中考数学 考点达标训练30 数据的分析

合集下载

中考数学复习《数据的分析》专项练习题-附带有答案

中考数学复习《数据的分析》专项练习题-附带有答案

中考数学复习《数据的分析》专项练习题-附带有答案一、单选题1.为了解当地气温变化情况,某研究小组记录了冬天连续4天的最高气温,结果如下(单位: °C ):-1,-3,-1,5.下列结论错误的是( ) A .平均数是0B .中位数是-1C .众数是-1D .方差是62.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为 S 甲2=0.56, S 乙2 =0.60, S 丙2 =0.50, S 丁2 =0.44,则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.在一次古诗词诵读比赛中,五位评委给某选手打分,得到互不相等的五个分数,若去掉一个最高分,平均分为a ;若去掉一个最低分,平均分为c ;同时去掉一个最高分和一个最低分,平均分为m .则a ,c ,m 的大小关系正确的是( ) A .c >m >aB .a >m >cC .c >a >mD .m >c >a4.在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:成绩(次) 12 11 10 9 人数(名)1342关于这组数据的结论错误的是( ) A .中位数是10.5 B .平均数是10.3 C .众数是10D .方差是0.815.九(2)班体育委员用划记法统计本班40名同学投掷实心球的成绩,结果如图所示:则这40名同学投掷实心球的成绩的众数和中位数分别是( )成绩 6 7 8 910 人数正 一正 正 一正 正正A .8,8B .8,8.5C .9,8D .9,8.56.为了推进“科学防疫,佩戴口罩”,某中学向学生发放口罩,如图为七年级五个班级上报的学生人数,统计条不小心被撕掉了一块,已知这组数据的平均数为30,则这组数据的中位数为( )A.28 B.29 C.30 D.317.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94 93 94 12八(2)班95 95.5 93 8.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游8.班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:甲乙丙平均数/分96 95 97方差0.4 2 2丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择()A.甲B.乙C.丙D.丁二、填空题9.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.10.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个²。

中考数学专题复习五《数据的分析》同步练习含答案

中考数学专题复习五《数据的分析》同步练习含答案

数据的分析一、选择题(每小题3分,共30分)1.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次.射击成绩统计如下:乙命从射击成绩的平均数评价甲、乙两人的射击水平,则(A.甲比乙高 B.甲、乙一样C.乙比甲高 D.不能确定2.(某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,则这组数据的众数和中位数分别是()A.25,25 B.28,28C.25,28 D.28,313.(甲、乙两个同学在四次模拟测试中,数学的平均成绩都是112分,方差分别是s2甲=5,s2乙=12,则成绩比较稳定的是()A.甲 B.乙C.甲和乙一样 D.无法确定4.已知数据:-4,1,2,-1,2,则下列结论错误的是()A.中位数为1 B.方差为26C.众数为2 D.平均数为05.对于数据组3,3,2,3,6,3,8,3,6,3,4.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的结论有()A.4个 B.3个 C.2个D.1个6.某校四个绿化小组一天植树的棵数如下:10,x,10,8.已知这组数据的众数与平均数相等,则这组数据的中位数是()A.8 B.9 C.10 D.127.张大叔有一片果林,共有80棵果树.某日,张大叔开始采摘今年第一批成熟的果子,他随机选取1棵果树的10个果子,称得质量分别为(单位:kg)0.28,0.26,0.24,0.23,0.2 5,0.24,0.26,0.26,0.25,0.23.如果一棵树平均结有120个果子,以此估算,张大叔收获的这批果子的单个质量和总质量分别约为()A.0.25 kg,2 400 k g B.2.5 kg,2 400 kgC.0.25 kg,4 800 kg D.2.5 kg,4 800 kg8.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中有一位同学的年龄登记错误,将14岁写成15岁.经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是( )A.a<13,b=13 B.a<13,b<13C.a>13,b<13 D.a>13,b=139.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差 D.众数和中位数10.一次“我的青春,我的梦”演讲比赛,有五名同学的成绩如下表所示,有两个数据被■二、填空题(每小题4分,共24分)11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是____________分.12.(呼某校五个绿化小组一天植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是____________.13.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定.根据图中的信息,估计这两人中的新手是_________.14.为了发展农业经济,致富奔小康,李伯伯家2013年养了4 000条鲤鱼,现在准备打捞出售,为了估计鱼塘中鲤鱼的总质量,从鱼塘中捕捞了三次进行统计,得到的数据如下表所示:鱼的条数(条)15.(一组数据2,3,x,y,12中,唯一众数是12,平均数是6,这组数据的中位数是_____ _______.16.已知2,3,5,m,n五个数据的方差是2,那么3,4,6,m+1,n+1五个数据的方差是____________.三、解答题(共46分)17.(8分)某专业养羊户要出售100只羊.现在市场上羊的价格为每千克11元,为了估计这100只羊能卖多少钱,该专业养羊户从中随机抽取5只羊,称得它们的质量(单位:kg)分别为26,31,32,36,37.(1)估计这100只羊中每只羊的平均质量;(2)估计这100只羊一共能卖多少钱.18.(12分)某校八年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书400册.特别值得一提的是李保、王刚两位同学在父母的支持下各捐献了90册图书.班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):(1)分别求出该班级捐献7册图书和8册图书的人数;(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由.19.(12分)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表:(1)如果根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3∶5∶2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.20.(14分)甲、乙两名同学进入八年级后,某科6次考试成绩如图所示:(1)请根据统计图填写下表:(2)请你分别从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析: ①从平均数和方差相结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?答案:1B 2.B 3.A 4.B 5.D 6.C 7.A 8.A 9.D 10.C 11.88 12.1.6 13.小李 14.6 800 15.3 16.217.(1)每只羊的平均质量为x =15×(26+31+32+36+37)=32.4(kg ).则可估计这100只羊中每只羊的平均质量约为32.4 kg. (2)32.4×100×11=35 640(元).答:估计这100只羊一共能卖约35 640元.18.(1)设捐7册图书的有x人,捐8册图书的有y人.∴⎩⎪⎨⎪⎧4×6+5×8+6×15+7x+8y+90×2=400,6+8+15+x+y+2=40.解得⎩⎪⎨⎪⎧x=6,y =3. (2)平均数是10,中位数是6,众数是6.其中平均数10不能反映该班同学捐书册数的一般情况,因为40名同学中38名同学的捐书册数都没有达到10册,平均数主要受到捐书90册的2位同学的捐书册数的影响,故而不能反映该班同学捐书册数的一般情况. 19.(1)∵x 甲=93+86+733=84(分),x 乙=95+81+793=85(分),∴x 甲<x 乙.∴乙将被录用. (2)∵x 甲′=93×3+86×5+73×23+5+2=85.5(分),x 乙′=95×3+81×5+79×23+5+2=84.8(分),∴x 乙′<x 甲′.∴甲将被录用.(3)甲一定被录用,而乙不一定能被录用.理由:由直方图可知成绩最高一组分数段85≤x<90中有7人,公司招聘8人,又x 甲′=85.5分,显然甲在该组,所以甲一定能被录用;在80≤x<85这一组内有10人,仅有1人能被录用,而x 乙′=84.8分在这一组内不一定是最高分,所以乙不一定能被录用.由直方图知,应聘人数共有50人,录用人数为8人,所以本次招聘人才的录用率为850×100%=16%.20.(1)125 75 75 72.5 70①从平均数和方差相结合看:甲、乙两名同学的平均数相同,但甲成绩的方差为125,乙同学成绩的方差为33.3,因此乙同学的成绩更为稳定.②从折线图中甲、乙两名同学分数的走势上看,乙同学的6次成绩有时进步,有时退步,而甲的成绩一直是进步的.。

中考数学总复习《数据的分析》专项测试题-附参考答案

中考数学总复习《数据的分析》专项测试题-附参考答案

中考数学总复习《数据的分析》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数,中位数,众数和方差等数个统计量中,该鞋厂最关注的是( )A.平均数B.中位数C.众数D.方差2.测试五位学生的“一分钟跳绳”成绩,得到五个不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是( )A.中位数B.平均数C.方差D.极差3.一组数据2,3,4,6,6,7的众数是( )A.3B.4C.5D.64.第七届世界军人运动会将于2019年10月18日至27日在武汉举行.光谷某中学开展了“助力军动会”志愿者招募活动,同学们踊跃报名参与竞选.经选拔,最终每个班级都有同学光荣晋升为本次军运会志愿者.下面的条形统计图描述了这些班级选拔出的志愿者人数的情况;下列说法错误的是( )A.参加竞选的共有28个班级B.本次竞选共选拔出166名志愿者C.各班选拔出的志愿者人数的众数为4D.各班选拔出的志愿者人数的中位数为65.已知数据A:1,2,3,x数据B:3,4,5,6.若数据A的方差比数据B的方差小,则x的值可能是()A.5 B.4 C.2 D.0 6.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是()A.平均数B.中位数C.方差D.众数7.若一组数据a1,a2,a3⋯a n的方差是4,那么另一组数据3a1−1,3a2−1,⋯3a n−1的标准差是()A.7 B.2 C.4 D.6 8.学校组织“热爱祖国”演讲比赛,小娜演讲内容得90分,语言表达得88分,若按演讲内容占60%、语言表达占40%的比例计算总成绩,则小娜的总成绩是()A.90分B.88分C.89分D.89.2分二、填空题(共5题,共15分)9.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图①和图②,则扇形统计图②中表示“足球”项目扇形的圆心角的度数为.10.某校在举行疫情下主题为“致敬最美逆行者”线上演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同,其中一位同学想知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这8名学生成绩的.(填“平均数”“中位数”或“众数”)11.已知一组数据4,3,2,m,n的众数为3,平均数为2,则m的值可能为,对应的n值为,该组数据的中位数是.12.光明中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有人.13.在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是.三、解答题(共3题,共45分)14.为了了解全年级学生英语作业的完成情况,帮助英语学习成绩差的学生尽快提高成绩,班主任和英语教师从全年级1000名学生中抽取100名进行调查.首先,老师检查了这些学生的作业本,记录下获得“优”“良”“中”“差”的人数比例情况;其次老师发给每人一张调查问卷,其中有一个调查问题是:“你的英语作业完成情况如何?”给出五个选项:A独立完成;B辅导完成;C有时抄袭完成;D经常抄袭完成;E经常不完成,供学生选择,英语教师发现选独立完成和辅导完成这两项的学生一共占65%,明显高于他,平时观察到的比例,请回答下列问题.(1) 英语教师所用的调查方式是.(2) 指出问题中的总体,个体,样本,样本容量.(3) 如果老师的英语作业检查只得“差”的同学有8名,那么估计全年级的英语作业中可能有多少同学得“差”.(4) 通过问卷调查,老师得到的数据与事实不符,你能解释这个统计数字失真的原因吗.15.为了了解南山区学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果绘制成如图所示的两幅不完整的统计图(如图1,2,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1) 本次共调查的学生人数为,并把条形统计图补充完整;(2) 扇形统计图中m=,n=;(3) 表示“足球”的扇形的圆心角是度;(4) 若南山区初中学生共有60000人,则喜欢乒乓球的有多少人?16.小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱情况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面两幅不完整的统计图:(1) 在这次调查研究中,一共调查了名学生,“体育”在扇形图中所占的圆心角是度.(2) 求出如图中a,b的值,并补全条形图.(3) 若此次调查中喜欢体育节目的女同学有10人,请估算该校喜欢体育节目的女同学有多少人?参考答案1. 【答案】C2. 【答案】A3. 【答案】D4. 【答案】C5.【答案】C6.【答案】C7.【答案】D8.【答案】D9. 【答案】36°10. 【答案】中位数11. 【答案】3或−2;−2或3;312. 【答案】68013. 【答案】60014. 【答案】(1) 抽样调查(2) 总体是全校1000名学生英语作业的完成情况,个体是每一名同学英语作业的完成情况,样本是抽取的100名学生的英语作业完成情况,样本容量是100.(3) ∵100名学生中只得“差”的同学有8名=80(人).∴1000名学生有得“差”的为1000×8100(4) 抄袭和不完成作业是不好行为,勇于承认错误不是每个人都能做到的,所以,这样的问题设计的不好,容易失真.15. 【答案】(1) 40(2) 10;20(3) 72(4) 南山区初中学生喜欢乒乓球的有60000×40%=24000(人).16. 【答案】(1) 150;72(2) 根据题意得:30÷150×100%=20%即b=20;a%=1−(6%+8%+20%+30%)=36%即a=36.=200.(3) 根据题意得:3000×20%×1030则该校喜欢体育节目的女同学有200人.。

备战中考数学巩固复习数据分析

备战中考数学巩固复习数据分析

备战中考数学巩固复习数据分析数据分析是数学中的重要内容之一,也是中考数学中常考的知识点。

在备战中考数学时,巩固复习数据分析是必不可少的。

下面,我将为你整理一份1200字以上的备战中考数学数据分析巩固复习资料。

一、统计数据的收集和整理2.统计表和统计图的制作:掌握制表和制图的方法,能正确地使用各种统计图表来展示数据,并能从中得出有关数据的信息。

二、统计数据的分析和解读1.数据的中心趋势:了解平均数、中位数和众数的概念,能应用这些概念来分析和解读数据。

2.数据的离散程度:了解极差、平均差、方差和标准差的概念,能应用这些概念来分析和解读数据。

3.数据的相关性:了解相关系数和散点图的概念,能应用这些概念来分析和解读数据之间的关系。

三、概率与统计1.基本概念与运算:掌握事件、样本空间、随机事件和概率的概念,了解事件的补事件、和事件、积事件和差事件的关系,以及概率的加法定理和乘法定理。

2.等可能原理与概率计算:了解等可能原理的概念,能应用等可能原理来计算概率。

3.事件的独立性:了解事件的独立性的概念和判断方法,能应用独立性来计算概率。

4.事件的非独立性:了解事件的非独立性的概念和判断方法,能应用非独立性来计算概率。

5.随机变量与概率分布:了解随机变量的概念和概率分布的概念,掌握离散型随机变量的概率计算方法,并能解答相关的题目。

四、误差与逼近1.绝对误差与相对误差:了解绝对误差和相对误差的概念,并能应用这些概念来计算误差。

2.近似计算:了解舍入误差和截断误差的概念,并能应用这些概念来进行近似计算。

五、数学思想方法的运用1.抽象思维能力:培养运用数学概念、方法和思想进行分析、推理和判断的能力。

2.探究性学习能力:培养通过观察、实验、总结和归纳来发现数学规律和解决问题的能力。

3.创造性思维能力:培养运用数学知识和方法解决实际问题的能力,鼓励创新思维,培养发散思维和批判性思维。

通过对以上内容的巩固复习,你将能够在中考数学中熟练运用数据分析的方法和技巧,解决各类与数据分析相关的问题。

中考数学专题复习题数据的分析(含解析)(2021年整理)

中考数学专题复习题数据的分析(含解析)(2021年整理)

2017-2018年中考数学专题复习题数据的分析(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018年中考数学专题复习题数据的分析(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018年中考数学专题复习题数据的分析(含解析)的全部内容。

2017—2018年中考数学专题复习题:数据的分析一、选择题1.下表是某校合唱团成员的年龄分布年龄岁13141516频数515x对于不同的x,下列关于年龄的统计量不会发生改变的是A。

平均数、中位数 B. 众数、中位数C。

平均数、方差 D. 中位数、方差2.为了考查某种小麦的长势,从中抽取了10株麦苗,测得苗高单位:为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和极差分别是A。

13,11 B。

14,11 C. 12,11 D。

13,163.某科普小组有5名成员,身高分别为单位::160,165,170,163,增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是A。

平均数不变,方差不变B。

平均数不变,方差变大C。

平均数不变,方差变小 D. 平均数变小,方差不变4.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示丙、丁两人的成绩如图所示欲选一名运动员参赛,从平均数与方差两个因素分析,应选甲乙平均数98方差11A. 甲B。

乙 C. 丙D。

丁5.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:编号12345方差平均成绩得分3834374037那么被遮盖的两个数据依次是A。

九年级中考数学复习《数据的分析》专项练习题-附带答案

九年级中考数学复习《数据的分析》专项练习题-附带答案

九年级中考数学复习《数据的分析》专项练习题-附带答案一、单选题1.一组数据﹣3,3,﹣2,3,1的中位数是()A.﹣3 B.﹣2 C.1 D.32.下列说法正确的是()则做10次这样的游戏一定会中奖A.一个游戏的中奖概率是110B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据 8,8,7,10,6,8,9 的众数和中位数都是8D.若甲组数据的方差S2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定3.某班6个合作小组的人数分别是4,6,4,5,7,8,现第4小组调出1人去第2小组,则新各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是()A.调配后平均数变小了B.调配后众数变小了C.调配后中位数变大了D.调配后方差变大了4.甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2= 28,S乙2= 18.6,S丙2= 1.7.导游小李最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选()A.甲团B.乙团C.丙团D.三个团都一样5.2023年6月是第22个全国“安全生产月”,主题是“人人讲安全,个个会应急”,为加强安全宣传教育,某校在全体学生中进行了一次安全知识竞赛,随机抽取了10名学生的竞赛成绩如下(单位:分):得分80 84 92 96 100人数 1 2 2 3 2根据表格中的信息判断,下列关于这10名学生竞赛成绩的结论中错误..的是()A.平均数为92 B.众数为96 C.中位数为92 D.方差为44.86.郑州市统计部门公布最近五年消费指数增产率分别为8.5%,9.2%,10.2%,9.8%,业内人士评论说:“这五年消费指数增产率之间相当平稳”,从统计角度看,“增产率之间相当平稳”说明这组数据的()比较小A.方差B.平均数C.众数D.中位数7.某班40名学生一周阅读书籍的册数统计图如图所示,该班阅读书籍的册数的中位数是()A.1册B.2册C.3册D.4册8.为了解某校学生每周课外阅读时间的情况,随机抽取该校a名学生进行调查,获得的数据整理后绘制成统计表如下:每周课外阅读时间x(小时)0≤x<2 2≤x<4 4≤x<6 6≤x<8 x≥8 合计频数8 17 b15 a频率0.08 0.17 c0.15 1表中4≤x<6组的频数b满足25≤b≤35.下面有四个推断:①表中a的值为100;②表中c的值可以为0.31;③这a名学生每周课外阅读时间的中位数一定不在6~8之间;④这a名学生每周课外阅读时间的平均数不会超过6.所有合理推断的序号是()A.①②B.③④C.①②③D.②③④二、填空题9.已知一组数据10、3、a、5的平均数为5,那么a为.10.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,甲、乙两块试验田的平均数都是13,方差结果为:S甲2=36,S乙2=158,则小麦长势比较整齐的试验田是11.小刚开学后,第一次测试数学得了70分,语文得了84分,则英语至少得分,才能使三科平均分不低于80分.12.某班10位同学将平时积攒的零花钱捐献给贫困地区的失学儿童,每人捐款金额(单位:元)依次为5,6,10,8,12,6,9,7,6,8,则这10名同学平均每人捐款元,捐款金额的中位数是元,众数是元.13.某住宅小区六月份1日至5日每天的用水量变化情况如图所示,则这5天该住宅小区平均每天的用水量是吨.三、解答题14.某公司计划从两家皮具生产能力相近的制造厂选择一家来承担外销业务,这两家厂生产的皮具款式和材料都符合要求,因此只需要检测皮具质量的克数是否稳定.现从两家提供的样品中各抽查10件,测得它们的质量如下(单位:克)甲:500,499,500,500,503,498,497,502,500,501乙:499,500,498,501,500,501,500,499,500,502你认为该选择哪一家制造厂?15.学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?16.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容∶演讲能力∶演讲效果=5:4:1的比例计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请计算说明哪位选手成绩更优秀.17.某跳水训练基地为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:(1)本次调查的样本容量大小是,图1中a的值为;(2)请把条形统计图补充完整;(3)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.18.香坊区某学校开展读书活动,为了解学生的参与程度,从全校学生中随机抽取200人进行问卷调查,获取了他们每人平均每天的阅读时间m(单位:分钟)将收集的数据分为A,B,C,D,E五个等级,绘制成如下的统计表及如图所示的统计图(不完整):平均每天阅读时间统计表等级人数(频数)A(10≤m<20) 5B(20≤m<30)10C(30≤m<40)xD(40≤m<50)80E(50≤m<60)y请根据图表中的信息,解答下列问题:(1)求x的值.(2)这组数据的中位数所在的等级是.(3)学校拟将平均每天阅读时间不低于50分钟的学生评为“阅读达人”,并予以表扬若全校学生以1800人计算,估计受表扬的学生有多少人.参考答案 1.C 2.C 3.D 4.C 5.C 6.A 7.B 8.A 9.2 10.甲 11.8612.7.7;7.5;6 13.3214.解:甲的平均数:110(500+499+500+500+503+498+497+502+500+501)=500(克)乙的平均数:110(499+500+498+501+500+501+500+499+500+502)=500(克)s 2甲=110×28=2.8 s 2乙=110 ×12=1.2 ∵s 甲2>s 乙2 ∴选乙.15.解:小明数学总评成绩:96× 210 +94× 310 +90× 510 =92.4 小亮数学总评成绩:90× 210 +96× 310 +93× 510 =93.3 小红数学总评成绩:90× 210 +90× 310 +96× 510 =93. ∵93.3>93>92.4,∴小亮成绩最高. 答:这学期小亮的数学总评成绩最高. 16.解:根据题意得: 选手 A 的综合成绩为:85×5+95×4+95×15+4+1=90 分=91分选手B的综合成绩为:95×5+85×4+95×15+4+1∵91>90∴选手B的成绩更优秀.17.(1)40;20(2)解:17岁的人数为:40×25%=10(人),补全条形统计图如下图:(3)解:这组跳水运动员年龄数据的平均数是:(13×4+14×6+15×12+16×8+17×10)÷40=15.35(岁)15岁出现了12次,次数最多,所以众数为15岁;按大小顺序排列,中间两个数都为15岁,则中位数为15岁.18.(1)200×20%=40答:x的值为40.(2)D=585(人)(3)解:1800×200−5−10−40−80200答:估计受表扬的学生约有585人。

初中数学:数据的分析专项练习含答案

初中数学:数据的分析专项练习含答案

一.选择题1.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是(D)A.平均数和众数 B.众数和极差C.众数和方差 D.中位数和极差2.在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的(D)A.众数 B.方差 C.平均数 D.中位数3.下列特征量不能反映一组数据集中趋势的是(C)A.众数 B.中位数 C.方差 D.平均数4.表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何者正确?(A)A.男生成绩的四分位距大于女生成绩的四分位距B.男生成绩的四分位距小于女生成绩的四分位距C.男生成绩的平均数大于女生成绩的平均数D.男生成绩的平均数小于女生成绩的平均数5.刻画一组数据波动大小的统计量是(B)A.平均数 B.方差 C.众数 D.中位数6.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的(B)A.平均数 B.中位数 C.众数 D.方差7.小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如表:学校附近的商店经理根据表中决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用了哪个统计知识(A)A.众数 B.中位数 C.平均数 D.方差8.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是(B)A.平均数 B.中位数 C.众数 D.方差9.以下是期中考试后,班里两位同学的对话:小晖:我们小组成绩是85分的人最多;小聪:我们小组7位同学成绩排在最中间的恰好也是85分以上两位同学的对话反映出的统计量是(D)A.众数和方差 B.平均数和中位数C.众数和平均数 D.众数和中位数10.下列说法不正确的是(A)A.数据0、1、2、3、4、5的平均数是3B.选举中,人们通常最关心的数据是众数C.数据3、5、4、1、2的中位数是3D.甲、乙两组数据的平均数相同,方差分别是S=0.1,S乙²=0.11,则甲组数据比乙组数据更稳定甲²二.填空题11.用于衡量一组数据的波动程度的三个量为极差、方差、标准差.12.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是中位数(填众数或方差或中位数或平均数)13.某服装店销售一款新式女式T恤,试销期间对该款不同型号女式T恤的销售量统计如下表:该店经理如果想要了解哪种型号女式T恤销售量最大,那么他应关注的统计量是众数.14.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对它们的使用寿命进行跟踪调查,结果如下:(单位:年)甲:4,6,6,6,8,9,12,13.乙:3,3,4,7,9,10,11,12.丙:3,4,5,6,8,8,8,10.三个厂家在广告中都称该产品的使用寿命是8年.请根据结果判断,厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲:平均数,乙:中位数,丙:众数.三.解答题15.某校要从八年级甲、乙两个班中各选取10名女同学组成礼仪队,选取的两个班女生的身高如下(单位:cm):甲班:168 167 170 165 168 166 171 168 167 170乙班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表:(2)根据如表,请选择一个合适的统计量作为选择标准,说明哪一个班能被选取.解:(1)甲班的方差=1/10×[(168﹣168)2+(167﹣168)2+(170﹣168)2+…+(170﹣168)2]=3.2;乙班的中位数为168;补全表格如下:(2)选择方差做标准,∵甲班方差<乙班方差,∴甲班可能被选取.16.某酒店共有6名员工,所有员工的工资如下表所示:(1)酒店所有员工的平均月工资是多少元?(2)平均月工资能准确反映该酒店员工工资的一般水平吗?若能,请说明理由;若不能,如何才能较准确地反映该酒店员工工资的一般水平?谈谈你的看法.解:(1)平均月工资=(4000+600+900+500+500+400)÷6=1150(元),(2)∵能达到这个工资水平的只有1人,∴平均月工资不能准确反映该酒店员工工资的一般水平,这组数据的众数是500元,才能较准确地反映该酒店员工工资的一般水平,原因是它符合多数人的工资水平.17.在洋浦一新开业的以经营男式皮鞋为主的鞋店当服务员的阿丽是个做事善于观察的小姑娘,上班一段时间后,她发现各种尺码的男式皮鞋销量并不均衡,于是她把这个发现记录下来交给了她的老板:你认为这个销售记录对老板管理鞋店生意有用吗?如果你认为有用,请说明你的理由,并请你帮这个老板策划一下如何利用这些信息?解:这个销售记录对老板有用,∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店老板最喜欢的是众数.∴建议老板进货时多进41号的男鞋.18.在八次数学测试中,甲、乙两人的成绩如下:甲:89,93,88,91,94,90,88,87乙:92,90,85,93,95,86,87,92请你从下列角度比较两人成绩的情况,并说明理由:(1)分别计算两人的极差;并说明谁的成绩变化范围大;(2)根据平均数来判断两人的成绩谁优谁次;(3)根据众数来判断两人的成绩谁优谁次;解:(1)甲的极差为:94﹣87=7分乙的极差为:95﹣85=10∴乙的变化范围大;∴乙的变化范围大.89,93,88,91,94,90,88,87 乙:92,90,85,93,95,86,87,92(2)甲的平均数为:(89+93+88+91+94+90+88+87)÷8=90,乙的平均数为:(92+90+85+93+95+86+87+92)÷8=90,∴两人的成绩相当;(3)甲的众数为88,乙的众数为92,∴从众数的角度看乙的成绩稍好;。

中考数学复习---《数据的分析 》知识点总结与专项练习题(含答案)

中考数学复习---《数据的分析 》知识点总结与专项练习题(含答案)

中考数学复习---《数据的分析 》知识点总结与专项练习题(含答案)知识点总结 1. 平均数:①算术平均数:对于n 个数n x x x x ,,,...321,则()n x x x x nx ++++=−...1321表示这一组数据的平均数。

②加权平均数:对于n 个数n x x x x ,,,...321的权重分别是n w w w w ,,,,...321,则()n n w x w x w x w x nx ++++=−...1332211表示这一组数数据的加权平均数。

权重的表示一半用比的形式或者百分比占比的形式。

2. 中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

3. 众数:一组数据中出现次数最多的数据就是这组数据的平均数。

4. 极差:一组数据的最大值减去最小值。

5. 方差:若一组数是n x x x x ,,,...321,他们的平均数是−x ,则这组数据的方差为:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛−++⎪⎪⎭⎫ ⎝⎛−+⎪⎪⎭⎫ ⎝⎛−=−−−222212...1x x x x x x n s n 。

方差表示这组数据的波动情况,方差越大,数据越波动,方差越小,数据越稳定。

6. 根据已知数据的平均数与方差求关联数据的平均数与方差:若一组数据n x x x x ,,,...321的平均数是−x ,方差是2s 。

则: ①数据n ax ax ax ax ,,,,...3,21的平均数为−x a ,方差为2as 。

②数据b x b x b x b x n ++++,,,,...321的平均数为b x +−,方差为2s 。

③数据b ax b ax b ax b ax n ++++,,,,...321的平均数为b x a +−,方差为2as 。

7. 标准差:一组数均的方差的算术平方根就是这组数据的标准差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点达标训练30 数据的分析
平均数、众数和中位数(数据的代表)
1. (2014·江苏盐城)数据-1,0,1,2,3的平均数是( )
A.-1
B. 0
C. 1
D. 5
2. (2015·浙江丽水)某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30,则这组数据的众数与中位数分别是( )
A. 30,27
B. 30,29
C. 29,30
D. 30,28
3. (2015·湖南益阳)某小组5名同学在一周内参加家务劳动的时间如下表所示:
劳动时间(h)3 3.54 4.5
人数1121
关于“劳动时间”的这组数据,下列说法正确的是( )
A. 中位数是4,平均数是3.75
B. 众数是4,平均数是3.75
C.中位数是4,平均数是3.8
D. 众数是2,平均数是3.8
4. (2015·浙江衢州)某班七个兴趣小组的人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是( )
A. 7
B. 6
C. 5
D. 4
5. (2015·浙江温州)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面
进行量化考核.甲、乙、丙的各项得分如下表所示:
笔试面试体能
甲837990
乙858075
丙809073
(1)根据三项得分的平均分从高到低,确定三名应聘者的排名顺序.
(2)该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.
极差、方差和标准差(数据的波动)
6. (2015·湖南常德)某村引进甲、乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550 kg/亩,方差分别为S甲2=141.4,S乙2=433.3,则产量稳定,适合推广的品种为( )
A. 甲、乙均可
B. 甲
C. 乙
D. 无法确定
7. (2015·浙江湖州)已知一组数据的方差是3,则这组数据的标准差是( )
A. 9
B. 3
C. 3
2
D. 3
8. (2015·湖北孝感)某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了
统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错.误.
的是( ) A. 平均数是15 B. 众数是10 C. 中位数是17 D. 方差是44
3
9. (2015·吉林)要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图所示为两人最近10次射击训练成绩的折线统计图.
,(第9题))
(1)已求得甲的平均成绩为8环,求乙的平均成绩.
(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲2,S 乙2哪个大.
(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选________参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更合适.
统计知识的实际应用
10. 为了了解某水库养殖鱼的有关情况,从该水库多个不同位置捕捞出200条鱼,称得每条鱼的质量(单位:kg),并将所得数据分组,绘制了频数直方图如图所示.
,(第10题))
(1)根据频数直方图提供的信息,这组数据的中位数落在________范围内.
(2)估计数据落在1.00~1.15 kg中的频率是________.
(3)将上面捕捞的200条鱼分别作一记号后再放回水库,几天后再从水库的多处不同的位置捕捞150条鱼,其中带有记号的鱼有10条,根据这一情况,估算该水库中鱼的总条数为________.
11. (2015·浙江嘉兴)某市2010~2014年社会消费品零售总额及增速统计图如下:
,(第11题))
请根据图中信息,解答下列问题:
(1)求该市2010~2014年社会消费品零售总额增速这组数据的中位数.
(2)求该市近三年(2012~2014年)的社会消费品零售总额这组数据的平均数.
(3)用适当的方法预测该市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).
12. (2015·山东泰安)某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )
(第12题)
A. 94分,96分
B. 96分,96分
C. 94分,96.4分
D. 96分,96.4分
13. 一个样本为1,3,2,2,a,b,c.已知这个样本的众数为3,平均数为2,那么这个样本的方差为________.
14. (2014·浙江温州)八年级(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表所示:
参赛同学答对题数答错题数未答题数
A1901
B1721
C1523
D1712
E——7
(1)根据以上信息,求A,B,C,D四位同学成绩的平均分.
(2)最后获知A,B,C,D,E五位同学的成绩分别是95分,81分,64分,83分,58分.
①求E同学的答对题数和答错题数.
②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).
参考答案
1.C 2.B 3.C 4.C 5.(1)排名顺序为甲、丙、乙. (2)乙. 6.B 7.D 8.C 9.(1)8环. (2)S 甲2>S 乙2. (3)乙 甲 10.(1)1.10~1.15 kg (2)0.53. (3)3000
11.(1)14.2%. (2)1209.2亿元. (3)从增速这组数据的中位数分析:该市2015年社会消费品零售总额为1347.0×(1+14.2%)亿元;从增速这组数据的平均数分析:五年增速这组数据的平均数为15.1%+18.7%+14.2%+10.4%+12.5%
5=14.18%.∴该市2015年社会消费品零售总
额为1347.0×(1+14.18%)亿元;从零售总额趋势或增速趋势等其他角度分析,言之有理均可. 12.D[提示:得94分的有12人,得98分的有18人.] 13.8
7[提示:a ,b ,c 中有2个
3,1个0.] 14.(1)x -=(19+17+15+17)×5+(2+2+1)×(-2)
4
=82.5(分). (2)①
设E 同学答对x 题,答错y 题,由题意,得⎩⎪⎨⎪⎧5x -2y =58,x +y =20-7,解得⎩
⎪⎨⎪⎧x =12,
y =1.答:E 同学答对12题,
答错1题. ②C 同学记错了,他实际答对14题,答错3题,未答3题.[4×(82.5-80.75)=7(分).经检验,C 同学的成绩71分与实际成绩64分不符,刚好相差7分.同①可得C 同学实际答对14题,答错3题.]。

相关文档
最新文档