题纸相应位置上,写在试题卷、草稿纸上无效.3.答题前,请认真阅读答题纸上的《注意事项》,按规定答题.4.本次考试不得使用计算器.祝你成功!一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.-2的绝对值是(▲)A.-2B.-1D.122.单项式-xy2的系数是(▲)A.1B.﹣1C.2D.33.如图,这是由大小相同的长方体木块搭成的立体图形,则从正面看这个立体图形,得到的平面图形是(▲)从正面看A.B.C.D.4.将一副三角板按如图方式摆放在一起,若∠2=30°′,则∠1的度数等于(▲) A.30°10′B.60°10′ C.59°50′D.60°50′5.下列运算正确的是(▲)A.5x2y-4x2y=x2yB.x-y=xyC.x2+3x3=4x5第4题第7题D.5x3-2x3=36.若关于x的方程ax=3x-2的解是x=1,则a的值是(▲)A.﹣1B.-5C.5D.17.如图,某轮船在O处,测得灯塔A在它北偏东40°的方向上,渔船B在它的东南方向上,则∠AOB的度数是(▲).A.85B.90C.95D.1008.若有理数m在数轴上对应的点为M,且满足m>1且m<0,则下列数轴表示正确的是(▲)A.B.1 个单位长度的速度按如图所示的箭头方向沿着实线段和以点 O 为圆心的半圆匀速运三、解答题(本题共 7 小题,第 21 AC BlC .D .9.用[x]表示不大于 x 的整数中最大的整数,如 [2.4]=2,[﹣3.1]=﹣4,请计算=( ▲ ).A .-1B .0C .1D .210.点 O 在直线 AB 上,点 A 1,A 2,A 3,……在射线 OA 上,点 B 1,B 2,B 3,……在射线 OB 上,图中的每一个实线段和虚线段的长均为 1 个单位长度.一个动点 M 从 O 点出发,以每秒... 动,即从 OA 1B 1B 2 → A 2……按此规律,则动点 M 到达 A 10 点处所需时间为( ▲ )秒.A .10 + 55πB . 20 + 55π C.10 + 110π D. 20 + 110π二、填空题(本题共 10 小题,每小题 2 分,共 20 分)1 111.写出一个在 -1 和1 之间的整数▲ . 2 212.单项式 - 3x n y2 是 5 次单项式,则 n =▲.第 10 题13.2015 年,天猫双十一全球狂欢节销售实际成交值超过 912 亿,将 91 200 000 000 用科学记数法表示为 ▲ .14.如图,C 、D 是线段 AB 上两点,若 CB=4cm ,DB=7cm ,且 D 是 AC 中点,则 AC 的长等于 ▲ cm .15.要把一根木条在墙上钉牢,至少需要 2 枚钉子.其中蕴含的数学道理是▲ . 16.如图,∠1=20°,∠AOC =90°,点 B ,O ,D 在同一直线上,则∠2=▲°.是-10输入⨯ 2大于 8 输出否-6第 16 题第 18 题17.若多项式 x 2+2x 的值为 5,则多项式 2x 2+4x+7 的值为▲ .18.有一个数值转换器,其工作原理如图所示,若输入的数据是 3,则输出的结果是▲ . 19.从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为每小时 8 千米,公交车的速度为每小时 40 千米,设甲乙两地相距 x 千米,则列方程为▲.20.如图, 已知点 A 、点 B 是直线上的两点,AB =12 厘米,点 C 在线段 AB 上,且 AC =8厘米.点 P 、点 Q 是直线上的两个动点,点 P 的速度为 1 厘米/秒,点 Q 的速度为 2 厘米/秒.点 P 、Q 分别从点 C 、点 B 同时出发,在直线上运动,则经过▲ 秒时线段 PQ 的长为 5 厘米.第 20 题题 6 分,第 23 题 8 分,第 24 题 6题 8 分,第 22分,第 25 题 6+ ) ÷ - ⨯分,第 26 题 6 分,第 27 题 10 分,共 50 分)21.计算: (1) -10 + 5 - 3(2) - 2 2 ( - 4) 6 (1 21322.先化简,再求值: 4a 2 + 2a - 2(2a 2 - 3a + 4) ,其中 a = 2 .23.解方程:(1) 5 x - 3 = 4 x + 15(2)x - 1 2 x - 1= 5 -2 324.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)如图,已知平面上有四个点 A ,B ,C ,D .(1)作射线 AD ;(2)作直线 BC 与射线 AD 交于点 E ;(3)连接 AC ,再在 AC 的延长线上作线段 CP=AC .(要求尺规作图,保留作图痕迹,不写作图步骤)25.春节将至,某移动公司计划推出两种新的计费方式,如下表所示:月租费本地通话费方式 130 元/月0.20 元/分钟 方式 20.40 元/分钟请解决以下两个问题:(通话时间为正整数)(1)若本地通话 100 分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?26.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…, 我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的 集合满足:当有理数 x 是集合的一个元素时, 2016﹣x 也必是这个集合的元素,这样 的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合, (1)集合{2016} 黄金集合,集合{-1,2017} 黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为 4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数 M ,且 24190 < M < 24200 ,则该集合共有几个元素?说明你的理由.27.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OB C=90°,∠BO C=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t=秒时,OM平分∠AOC?如图2,此时∠NOC-∠AOM=°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC与∠AOM有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=秒时,OM平分∠AOC?②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.图2图1图3备用图数学试题参考答案2016.1一、选择题(每小题3分,共30分)题号答案1C2B3A4C5A6D7C8D9B10A二、填空题(每小题2分,共20分)11.-1,0,1(选其一)12.313.9.12101014.6 15.两点确定一条直线16.11017.1718.0(2)= - 4 ÷( - 4)- 6 ⨯ 52 = 5 -50 4019.x x 1- = 3.6 20. ,1,3,9(有正确答案但不完整即得 1 分) 8 40 3三、解答题(共 50 分) 21.(8 分)(1)-8………4 分6 ………2 分=1 - 5 ………3 分= - 4………4 分22.(6 分)原式= 4a 2 + 2a - 4a 2 + 6a - 8………2 分= 8a - 8………4 分 把 a = 2 代入,得:原式=8………6 分 23.(8 分) (1) 5 x - 3 = 4 x + 155 x - 4 x = 15 + 3………2 分 x = 18………4 分(2) x - 1 2 x - 133( x - 1) = 30 - 2(2 x - 1)………1 分3x - 3 = 30 - 4 x + 2 ………2 分 3x + 4 x = 30 + 2 + 3………3 分7 x = 35x = 5………4 分24.(6 分)25.(6 分)(1)方式一:方式二:(2)解:设通话时间为 x 分钟,由题意得:30 + 0.2 x = 0.4 x……4 分 解得: x = 150……6 分答:当通话时间为 150 分钟时,两种计费方式的收费一样多。

2015-2016学年度第一学期期末测试七年级数学附答案

2015-2016学年度第一学期期末测试七年级数学附答案

2015-2016学年度第一学期期末测试七年级数学说明:1.考试时间为100分钟,满分120分;2.各题均在答题卷指定位置上作答,否则无效;考试结束时,只交回答题卷.一、选择题(本大题共10小题,每小题3分,共30分)每小题给出的4个选项中,只有一个是正确的,请将所选选项的字母填写在答题卷相应的位置上.1、6-的相反数是( ) A 、6 B 、6- C 、61 D 、61- 2、下面几个有理数中,最小的数是( )A 、1B 、2-C 、0D 、5.2- 3、计算3)3(-的结果是( )A 、6B 、9C 、27D 、-27 4、下列各组代数式中,不是同类项的是( )A 、y x 2-和y x 25 B 、32和2 C 、xy 2和 23xy D 、2ax 和2a x 5、下列等式中正确的是( )A 、a b b a -=--)(B 、b a b a +-=+-)(C 、12)1(2+=+a aD 、x x +=--3)3(6、如图是由6个大小相同的正方形组成的几何体,它的左视图是( )7、若b a =,则下列式子不正确的是( )A 、11+=+b aB 、55-=+b aC 、b a -=-D 、0=-b a 8、下列等式中,不是整式的是( ) A 、y x 21- B 、x 73 C 、11-x D 、09、若0<a ,下列式子正确的是( )A BCDA 、0<-aB 、02>aC 、22a a -=D 、33a a -=10、把弯曲的道路改直,就能缩短两点之间的距离,其中蕴含的数学原理是( )A 、两点确定一条直线B 、两点之间线段最短C 、过一点有无数条直线D 、线段是直线的一部分二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷相应的位置上.11、=- 5 . 12、︒20的补角是 . 13、方程0121=+x 的解为 . 14、地球与太阳之间的距离为150 000 000km ,用记数法表示为 km .15、某种商品原价为每件b 元,第一次降价打八折,第二次降价每件又减10元,两次降价后,该商品每件的售价是 元.16、点A ,B ,C 在同一条直线上,6=AB cm ,2=BC cm ,则=AC . 三、解答题(一)(本大题共3小题,每小题6分,共18分) 17、计算:(1)15)7()18(12--+--; (2))3(9)216()3()2(3-÷-+⨯-+-. 18、计算:(1)222243234b a ab b a --++; (2))43()42(b a b a +--.19、已知平面内有A ,B ,C 三个点,按要求完成下列问题. (1)作直线AB ,连结BC 和AC ;(2)用适当的语句表述点C 与直线AB 的关系.四、解答题(二)(本大题共3小题,每小题7分,共21分)20、解方程:42321xx -+=+. 21、x 为何值时,式子65+-x x 的值比31-x 的值大3?22、(1)已知()2210x y +++=,求x ,y 的值;BAA(2)化简:)]921(3121[4322xy y x xy y x -+-.五、解答题(三)(本大题共3小题,每小题9分,共27分)23、某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价和售价如下表:(1)求甲,乙两种节能灯各进货多少时,使进货款恰好为46 000元;(2)应如何进货,使销售完节能灯时,商场获得的利润恰好是进货价的30%,此时利润为多少?24、如图,点O 在直线AB 上,OD 是AOC ∠的平分线,射线OE 在BOC ∠内. (1)图中有多少个小于︒180的角?(2)若OE 平分BOC ∠,求DOE ∠的度数;(3)若BOE COE ∠=∠2,︒=∠108DOE ,求COE ∠的度数.25、如图,点O 是数轴的原点,点A 是数轴上的一个定点,点A 表示的数为-15,点B 在数轴上,且OA OB 3=,数轴上的两个动点M ,N 分别从点A 和点O 同时出发,向右移动,点M 的运动速度为每秒3个单位,点N 的运动速度为每秒2个单位.(1)求点B 和线段AB 的中点P 对应的有理数;(2)若点B 对应的数为正数,点M 移动到线段AB 的中点P 时,求点N 对应的有理数; (3)求点M ,N 运动多少秒时,点M ,N 与原点的距离相等.2015-2016学年度第一学期期末测试N M OACBE AD七年级数学答案及评分标准一、选择题:A D D D A A B C B B 二、填空题:11、5 12、︒160 13、2-=x 14、8105.1⨯ 15、108.0-b 16、4cm .三、解答题:17、解:(1)2222015)7()18(12-=-=--+--; (2)593548)3(9)216()3()2(3-=+--=-÷-+⨯-+-.评分说明:每小题3分.(1)答案正确就给3分;(2)计算3)2(- ,)216()3(+⨯-,)3(9-÷-各占1分,答案错误扣1分.18、解:(1)222b ab a -+;(2)b a 8--.评分说明:每小题3分.第(1)小题中,合并同类项每项占1分;第(2)小题中,去括号,每个括号占1分,计算答案占1分.19、(1)作直线AB ,线段BC ,线段AC 各占1分,共3分;(2)点C 在直线AB 外,3分. 20、解:去分母,得)2(12)1(2x x -+=+, 2分 去括号,得x x -+=+21222, 4分 移项,合并,得123=x , 6分 系数化1,得4=x 7分去括号,得221856->+--x x x , 4分 移项,合并得153->x , 5分 系数化1,得5->x , 6分21、去分母,得18)1(2)5(6=--+-x x x 2分去括号,得182256=+---x x x 4分 移项,合并得213=x 5分 系数化1,得7=x , 6分 ∴当7=x 时,式子65+-x x 的值比31-x 的值大3. 7分22、(1)∵()2210x y +++=,∴02=+x ,01=+y 2分 ∴2=x ,1-=y ; 3分(2))]921(2121[4322xy y x xy y x -+- ]294121[4322xy y x xy y x -+-= 4分 )441(4322xy y x y x --= 5分 xy y x y x 4414322+-= 6分 xy y x 4212+= 7分 评分说明:(1)中x ,y 答对1个给1分,答对2个给满分,共3分,没写出过程不扣分;(2)去小括号占1分,中括号内合并占1分,去中括号占1分,计算答案占1分,共4分.23、(1)设甲种节能灯购进x 只,乙种节能灯购进)1200(x -只, 1分 依题意得,46000)1200(4525=-+x x , 3分 解得400=x ,8001200=-x , 4分 即甲种节能灯购进400只,乙种节能灯购进800只,进货款恰好为46 000元; 5分 (2)进货款为x x x 2054000)1200(4525-=-+, 销售款为x x x 3072000)1200(6030-=-+利润为x x x 1018000)2054000()3072000(-=---,依题意有x x 3072000%)301)(2054000(-=+-, 7分 解得450=x ,7501200=-x , 135001018000=-x ,即甲种节能灯购进450只,乙种节能灯购进750只时,商场获得的利润恰好是进货价的30%,此时利润为13500元. 9分24、(1)9个; 2分 (2)∵OD 平分AOC ∠,OE 平分BOC ∠,∴AOC COD ∠=∠21,BOC COE ∠=∠21, 3分∵︒=∠+∠180BOC AOC , ∴︒=∠+∠=∠+∠=∠+∠90)(212121BOC AOC BOC AOC COE COD , ∴︒=∠+∠=∠90COE COD DOE ; 5分 (3)设x BOE =∠,∵BOE COE ∠=∠2,∴x COE 2=∠ ∴x AOC 3180-︒=∠, ∵OD 平分AOC ∠,∴AOC COD ∠=∠21, ∵︒=∠=∠+∠108DOE COE COD, 7分 ∴︒=+-︒1082)3180(21x x ,︒=36x , 8分 ∴︒=∠72COE . 9分 25、(1)∵15=OA ,OA OB 3=,∴45=OB ,若点B 在原点的右边,60=AB , ∴点B 对应的有理数为45,线段AB 的中点P 对应的有理数为15,若点B 在原点的左边,30=AB , ∴点B 对应的有理数为-45;线段AB 的中点P 对应的有理数为-30;(2)当点B 对应的数为正数时,则点M 移动30个单位到达线段AB 的中点P ,点M 移动的时间为10330= 秒,此时点N 移动的距离为20102=⨯,∴点N 对应的有理数为20; (3)设经过x 秒点有ON OM =,若点B 在原点的右边,则1523=-x x ,15=x , 若点B 在原点的左边,则153245-=-x x ,12=x .C BE AD。

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1.在-25, 0,25,2.5这四个数中,绝对值最大的数是 A. -25 B.0 C. 25D.2.5 2.下面运算正确的是 A.369a b ab += B.33330a b ba -= C.43862a a a -= D.22111236y y -= 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.如果一个角的余角是50°,则这个角的补角的度数是A.130°B.140°C.40°D.150°5.如图是每个面都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“祝”字相对的面是A.新B.年C.快D.乐6.下图是由八个相同的小正方体组合而成的几何体,其左视图是7.已知多项式2222A x y z =+-,222=432B x y z -++,且0A B C ++=,则C 为A.2225x y z --B.22235x y z --C.22233x y z --D.22235x y z -+8.如图,点O 在直线AB 上,射线OC 、OD 在直线AB 的同侧,∠AOD =50°,∠BOC =40°,OM 、ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为A.135°B.140°C.152°D.145° 9.如图,直线l 1∥l 2,则∠α为 A.150° B.140° C.130° D.120° 10.若8,5a b ==,且a b +>0,则a b -的值为 A.3或13 B.13或-13 C.3或-3 D. -3或-1311.已知A 、B 、C 三点在同一直线上,M 、N 分别为线段AB 、BC 中点,且AB =60,BC =40,则MN 的长为A.10B.50C.20或50D.10或12.下面每个表格中的四个数都是按相同规律填写的: 根据此规律确定x 的值为A.135B.170C.209D.252第Ⅱ卷(非选择题共72分)乐快年新你祝D C B A NMD C B A l 2············第4个第3个第2个第1个35834∙∙∙···x 20b a 541054206329421二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案填在题中横线上)13.312m a b 与212n a b -是同类项,则m n -=________; 14.规定符号*运算为a *b =21ab a b -++,那么-3*4=_____________;15.若代数式2245x x --的值为6,则2122x x --的值为_________; 16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为_____________________.三、解答题(本大题共6个小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)计算与化简:(1)2241325(2)4-+----⨯-()() (2)224(6)3(2)x xy x xy +---18.(本小题满分8分)先化简,再求值:2211312()()2323a a b a b ----,其中22,3a b =-=.19.(本小题满分9分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了4.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.(本小题满分8分)某中学初一(四)班3位教师决定带领本班a名学生在五一期间取北京旅游,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律八折优惠.(1)分别用代数式表示参加这两家旅行社所需的费用;(2)如果这3位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?21.(本小题满分10分)如图,已知AB∥CE,∠A=∠E,试说明∠CGD=∠FHB.22.(本小题满分11分)HGFEDCBA将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)1若∠DCE=45°,则∠ACB的度数为_________:2 若∠ACB=140°,则∠DCE的度数为______;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE所有可能的值(不必说明理由);若不存在,请说明理由.。

厦门市2015—2016学年度第一学期高二年级质量检测数学(

厦门市2015—2016学年度第一学期高二年级质量检测数学(

厦门市2015—2016学年度第一学期高二年级质量检测数学(文科)参考答案一、选择题:(本大题共12小题,每小题5分,共60分)12.设11(,)A x y 、22(,)B x y ,由2(1)y x y k x ⎧=⎨=-⎩得222(21)0k x k x k -++=,即121x x ⋅=.又211222y x y x ⎧=⎪⎨=⎪⎩,∴21212()1y y x x ⋅=⋅=即121y y ⋅=-,∴12120x x y y ⋅+⋅=, 即OA OB ⊥.设33(,)C x y 、44(,)D x y ,直线OA :1y k x =,直线OB :2y k x =,则121k k ⋅=-.由21y x y k x ⎧=⎨=⎩得00x y =⎧⎨=⎩或21111x k y k ⎧=⎪⎪⎨⎪=⎪⎩即21111(,)A k k ,同理22211(,)B k k .由221(2)4x y yk x ⎧-+=⎨=⎩得00x y =⎧⎨=⎩或211214141x k k y k ⎧=⎪+⎪⎨⎪=⎪+⎩即1221144(,)11k D k k ++, 同理2222244(,)11k E k k ++.∴OA =,OB = OD =OE =∴221122221211111(1)(1)2(1)(1)12116161642OABODEk k OA OB S k k k k S OD OE ∆∆++++++====≥. 二、填空题:(本大题共4小题,每小题5分,共20分)13.,x R ∀∈21xx ≠+; 14.815y x =- ; 15.3λ<; 16.20. 三、解答题:(本大题共6小题,共70分.解答应写出文字说明,或演算步骤). 17.本题考查等差、等比数列的通项公式及前n 项和公式等基础知识,考查运算求解能力.考查化归与转化思想、方程思想.满分10分. 【解析】(Ⅰ)设等比数列{}n a 的首项为1a ,公比为q .364,32a a ==,解得12,1q a ==, ··································· 3分 1112n n n a a q --∴==. ······················································· 4分(Ⅱ)设等差数列{}n b 的首项为1b ,公差为d .4145b =+=,21b =,∴4224,d b b =-=即2d =,11=-b , ·········· 6分∴23n b n =-, ··································································· 7分 ∴数列{}+n n a b 的前n 项和为11()(1)12n n n n b b a q T q +-=+-12(123)122n n n --+-=+- ···························································· 9分 2221n n n =+-- . ···································································· 10分18.本题考查正弦、余弦定理和解三角形等基础知识,考查运算能力、思维分析能力,考查化归与转化思想、方程思想、分类讨论思想.本题满分12分.【解析】(Ⅰ) 由正弦定理,结合条件:sin (sin sin c C a A b B ⋅⋅⋅=+(可得,2(a c b a b -⋅=⋅+( ································· 2分22a b =+22b b a =+.222b a c ∴+-, ··········································································· 4分2222a c ab b ==+-,即 cos C =,0C π<<,6C π∴=. ········· 6分(Ⅱ)法一:由余弦定理,结合条件:32=a ,2c =, 又由(Ⅰ)知6C π=,可得 2222cos c a b ab C =+-,∴24122b =+-⋅,即2680b b -+=, ··········· 8分 解得2b =或4b =,经检验,两解均有意义. ··········· 11分综上,ABC ∆周长为4+6+ ··· 12分法二:由正弦定理,结合条件:32=a ,2c =,又由(Ⅰ)知6C π=,可得1sin 2sin 2a C A c === ············································ 7分 a c > A C ∴> 3A π∴=或23π,从而2B π=或6π. ······························· 8分当2B π=时,ABC ∆为直角三角形,4b ∴=,ABC ∴∆周长为6+ 当6B π=时,ABC ∆为等腰三角形,2b c ∴==,ABC ∴∆周长为4+ 11分综上,ABC ∆周长为4+6+ ··· 12分 19.本题考查抛物线定义,直线与抛物线关系,考查运算求解能力.考查化归与转化思想、数形结合思想、分类讨论思想.本题满分12分.【解析】(Ⅰ)由题意得,M 到点(3,0)的距离与到直线3x =-的距离都等于半径,由抛物线的定义可知, C 的轨迹是抛物线,设其方程为22y px =,32p=, ∴M 的轨迹方程为212y x =. ··································· 3分 (Ⅱ)法一:显然斜率不为0,设直线l :6x ty =+,11(,)A x y 、22(,)B x y2AP PB =,∴1122(6,)2(6,)x y x y --=-,∴122y y =-, ···················· 6分 由2126y x x ty ⎧=⎨=+⎩得212720y ty --=∴12121272y y t y y +=⎧⎨⋅=-⎩, ································ 8分又122y y =-,∴ 121260.5y y t =⎧⎪=-⎨⎪=⎩或121260.5y y t =-⎧⎪=⎨⎪=-⎩ , ······································ 10分∴ 直线l 的方程是212y x =-或212y x =-+. ·································· 12分法二:①当直线l 的斜率不存在时,直线l :x =6,显然不成立. ················ 4分 ②当直线l 的斜率存在时,设直线l :(6)y k x =-,11(,)A x y 、22(,)B x y ,2AP PB =, ∴1122(6,)2(6,)x y x y --=-,∴12218x x +=, ··············· 7分由212(6)y x y k x ⎧=⎨=-⎩得222212(1)360k x k x k -++=,∴21221212(1)36k x x k x x ⎧++=⎪⎨⎪⋅=⎩, ·· 9分 ∴121232x x k =⎧⎪=⎨⎪=±⎩······················································································ 11分 ∴直线l 的方程是212y x =-或212y x =-+. ·············· 12分20.本题考查等差等比数列的定义、性质,等差等比数列的综合运用,及求数列的前n 项和,考查运算求解能力.考查化归与转化思想、方程思想.本题满分12分. 【解析】(I )13,,n n a a +成等差数列,1123,32(3),n n n n a a a a ++∴=+∴-=- ··· 2分 即11323n n n n b a b a ++-==-,又131a -=,······································· 4分 ∴{}n b 是首项为1,公比为2的等比数列. ··································· 5分(II ){}n b 是首项为1,公比为2的等比数列,∴132n n n b a -=-=,即123n n a -=+. ··················································· 7分 又22log (26)log 2n n n c a n =-==, ··············································· 8分212111111()(21)(21)22121n n c c n n n n -+∴==--+-+, ······································· 9分 13352121111n n n T c c c c c c -+∴=+++111111(1)23352121n n =-+-++--+ ················································· 10分 111(1)2212n =-<+.······························································ 12分 21.本题考查解二次不等式、利用二次函数和基本不等式求最值,考查数学建模能力,信息处理能力和运算能力,考查化归转化思想、数形结合思想、函数方程思想和分类讨论思想.本题满分12分. 【解析】(Ⅰ)设该企业计划在A 国投入的总成本为()Q x (亿元), 则当010x ≤≤时,25()1644x x Q x =++,依题意:25()51644x x Q x =++≤, ············································· 1分 即24600x x +-≤,解得106x -≤≤, ··················· 3分 结合条件010x ≤≤,06x ∴≤≤.················· 4分 (Ⅱ)依题意,该企业计划在A 国投入的总成本为25,010,1644()42,10.5x x x Q x x x x ⎧++≤≤⎪⎪=⎨⎪+->⎪⎩5分 则平均处理成本为251,010,()1644421,10.5x x Q x x x x x x⎧++≤≤⎪⎪=⎨⎪-+>⎪⎩ ·········· 6分(i) 当010x ≤≤时,()51116444Q x x x x =++≥=5164x x =,即x =min()Q x x ⎛⎫= ⎪⎝⎭. ·············· 8分 (ii) 当10x >时, 22()42119914()520100Q x x x x x =-+=-+, ∴当1120x =即x =20时,min ()99100Q x x ⎛⎫=> ⎪⎝⎭. ············· 10分 ∴当x =min()Q x x ⎛⎫= ⎪⎝⎭. ···················· 11分 答:(Ⅰ)该工艺处理量x 的取值范围是06x ≤≤.(Ⅱ)该企业处理量为亿元. ······························································································· 12分 22.本题考查曲线的轨迹方程、直线和椭圆的位置关系、弦长公式、定点定值问题等知识,考查运算求解能力,探究论证能力.考查化归与转化思想、数形结合思想、函数方程思想、分类讨论思想.本题满分12分. 【解析】(I )设M 的坐标为(,)x y ,则1A M k x =≠,2A M k x =≠,12=-(x ≠, ········································· 1分化简得点M的轨迹方程是221(2x y x +=≠. ····································· 3分 (Ⅱ)①当直线l的斜率不存在时,PQ = ···································· 4分②当直线l 的斜率存在时,设11(,)P x y ,22(,)Q x y ,直线l 的方程为:(1)y k x =-,则2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩得,2222(21)4220k x k x k +-+-=,∴212221224212221k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩, · 6分222)1)2121k PQ k k +===+>++ ·· 7分综上所述,PQ. ··············· 8分(Ⅲ)假设点N 存在,由椭圆的对称性得,则点N 一定在x 轴上,不妨设点(,0)N n ,当直线l 的斜率存在时,由(Ⅱ)得212221224212221k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩, ∴22121212122(1)(1)[()1]21k y y k x k x k x x x x k ⋅=--=⋅-++=-+,11(,)NP x n y =-,22(,)NQ x n y =-,∴21212121212()()()NP NQ x n x n y y x x n x x n y y ⋅=-⋅-+⋅=⋅-+++⋅∴22222222222224(241)221212121k k k n n k n NP NQ n n k k k k --++-⋅=-+-=++++ ·· 10分 对于任意的k ,0NP NQ ⋅=,∴22241020n n n ⎧-+=⎪⎨-=⎪⎩, ······························· 11分方程组无解,∴点N 不存在.综上所述,不存在符合条件的点N . ············································· 12分。

2015~2016年最新苏教版六年级数学上册试卷1全程测评卷(全套)(附完整答案)

2015~2016年最新苏教版六年级数学上册试卷1全程测评卷(全套)(附完整答案)

苏教版六年级数学上册试卷
特别说明:本试卷为(2015~2016年改版后)最新苏教版教材配套试卷。

全套试卷共22份(含答案)。

试卷内容如下:
1. 第一单元测评卷(一)1
2.第六单元测评卷(一)
2. 第一单元测评卷(二)1
3.第六单元测评卷(二)
3. 第二单元测评卷1
4.分类测评卷(一)
4. 阶段测评卷(第一、二单元)1
5.分类测评卷(二)
5. 第三单元测评卷(一)1
6.分类测评卷(三)
6. 第三单元测评卷(二)1
7.分类测评卷(四)
7. 期中测评卷(一)18.期末测评卷(一)
8. 期中测评卷(二)19.期末测评卷(二)
9. 第四单元测评卷20.期末测评卷(三)
10.第五单元测评卷21.期末测评卷(四)
11.阶段测评卷(第四、五单元)22.期末测评卷(五)。

2015-2016学年度第一学期北师大六年级数学测试试卷(附答案)

2015-2016学年度第一学期北师大六年级数学测试试卷(附答案)

六年级数学尖子卷 第1页,共4页六年级数学尖子卷 第2页,共4页2015至2016学年度第一学期 小学六年级数学尖子卷(满分100分,考试时间70分钟)一、冷静思考正确填空。

(共16分)1、圆的周长是直径的( )倍。

2、一个圆形花坛的半径是4米,沿它的边沿走一圈,共走了( )米,它的占地面积是( )平方米。

3、一件衣服降价10%,表示( )比( )减少10%。

4、大圆的直径是小圆的2倍,大圆的周长是小圆的( )倍,小圆的面积是大圆面积的( )。

5、实验小学女教师人数比男教师多52,那么女教师的人数是男教师的( )%。

6、一批产品的合格率是95%,300个检验产品中有( )个不合格。

7、6÷5= =( )小数=( )%8、比80千克多21是( ),300千克比( )少25%9、绿色小队参加植树,共植400棵,有8棵没成活,这批数的存活率是( )%。

10、一个立体图形,从上面看是,从左面看是,拼成这样的立体图形最多需要( )个小正方体。

二、认真细致,用心计算。

(共26分) 1、直接写出得数。

(8分)0.12= 3.14×302 = 78×9.9+78= 0.4÷40%= 54×8= 45 + 43 = 53×4-4×52= 20%÷72=1、计算下列各题,能简算要简算。

(9分)0.25×32×1.25 52×61+154 30×(21-52+32)3、解方程。

(9分)x -15%x =25.5 1-43x =0.6 3x +10%=1三、反复比较,慎重选择。

(共10分) 1、下列哪个式子表示半圆的周长( )A . πd ÷2B . πd ÷2 +dC . πr2、甲数的52等于乙数的30%,甲数( )乙数。

A.大于B.小于C.等于D.无法比较 3、下列说法正确的是( )A.甲数是乙数的25%,乙数是甲数的4倍。

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016 学年第一学期期末教学质量监测九年级数学试题2016.1亲爱的考生:欢迎参加考试!请你认真审题,积极思考,仔细答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共 6 页,满分 150 分,考试时间 120 分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效. 3.答题前,请认真阅读答题纸上的《注意事项》 按规定答题. 4.本次考试不得使用计算器,请耐心解答.祝你成功!一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.下列函数的图象是双曲线的是( ▲ )A . y = 2 x - 1B . y =1C . y = xD . y = x 2x2.下列事件是随机事件的是( ▲ )A .火车开到月球上;B .抛出的石子会下落;C .明天临海会下雨;D .早晨的太阳从东方升起.3.二次函数 y =x 2+4x -5 的图象的对称轴为( ▲ )A .x =4B .x =﹣4C .x =2D .x =﹣24.如图,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A =50°,∠C =60°,则∠DOE =( ▲ )A .70°B .110°C .120°D .130°C B ′ CC ′E F OBD(第 4 题)A B(第 5 题)A△5.如图,把 ABC 绕着点 A 顺时针方向旋转 34°,得到△AB ′C ′,点 C 刚好落在边 B ′C ′上.则∠C ′=( ▲ )A .56°B .62°C .68°D .73°6.将抛物线 y =3x 2 先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( ▲ )A .y =3(x +1)2+1B .y =3(x +1)2-1C .y =3(x -1)2+1D .y =3(x -1)2-17.小洋用一张半径为 24 cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计), 如果做成的圆锥形小丑帽子的底面半径为 10 cm ,那么这张扇形纸板的面积是( ▲ )A .120 π cm 2B .240 π cm 2C .260 π cm 2D .480 π cm 224 cmy A nA 4 A 3 A 2 A 1…B nB 4C 3C 2B 3B 2C 1B 1O(第 10 题)x4 (1 + k )2 = 1 B . k + k 2 = 1 4 4 (1 + k )2 = 1(x - 1)2 = ( 2 ) ,所以 x8.用锤子以均匀的力敲击铁钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的 k 倍(0<k <1).已知一个钉子受击 3 次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的 4 7,设铁钉的长度为 1,那么符合这一事实的方程是( ▲ )A .4 4 7 7 74 4 4 C . + k + k 2 = 1 D . + 7 7 7 7 79.利用平方根去根号可以构造一个整系数方程.例如: x =2 + 1 时,移项得 x - 1 = 2 ,两边平方得22 - 2 x + 1 = 2 ,即 x 2 - 2 x - 1 = 0 .仿照上述构造方法,当 x =6 - 1 2时,可以构造出一个整系数方程是( ▲ )A . 4 x 2 + 4 x + 5 = 0B . 4 x 2 + 4 x - 5 = 0C . x 2 + x + 1 = 0D . x 2 + x - 1 = 010.如图,在 y 轴正半轴上依次截取 OA 1=A 1A 2=A 2A 3=…=A n-1A n (n 为正整数),过 A 1,A 2,A 3,…,A n 分别作 x 轴的平行线,与反比例函数 y =2 x(x >0)交于点 B 1,B 2,B 3,…,B n ,如图所示的 Rt △B 1C 1B 2,△Rt B 2C 2B 3,△Rt B 3C 3B 4,…,△Rt B n-1C n-1B n 面积分别记为 S 1,S 2,S 3,…,S n-1,则 S 1+S 2+S 3+…+S n-1=( ▲ )A .1B .2C .1﹣1 1D .2﹣n n二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)11.点 A (1,19)与点 B 关于原点中心对称,则点 B 的坐标为▲ .12.如果反比例函数 y = m - 3x的图象在 x <0 的范围内,y 随 x 的增大而减小,那么 m 的取值范围是 ▲13.如图,点 O 是正五边形 ABCDE 的中心,则∠BAO 的度数为▲ .AyD CPBOEH GAOBC D(第 13 题)A E O FB x(第 15 题) (第 16 题)14.一个盒子中装有大小、形状一模一样的白色弹珠和黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是13.如果盒子中白色弹珠有4颗,则盒中有黑色弹珠▲颗.15.如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD的边长为4,则正方形EFGH的边长为▲.2-1-c-n-j-y16.如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=▲秒时,点P与点C中心对称,且对称中心在直径AB上.三、解答题(本大题共8小题,第17题10分,第18题7分,第19题8分,第20题9分,第21题10分,第22题10分,第23题12分,第24题14分,共80分)17.解方程:(1)4x2-20=0;(2)x2+3x-1=0.18.动手画一画,请把下图补成以A为对称中心的中心对称图形.A19.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.D CB EOA20.已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)x=0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.同时从袋中各随机摸出 1 个球,并计算摸出的这 2 个小球上数字之和,记录后都将小球放回袋中搅匀,进行重21.一只不透明的袋子中装有 4 个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x .甲、乙两人每次..复试验.实验数据如下表:摸球总次数“和为 8”出现的频数102 2010 3013 6024 9030 12037 18058 24082 330110 450150“和为 8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为 8”的频率将稳定在它的概率附近.估计出现“和为 8” 的概率是▲;(2)当 x =7 时,请用列表法或树状图法计算“和为 8”的概率;并判断 x =7 是否可能.22.如图是一种新型娱乐设施的示意图,x 轴所在位置记为地面,平台 AB ∥x 轴,OA =6 米,AB =2 米, BC 是反比例函数 y = k x的图象的一部分,CD 是二次函数 y =﹣x 2+mx +n 图象的一部分,连接点 C 为抛物线的顶点,且 C点到地面的距离为 2 米, D 点是娱乐设施与地面的一个接触点.(1)试求 k ,m ,n 的值;(2)试求点 B 与点 D 的水平距离.yA BCOD x23.如图 1,正方形 ABCD 与正方形 AEFG 的边 AB ,AE (AB <AE )在一条直线上,正方形 AEFG 以点 A 为旋转中心逆时针旋转,设旋转角为 α.在旋转过程中,两个正方形只有点 A 重合,其它顶点均不重合,连接 BE ,DG .(1)当正方形 AEFG 旋转至如图 2 所示的位置时,求证:BE =DG ;(2)如图 3,如果 α=45°,AB =2,AE =3 2 .①求 BE 的长;②求点 A 到 BE 的距离;(3)当点 C 落在直线 BE 上时,连接 FC ,直接写出∠FCD 的度数.GGADGADB CBCFABDCFE(图 1)FE(图 2)E(图 3)24.定义:把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.如图,抛物线 y =x 2-2x -3 与 x 轴交于点 A ,B ,与 y 轴交于点 D ,以 AB 为直径,在 x 轴上方作半圆交 y 轴于点 C ,半圆的圆心记为 M ,此时这个半圆与这条抛物线 x 轴下方部分组成的图形就称为“蛋圆”.(1)直接写出点 A ,B ,C 的坐标及“蛋圆”弦 CD 的长;A▲ ,B ▲ ,C ▲ , CD = ▲ ;(2)如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.①求经过点 C 的“蛋圆”切线的解析式;②求经过点 D 的“蛋圆”切线的解析式;(3)由(2)求得过点 D 的“蛋圆”切线与 x 轴交点记为 E ,点 F 是“蛋圆”上一动点,试问是否存在 S △CDE =△S CDF ,若存在请求出点 F 的坐标;若不存在,请说明理由;(4)点 P 是“蛋圆”外一点,且满足∠BPC =60°,当 BP 最大时,请直接写出点 P 的坐标.yC yCAO M B x A O M B xDD(备用图)9数学参考答案2016.1一、选择题(每小题4分,共40分)题号答案1B2C3D4B5D6A7B8C9B10C二、填空题(每小题 5 分,共 30 分)11.(﹣1,﹣19)12.m >3 13.54° 14.815. 2 5 - 216. 4914 22 32或 或 或9 9三、解答题(共 80 分)17.(10 分,每小题 5 分)(1)4x 2-20=0;(2)x 2+3x -1=0.4x 2=20a =1,b =3,c =﹣1x 2=5△=32-4×1×(﹣1)=13x = ± 5x =- 3 ± 13 218.(7 分)略(图形基本形状差不多就给分)19.(8 分)(1)∵AB 是⊙O 的直径∴∠C =90°∵OD ⊥BC∴∠OEB =∠C =90°∴OD ∥AC………4 分(2)令⊙O 的半径为 r ,根据垂径定理可得:r 2=42+(r -3)2,解得:r = 25 25,所以⊙O 的直径为 . ………8 分6 320.(9 分)(△1) =[2(k -1)]2-4(k 2-1)=﹣8k +8∵方程有两个不相等的实数根,∴﹣8k +8>0,解得:k <1.………4 分(2)把 x =0 代入方程得:k 2-1=0,解得:k =±1∵k <1 ∴k=﹣1 ∴x=0 可能是方程的一个根∴原方程为:x 2-4x =0 解得:x 1=0,x 2=4 ∴方程的另一个根为 4.………9 分21.(10 分)(1)13(或者 0.33) ………3 分(2)列表略,可得:P 和为 8= 2 1 1= ≠ ,所以 x 的值不可以取 7.………10 分12 6 322.(10 分)(1)把 B (2,6)代入 y =k 12,可得 y = . x x把 y =2 代入 y =12x, 可得 x =6,即 C 点坐标为(6,2).23.(12 分)(1)由题意可得: ⎨∠BAE = ∠DAG = a ⎪ A B = AD ⎩ y = x 2 - 2x - 3得: x 2-(2 +k)x =∵二次函数 y =﹣x 2+mx +n 的顶点为 C ,∴y =﹣(x -6)2+2,∴y =﹣x 2+12x -34. AE∴k =12,m =12,n =﹣34.………6 分C(2)把 y =0 代入 y =﹣(x -6)2+2,解得:x 1=6+ 2 ,x 2=6- 2 .点 B 与点 D 的距离为 6+ 2 -2=4+ 2 .………10 分ODB⎧ A E = AG ⎪⎩∴△ABE ≌△ADG (SAS )G∴BE =DG………4 分(2)①作 BN ⊥AE 于点 NANDF在△ABN 中可求得 AN =BN = 2 .在△BEN 中可求得 BE = 10 .………7 分MBCE(图 3)②作 AM ⊥BE 于点 M .S △ABE = 1 1⨯ AE ⨯ BN = ⨯ 3 2 ⨯ 2 =32 2又∵S △ABE = 1 1⨯ BE ⨯ AM = ⨯ 10 ⨯ AM2 21 3∴ ⨯ 10 ⨯ AM =3 ∴AM = 2 510即点 A 到 BE 的距离 3 510 .………10 分(3)∠FCD 的度数为 45°或 135°.………12 分(注:可以构造三垂直的基本图形求两个角度,也可用四点共圆求两个角度)24.(14 分)(1)A (﹣1,0),B (3,0),C (0,3 ),CD = 3+ 3………4 分(2)①如图 1,NC ⊥CM ,可求得 N (﹣3,0)yCN E A O M B x3∴经过点 C 的“蛋圆”切线的解析式为: y =x + 3 …7 分 3A②过点 D 的“蛋圆”切线的解析式为:y =kx -3D⎧ y = kx - 3 由 ⎨ ∵直线与抛物线只有一个交点,∴k =﹣2,(图 1) yCF 1∴经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3 .………10 分A EO M Q B x(3)如图 2∵经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3ADF 2,),F 2(, -).………12 分∴E 点坐标为( -∵S △CDE =S △CDF3 2,0),∴F 点的横坐标为 3 2,在 △Rt MQF 1 中可求得 F 1Q = 15 2,把 x = 3 15 代入 y =x 2-2x -3,可求得 y = - .2 4∴F 1( 3 2 2 2 4(4)如图 3,考虑到∠BPC =60°保持不变,因此点 P 在一圆弧上运动.yP此圆是以 K 为圆心(K 在 BC 的垂直 平分线上,且∠BKC =120°),BK 为半径. 当 BP 为直径时,BP 最大.在 △Rt PCR 中可求得 PR =1,RC = 3 . RC KA OM B x所以点 P 的坐标为(1,2 3 ).………14 分AD(图 3)。

2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷附答案

2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷附答案

2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷附答案导读:就爱阅读网友为您分享以下“2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷附答案”资讯,希望对您有所帮助,感谢您对的支持!义务教育八年级数学第1页(共11页)2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分120分,考试时间120分钟。

)第Ⅰ卷(选择题共30分)一、选择题(本大题10个小题,每小题3分,共30分。

请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里。

)1.下列各数中,无理数的个数有( ) -0.2020020002,2,12π2,-4, 23 A .1个 B .2个 C .3个 D .4个2.下列说法正确的是() A .9的算术平方根是3 B .0.16的平方根是0.4 C .0没有立方根 D .1的立方根是±1 3.下列真命题中,逆命题也是真命题的是()A .全等三角形的对应角都相等; B .如果两个实数相等,那么这两个实数的平方相等; C .5,12,13是勾股数;D .如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.4.已知a 、b 、c 是△ABC 的三边,a 2-2ab +b 2=0且2b 2-2c 2=0,那么△ABC 的形状是()A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形5.下列运算中错误的是()A .3xy -(x 2-2xy ) =5xy -x 2B .5x (2x 2-y ) =10x 3-5xyC .5mn (2m +3n -1) =10m 2n +15mn 2-1D .[(a 2b ) 2-1](a +b ) =a 5b 2+a 4b 3-a -b 6.如图1,AB =AC ,CF ⊥AB 于F ,BE ⊥AC 于E ,CF 与BE 交于点D .有下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上;④点C 在AB 的中垂线上. 以上结论正确的有( )个. A .1B .2C .3D .47.若3x =4,9y =7,则3x -2y 的值为( ) A .47 B 74C .-3 D278.如图2是某商场销售雨伞的情况,从折线图中我们可以看到雨伞销售量最大的季度是() A .第一季度B .第二季度 C .第三季度D .第四季度9.如图3,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是() A .2cm 2 B .2a cm 2 C .4a cm 2 D .(a 2-1)cm 210.如图图1义务教育八年级数学第3页(共11页)A .2m B .3m C .6m D .9m第Ⅱ卷(非选择题共90分)二、填空题(本大题6个小题,每小题3分,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)=
0

8. d ( −e − x + C ) = e − x dx ; 9. 函数 y = ax 3 + bx 2 的拐点为 (1,3) ,则 a = −
| | | | |
线
D.趋于无穷大的数列必无界 2.下列说法正确的是( B ) A.若 f ( x) 在点 x0 处连续, g ( x ) 在点 x0 处不连续,则 f ( x) g ( x ) 在点 x0 处不连续 B.方程 x 3 − 3 x + 1 = 0 在区间 (0,1) 内有唯一实根 C.曲线 y = f ( x) 在点 ( x0 , f ( x0 )) 处有切线,则 f ′( x0 ) 一定存在 D.若函数 f ( x) , g ( x ) 在点 x0 处均不可导,则 f ( x) + g ( x) 在点 x0 处不可导 3.下列条件不能使函数 f ( x) 在区间 [a, b] 上应用拉格朗日中值定理的是( D ) A. f ( x) 在 [a, b] 上连续,在 (a, b) 内可导 B. f ( x) 在 [a, b] 上可导
因此 y ( x )在唯一的驻点 x0处取得极小值,从而在 x0处取得最小值. 即最经济的车速 约为每小时 59km。 此时行车的总费用约为 y (58.5) ≈ 168.9元 。 …………………………………………… (1 分) 阅卷教师 七、附加题(本大题共 4 分)
F ' ( x ) = x f ′( x ) + f ( x ) >0, F ( x ) 在 R 上为增函数 …………………………………(2 分) 又 a > b 则 F ( a ) > F (b) 即 a f ( a ) >b f (b) ………………………………………….(2 分)
) B. lim f ( x ) 存在且不一定等于 f ( x0 )
x → x0
A. lim f ( x ) 存在且等于 f ( x0 )
x → x0
C. lim f ( x ) 不一定存在
x → x0
D. f ( x) 在点 x0 处连续
5.函数 f ( x) 在 x = x0 处可导是 f ( x) 在 x = x0 处可微的( C )条件。 A.必要不充分
试卷序号:
1
12.lim
x →0
tan x − sin x
2
16. 设函数 y ( x ) 由方程 2 x − 3 y = 8 所确定,求 y′( x), y′′( x) 。
3 2
e x sin x − 1 1 sin x ( − 1) cos = lim ..................................... (2分) x →0 x3 sin x (1 − cos) = lim (1分) ........................................ x →0 x 3 cos x 1 x x2 = lim 3 2 .................................................. (1分) x → 0 x cos x 1 = ................................................................... (1分) 2
x dx ……………………………………………………………………..(2 分) 3
2
阅卷教师 得分
五、证明题(本大题共 2 小题,每小题 6 分,共计 12 分)
把其定义域分为两个区间: (−∞, 2 ) , [2, +∞ ) . 对 ∀x ∈ (−∞, 2 ) , f ′′( x ) = ( x − 2)e − x < 0 , 则 f ( x ) = xe − x 在区间 (−∞, 2) 上是凸的,.. (1 分)
6
dy d( ) dy dx d( ) d2y dx = dt = 2 dx dx dx dt
=
=−
3 .................................................................. (2分) 12π
6t 2 = 6t 2 + 6t 4 1 1+ t2 ………………………..(3 分)
阅卷教师
阅卷教师 得 分
B.充分不必要
C.充分必要 D.既非充分又非必要
二、填空题(共计 5 小题,每小题 3 分,本大题共 15 分。)
得分 一、单项选择题(共计 5 小题,每小题 3 分,本大题共 15 分。) 6. y = arcsin
| | | | |

1.下列说法正确的是( D ) A.凡是分段函数都不是初等函数
18.若 f ′′(u ) 存在, 求函数 y = x 2 f (cos x) 的二阶导数 y′′ . 解:
四、函数求导(本大题共 4 小题,每小题 6 分,共计 24 分)
x 2 15.设 y = x arcsin + 9 − x + ln 2 ,求 dy 。 3 x x 1 1 1 (−2 x ) + = arcsin ………………………(4 分) 解: y′ = arcsin + x 2 2 3 3 x 3 2 9− x 1− 3
x 1 + x2
………………………………………………(1 分) 耗油率为 (2 +
x2 ) L/ h , 司机的工资为 30元 /小时 , 试问最经济的车速为多少 ? 此时行 360
1 f ′( x ) = − 1+x 2
1 1− ( x 1 + x2 )2
1 + x2 − x 1 + x2
x 1 + x 2 = 0 ……………………………….(3 分)
19.应用拉格朗日中值定理的推论证明下列恒等式:
π arctan x + arccos = . 2 2 1+ x
证明:设 f ( x ) = arctan x + arccos
x
对 ∀x ∈ (2, +∞ ) , f ′( x ) = (1 − x )e − x > 0 , 则 f ( x ) = xe − x 在区间 [2, +∞ ) 上是凹的…… (1 分) 22. 货车以每小时 x km 的常速行驶 130km( 50 ≤ x ≤ 100 ),设汽油的价格为 4元 /L ,货车的
n →+∞
14.lim
6
ln 2sin x 2 2 π x → π − 36 x
dy = dt = dx dx dt
2t 1 + t 2 = 2t 3 1 1+ t2 ………………………………………….(3 分)
1 2 cos x 2sin x = lim (3分) ........................................... π −72 x x→
dy d 2 y 2 所确定, 求 dx , dx .
( n 2 + 1 − n)( n 2 + 1 + n) n2 + 1 + n ( n 2 + 1 − n)( n 2 + 1 + n)
........................... (2分)
........................... (2分) n2 + 1 + n (n 2 + 1 − n 2 ) (1分) = lim n .................................................. n →+∞ n2 + 1 + n 1 = 2 = lim n
x − 1 2 x +1 ) x+3 −4 x−+43 x−+43 (2 x +1) = lim(1 + ) .......................................... (2分) x →∞ x+3 . x + 3 −4(2 x +1) −4 −4 x +3 = lim(1 + ) ............................................. (2分) x →∞ x+3 = e−8 ............................................................................. (1分)
2 n →+∞
解:对方程两端关于 x 求导可得: 6 x − 6 yy ′ = 0 ,…………………..(*) 解得 y ′( x ) =
2
x2 , ( y ≠ 0) …………………………………………………(3 分) y
(*)式两端再对 x 求导可得: 2 x − ( y ′2 + yy ′′) = 0 , 解得 y′′( x ) =
3 2
, b=
9 ; 2
必要 条件。
10. f ( x) 在 x0 的某一去心邻域内无界是 lim f ( x) = ∞ 存在的
x → x0
班级:
阅卷教师 得分
三、求极限(本大题共 4 小题,每小题 5 分,共计 20 分)
| | | | | | | | |
.lim(
x →∞
C. f ( x) 在 (a, b) 内可导,且在 a 点右连续,在 b 点左连续 D. f ( x) 在 (a, b) 内有连续的导数
则 dy = arcsin
y ′ = 2 xf (cos x) + x 2 ( − sin x) f ′(cos x) ,
……………………(3 分)
相关文档
最新文档