人教版初中数学数据分析技巧及练习题附答案

合集下载

人教版初中数学数据分析技巧及练习题附答案解析

人教版初中数学数据分析技巧及练习题附答案解析

人教版初中数学数据分析技巧及练习题附答案解析一、选择题1.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()体温(℃)36.136.236.336.436.536.6人数(人)48810x2A.这些体温的众数是8 B.这些体温的中位数是36.35C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A错误;由表可知这些体温的中位数是36.336.42=36.35(℃),故B正确.故选A.考点:①扇形统计图;②众数;③中位数.2.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对【答案】B【解析】【分析】根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出13(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴13(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴13[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=13[(a-2-3)2+(b-2-3)2+(c--2-3)2]= 13[(a-5)2+(b-5)2+(c-5)2]=4,故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.3.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2【答案】D【解析】【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2)1.5610⨯-+⨯-+⨯-+⨯-+-=故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.4.对于一组统计数据:1,1,4,1,3,下列说法中错误的是()A.中位数是1 B.众数是1C.平均数是1.5 D.方差是1.6【答案】C【解析】【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】解:将数据重新排列为:1、1、1、3、4,则这组数据的中位数1,A选项正确;众数是1,B选项正确;平均数为111345++++=2,C选项错误;方差为15×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;故选:C.【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.5.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表对他们的训练成绩作如下分析,其中说法正确的是()A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同【答案】D【解析】【分析】利用方差的定义、以及众数和中位数的定义分别计算即可得出答案.【详解】∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,∴甲成绩的平均数为67889106+++++=8,中位数为882+=8、众数为8,方差为16×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=53,∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,∴乙成绩的平均数为7788896+++++=476,中位数为882+=8、众数为8,方差为16×[2×(7﹣476)2+3×(8﹣476)2+(9﹣476)2]=1736,则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,故选D.【点睛】本题考查了中位数、方差以及众数的定义等知识,熟练掌握相关定义以及求解方法是解题的关键.6.某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.5【答案】D【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.5 2+=;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1(26282826242122)25++++++=,7故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.8.某小组长统计组内6人一天在课堂上的发言次数分別为3,3,4,6,5,0.则这组数据的众数是()A.3 B.3.5 C.4 D.5【答案】A【解析】【分析】根据众数的定义,找数据中出现次数最多的数据即可.【详解】在3,3,4,6,5,0这组数据中,数字3出现了2次,为出现次数最多的数,故众数为3.故选A.【点睛】本题考查了众数的概念.众数是一组数据中出现次数最多的数据.9.一组数据2,x,6,3,3,5的众数是3和5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B【解析】【分析】由众数的定义求出x=5,再根据中位数的定义即可解答.【详解】解:∵数据2,x,3,3,5的众数是3和5,∴x=5,则数据为2、3、3、5、5、6,这组数据为352=4.故答案为B.【点睛】本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.10.根据众数的概念找出跳高成绩中人数最多的数据即可.【详解】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.75,共有4人,所以,众数是1.75.因此,众数与中位数分别是1.75,1.70.故选A.【点睛】本题考查了中位数和众数的计算,解题的关键是理解中位数和众数的概念,直接根据概念进行解答.此外,也考查了学生从图表中获取信息的能力.11.下列说法正确的是( )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【答案】D【解析】【分析】根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;D,数据5,6,7,7,8的中位数与众数均为7,正确,故选D.【点睛】本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.12.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单----,关于这组数据,下列结论不正确的是()位:℃):7,4,2,1,2,2A.平均数是B.中位数是C.众数是D.方差是【答案】D【解析】【分析】一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9故选D.13.下列说法正确的是()A.要调查人们对“低碳生活”的了解程度,宜采用普查方式B.一组数据:3,4,4,6,8,5的众数和中位数都是3C.必然事件的概率是100%,随机事件的概率是50%D.若甲组数据的方差S甲2=0.128,乙组数据的方差是S乙2=0.036,则乙组数据比甲组数据稳定【答案】D【解析】A、由于涉及范围太广,故不宜采取普查方式,故A选项错误;B、数据3,4,4,6,8,5的众数是4,中位数是4.5,故B选项错误;C、必然事件的概率是100%,随机事件的概率是50%,故C选项错误;D、方差反映了一组数据的波动情况,方差越小数据越稳定,故D选项正确.故选D.14.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5 B.15.5,15 C.15,15.5 D.15,15【答案】D 【解析】 【分析】 【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .15.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃【答案】B 【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A 错误, 众数是28℃,故选项B 正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:2022242628283032577++++++=℃,故选项D 错误,故选B .点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.16.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.17.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【答案】D【解析】【详解】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.18.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.1【答案】A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.19.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4【答案】A【解析】【分析】根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.【详解】∵数据2,x,4,8的平均数是4,∴这组数的平均数为2484x+++=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是242+=3.∵2在这组数据中出现2次,出现的次数最多,∴众数是2.故选A.【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.20.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【答案】B【解析】【分析】【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.。

初二数学下册(人教版)第二十章数据的分析20.2知识点总结含同步练习及答案

初二数学下册(人教版)第二十章数据的分析20.2知识点总结含同步练习及答案
解:丙.
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 数据 −1 , −2 , 0 , 1 , 2 的标准差是 ( A.1
答案: D
)
C.0 D.√2
B.2
(Байду номын сангаас
)
2. 数据 0 、 1 、 2 、 3 、 x 的平均数是 2 ,则这组数据的标准差是 ( A.2
答案: B
1 [(x1 − ¯ ¯)2 + (x2 − ¯ ¯)2 + ⋯ + (xn − ¯ ¯)2 ] 来衡量这组数据波动的大小,并把它叫做这 x x x n 组数据的方差(variance),记作 s2 .方差越大,数据波动越大;方差越小,数据波动越小. s2 =
而标准差(standard deviation)就是方差的算术平方根.极差是指一组测量值内最大值与最小值之 差.
答案: D
) 比较小.
C.众数 D.方差
B.平均数
4. 在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为 8.7 , 6.5 , 9.1 , 7.7 ,则 这四人中,射击成绩最稳定的是 ( A.甲
答案: B
)
C.丙 D.丁
B.乙
高考不提分,赔付1万元,关注快乐学了解详情。
例题: 已知样本数据 1 ,2 ,3 ,4 ,5 ,下列说法不正确的是( A. 平均数是 3 B. 中位数是 3 C. 众数是 5 解:C.
) D. 方差是 2
甲、乙、丙三组各有 7 名成员,测得三组成员体重数据的平均数是 58,方差分别为 s2 = 36, 甲
= 25.4,s2 = 16.则数据波动最小的一组是_____. s2 乙 丙
初二数学下册(人教版)知识点总结含同步练习题及答案

新初中数学数据分析技巧及练习题附答案

新初中数学数据分析技巧及练习题附答案

新初中数学数据分析技巧及练习题附答案一、选择题1.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:平均每月阅读本数45678人数26543这些同学平均每月阅读课外书籍本数的中位数和众数为( )A.5,5 B.6,6 C.5,6 D.6,5【答案】D【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;5出现了6次,出现的次数最多,则众数是5.故选D.【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.2.某实验学校女子排球队12名队员的年龄分布如图所示,则这12名队员的年龄的众数、平均数分别是()A.15岁,14岁B.15岁,15岁C.15岁,156岁D.14岁,15岁【答案】A【解析】【分析】根据众数、平均数的定义进行计算即即可.【详解】观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.这12名队员的年龄的平均数是:1231311421551611412⨯+⨯+⨯+⨯+⨯=故选:A【点睛】本题主要考查众数、平均数,熟练掌握众数、平均数的定义是解题的关键.3.某青年排球队12名队员的年龄情况如下:年龄(单位:岁)1819202122人数14322则12名队员的年龄()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.【点睛】理解中位数和众数的定义是解题的关键.4.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较【答案】A【解析】【分析】根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩, ∵甲班的中位数是104,乙班的中位数是106,∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人, ∴甲优<乙优, 故选:A . 【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.5.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101 D .方差是93【答案】D 【解析】 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选:D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.6.根据众数的概念找出跳高成绩中人数最多的数据即可. 【详解】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70, 所以中位数是1.70,同一成绩运动员最多的是1.75,共有4人, 所以,众数是1.75.因此,众数与中位数分别是1.75,1.70. 故选A .本题考查了中位数和众数的计算,解题的关键是理解中位数和众数的概念,直接根据概念进行解答.此外,也考查了学生从图表中获取信息的能力.7.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.8.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【答案】D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882+=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.9.已知一组数据:6,2,8,x,7,它们的平均数是6.则这组数据的中位数是()A.7 B.6 C.5 D.4【答案】A【解析】分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.故选A.点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.10.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5【答案】C【解析】若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,此时平均数为15574+++= 4.5;若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选C .11.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( ) A .25和30 B .25和29C .28和30D .28和29【答案】D 【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30, 处于最中间是数是28, ∴这组数据的中位数是28, 在这组数据中,29出现的次数最多, ∴这组数据的众数是29, 故选D .【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.12.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( ) A .平均数 B .方差C .中位数D .众数【答案】D 【解析】 【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数. 【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数. 故选D . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.13.已知一组数据2a -,42a +,6,83a -,9,其中a 为任意实数,若增加一个数据5,则该组数据的方差一定()A .减小B .不变C .增大D .不确定【答案】A 【解析】 【分析】先把原来数据的平均数算出来,再把方差算出来,接着把增加数据5以后的平均数算出来,从而可以算出方差,再把两数进行比较可得到答案. 【详解】解:原来数据的平均数=242683925555a a a -++++-+==,原来数据的方差=222222(25)(45)(265)(835)(95)5a a a S --+-++-+--+-=,增加数据5后的平均数=2426839530565a a a -++++-++==(平均数没变化),增加数据5后的方差=22222221(25)(45)(265)(835)(95)(55)6a a a S --+-++-+--+-+-=, 比较2S ,21S 发现两式子分子相同,因此2S >21S (两个正数分子相同,分母大的反而小), 故答案为A. 【点睛】本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.14.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,15【答案】D 【解析】 【分析】 【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .15.某校为了解同学们课外阅读名著的情况,在八年级随机抽查了20名学生,调查结果如表所示:课外名著阅读量(本) 8 9 10 11 12 学生人数33464关于这20名学生课外阅读名著的情况,下列说法错误的是( ) A .中位数是10 B .平均数是10.25C .众数是11D .阅读量不低于10本的同学点70% 【答案】A 【解析】 【分析】根据中位数、平均数、众数的定义解答即可. 【详解】解:A 、把这20名周学课外阅读经典名著的本书按从小到大的顺序排列,则中位数是=10.5,故本选项错误;B 、平均数是:(8×3+9×3+10×4+11×6+12×4)÷20=10.25,此选项不符合题意;C 、众数是11,此选项不符合题意;D 、阅读量不低于10本的同学所占百分比为×100%=70%,此选项不符合题意;故选:A . 【点睛】本题考查了平均数、众数和中位数,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).众数是一组数据中出现次数最多的数.16.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A .10B .23C .50D .100【答案】A【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案.【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元.故答案为A.【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.17.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.18.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数【答案】B【解析】【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.19.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是()A.9.7,9.5 B.9.7,9.9 C.9.6,9.5 D.9.6,9.6【答案】C【解析】【分析】根据众数和中位数的定义求解可得.【详解】解:由表知,众数为9.5分,中位数为=9.6(分),故选:C.【点睛】考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.20.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零45678件数人数36542每天加工零件数的中位数和众数为( )A.6,5 B.6,6 C.5,5 D.5,6【答案】A【解析】【分析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.。

人教版初中数学数据分析知识点训练及答案

人教版初中数学数据分析知识点训练及答案
8.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )
A.甲队员成绩的平均数比乙队员的大
B.乙队员成绩的平均数比甲队员的大
C.甲队员成绩的中位数比乙队员的大
D.甲队员成绩的方差比乙队员的大
【答案】D
【解析】
【分析】
根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.
2.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按 记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()
A.84分B.85分C.86分D.87分
【答案】A
【解析】
【分析】
按照笔试与面试所占比例求出总成绩即可.
【详解】
根据题意,按照笔试与面试所占比例求出总成绩:
(分)
【答案】D
【解析】
【分析】
根据中位数、众数的概念分别求得这组数据的中位数、众数.
【详解】
解:众数是一组数据中出现次数最多的数,即8;
由统计表可知,处于20,21两个数的平均数就是中位数,
∴这组数据的中位数为 ;
故选:D.
【点睛】
考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
【详解】
解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9
故选D.
13.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:
成绩(m)
2.3
2.4
2.5
2.4
2.4

初二数学下册(人教版)第二十章数据的分析20.1知识点总结含同步练习及答案

初二数学下册(人教版)第二十章数据的分析20.1知识点总结含同步练习及答案
答案: B 解析: A.1.65 米是该班学生身高的平均水平,正确;
)
B.因为小华的身高是 1.66 米,不是中位数,所以班上比小华高的学生人数不会超过 25 人,错 误; C.这组身高数据的中位数不一定是 1.65 米,正确; D.这组身高数据的众数不一定是 1.65 米,正确.
高考不提分,赔付1万元,关注快乐学了解详情。
数据的集中趋势
三、知识讲解
1.数据的集中趋势 描述: 平均数 把一组数据的总和除以这组数据的个数所得的商叫做这组数据的平均数.若 n 个数 x 1 ,x ω n ,则
平均数(weighted average). 众数 一组数据中出现次数最多的那个数据值就是众数(mode). 中位数 将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位 置的数为这组数据的中位数(median);如果数据的个数是偶数,则称中间两个数据的平均数为 这组数据的中位数. 例题: 数据 35,38,37,36,37,36,37,35 的众数是( A. 35 B. 36 C. 37 D. 38 解:C. )
初二数学下册(人教版)知识点总结含同步练习题及答案
第二十章 数据的分析 20.1 数据的集中趋势
一、学习任务 1. 理解平均数、众数、中位数的概念,会求出一组数据的平均数、众数、中位数,并能理解加 权平均数,会在生活中运用加权平均数. 2. 体会平均数、众数、中位数的差别,根据不同的情境选择适合的数据代表数据做出判断和预 测. 二、知识清单
4. 小华所在的九年级一班共有 50 名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身 高是 1.65 米,而小华的身高是 1.66 米,下列说法错误的是 ( A.1.65 米是该班学生身高的平均水平 B.班上比小华高的学生人数不会超过 25 人 C.这组身高数据的中位数不一定是 1.65 米 D.这组身高数据的众数不一定是 1.65 米

人教版八年级数学下册第二十章数据的分析练习(包含答案)

人教版八年级数学下册第二十章数据的分析练习(包含答案)

第二十章数据的剖析一、单项选择题1.已知一组数据x1, x2, x3, x4, x5的均匀数是2,方差是1,那么另一组数据3x1 2 ,33x2 2 , 3x3 2 , 3x42, 3x5 2 ,的均匀数和方差分别是() .A .2,1B.2,1C.4,2D.4,3 332.某中学规定学生的学期体育成绩满分为100 分,此中课外体育占20% ,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95 分, 90 分, 88 分,则小彤这学期的体育成绩为()A . 89 分B. 90 分C.92 分D. 93 分3.在一次体育测试中,小芳所在小组8 个人的成绩分别是:46,47,48,48,49,49,49,50.则这 8 个人体育成绩的中位数是()A . 47B. 48C.48.5D. 4942甲172,S2乙256,.某次知识比赛中,两组学生成绩以下表,经过计算可知两组的方差为以下说法:①两组的均匀数同样;①甲组学生成绩比乙组学生成绩稳固;①甲构成绩的众数>乙构成绩的众数;①两构成绩的中位数均是80,但成绩80 的人数甲比乙组多,从中位数来看,甲构成绩总体比乙组好;①成绩高于或等于90 分的人数乙组比甲组多,高分段乙构成绩比甲组好.此中正确的有()个A . 2B. 3C.4D. 55.某铁工艺品商城某天销售了110 件工艺品,其统计如表:货种A B C D E销售量(件)10 40 30 10 20该店长假如想要认识哪个货种的销售量最大,那么他应当关注的统计量是()A .均匀数B.众数C.中位数D.方差6.从一组数据1, 2, 2, 3 中随意取走一个数,剩下三个数不变的是()A .均匀数B.众数C.中位数D.方差7.假如一组数据2, 3, 4, 5,x的方差与另一组数据101, 102, 103, 104,105 的方差相等,那么 x 的值()A . 6B. 1C.6 或 1D.没法确立8.甲、乙、丙、丁四位选手各10 次射击成绩的均匀数和方差以下表:选手甲乙丙丁均匀数 (环 )9.29.29.29.2方差 (环2)0.0350.0150.0250.027则这四人中成绩发挥最稳固的是()A .甲B.乙C.丙D.丁9.在一次捐钱活动中,某学习小组共有13 人参加捐钱,此中小王的捐钱数比13 人捐钱的均匀数多 2 元,据此可知,以下说法错误的选项是()A.小王的捐钱数不行能最少B.小王的捐钱数可能最多C.将捐钱数按从少到多摆列,小王的捐钱数可能排在第12 位D.将捐钱数按从少到多摆列,小王的捐钱数必定比第7 名多10.多多班长统计昨年1~8 月“书香校园”活动中全班同学的课外阅读数目(单位:本),绘制了如图折线统计图,以下说法正确的选项是()A .极差是47B .众数是42C.中位数是58D.每个月阅读数目超出40 的有 4 个月二、填空题11.九年级某班40 位同学的年纪如表所示:年纪(岁) 13141516人数316192则该班 40 名同学年纪的众数是_____.12.某校初三年级共有四个班,各班会考的均匀成绩挨次是82 分, 79 分, 81 分, 78 分.(1)假如各班的人数都是50 人,则会考的均匀成绩为__________.(2)假如各班的人数挨次为46 人;48 人;54 人;52 人;则该校会考的均匀成绩为_________ .13.某小组计划在本周的一个下午借用 A 、B、 C 三个艺术教室此中的一个进行元旦节目的彩排,他们去教课处查察了上一周 A 、B、 C 三个艺术教室每日下午的使用次数(一节课记为一次)状况,列出以下统计表:经过检查,本次彩排安排在礼拜______ 的下午找到空教室的可能性最大.14.一组数据3, 4, 6, 7, x 的均匀数为 6,则这组数据的方差为_____.15.有两名学员小林和小明练习飞镖,第一轮10 枚飞镖掷完后两人命中的环数以下图,已知生手的成绩不太稳固,那么依据图中的信息,预计小林和小明两人中生手是______ ;这名选手的10 次成绩的极差是______.三、解答题16.我们商定:假如身高在选定标准的± 2%范围以内都称为“普启遍身高”.为了认识某校九年级男生中拥有“广泛身高”的人数,我们从该校九年级男生中随机抽出 10 名男生,分别丈量出他们的身高 (单位: cm) ,采集并整理以下统计表:男生①①①①①①①①①①序号身高163171173159161174164166169164x(cm)依据以上信息,解答以下问题:(1)计算这组数据的三个统计量:均匀数、中位数、众数;(2) 请你选择此中一个统计量作为选定标准,找出这10 名男生中拥有“广泛身高”是哪几位男生?17.在全民念书月活动中,某校随机抽样检查了一部分学生本学期计划购置课外书的花费情况,依据图中的有关信息,解答下边问题;(1)此次检查获得的样本容量是;(2)由统计图可知,此次检查获得的样本数据的众数是;中位数是;(3)求此次检查获得的样本数据的均匀数;(4)若该校共有 1000 名学生,依据样本数据,预计该校本学期计划购置课外书的总花销.18.为了庆贺新中国建立70 周年,某校组织八年级全体学生参加“恰同学少年,忆峥嵘光阴”新中国建立70 周年知识比赛活动.将随机抽取的部分学生成绩进行整理后分红 5 组, 50~60 分( 50x60 )的小组称为“学童”组,60~70分 ( 60x 70 )的小组称为“秀才”组,70~x90 )的小组称为“进士”组, 90~80 分 ( 70x 80 )的小组称为“举人”组, 80~90 分( 80100 分 ( 90x100 )的小组称为“翰林”组,并绘制了不完好的频数散布直方图以下,请结合供给的信息解答以下问题:(1)在此次比赛中,抽取学生的成绩的中位数在组;(2)学校决定对成绩在70~100 分 ( 70x 100 )的学生进行奖赏,若八年级共有336 名学生,请经过计算说明,大概有多少名学生获奖?19.某中学展开“数学史”知识比赛活动,八年级(1)、(2)班依据初赛成绩,各选出 5 名选手参加复赛,两个班各选出的 5 名选手的复赛成绩(满分为100 分)以下图:(1)依据图示填写下表a、 b、 c 的值:统计量均匀数(分)中位数(分)众数(分)班别八年( 1)班a85c八年( 2)班85b100(2)联合两班复赛成绩的均匀数和中位数,剖析哪个班的选于复赛成绩较好;(3)经过计算八年(1)班 5 名选手的复赛成绩的方差S 八(1)2= 70,请你计算八年(2)班5名选手复赛成绩的方差并判断哪个班的选手复赛成绩较为平衡.20.省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩以下表(单位:环):第一次第二次第三次第四次第五次第六次甲10898109乙107101098(1)依据表格中的数据,计算出甲的均匀成绩是环,乙的均匀成绩是环;(2)分别计算甲、乙六次测试成绩的方差;(3)依据( 1)、( 2)计算的结果,你以为介绍谁参加全国比赛更适合,请说明原因.(计算方差的公式:s2=[])答案1. D2. B3. C4. C5. B6. C7. C8. B9. D10. C11. 1512. 8079.9713.三14. 615.小林,9 环16.( 1)均匀数166.4(cm),中位数165,众数164;( 2)①①①①①男生的身高拥有“广泛身高”.17.( 1)40( 2)30,50( 3)均匀数是 50.5 元( 4)该校本学期计划购置课外书的总花销为50500 元18.( 1) 70~80 或“举人”;(2) 231.19.( 1) a= 85 分; b= 80 分; c= 85 分;( 2)八年( 1)班成绩好些;( 3)八年( 2)班20.解:( 1) 9; 9.(2) s2甲=2;3s2乙=4.3(3)介绍甲参加比赛更适合。

初中数学数据分析基础练习题及参考答案

初中数学数据分析基础练习题及参考答案

初中数学数据分析基础练习题及参考答案1. 问题描述:有一个小组,其中2人比例是男生,3人比例是女生,4人比例是男生和女生的比例为1:2,问这个小组一共有多少人?解答:设该小组一共有x人,则男生人数为2x/9,女生人数为3x/9,男生和女生的比例为(2x/9)/(3x/9) = 1/2。

根据比例分配的特性,可得到方程2x/9 = x/3,解得x = 9。

所以该小组一共有9人。

2. 问题描述:某网球俱乐部的会员有男生和女生,其中80%的男生会打网球,75%的女生会打网球,而已知该俱乐部总人数的70%会打网球,求该俱乐部男女会员比例。

解答:设男生人数为x,女生人数为y,则男生会打网球的人数为0.8x,女生会打网球的人数为0.75y。

根据已知,该俱乐部总人数中会打网球的人数为70%,即(0.8x + 0.75y)/(x + y) = 70% = 0.7。

化简方程得到8x + 7.5y = 7(x + y),进一步化简得到x = 2.5y。

所以男女会员比例为2.5:1。

3. 问题描述:有一批学生成绩,其中80%的学生数学成绩优秀,60%的学生英语成绩优秀,已知有70%的学生至少一门科目为优秀,求这批学生中数学和英语都优秀的比例。

解答:设该批学生总人数为x,数学成绩优秀的学生人数为0.8x,英语成绩优秀的学生人数为0.6x。

根据已知,至少一门科目为优秀的学生人数为70%,即(0.8x + 0.6x - k)/(x - k) = 70% = 0.7,其中k为数学和英语都不优秀的学生人数。

化简方程得到14x - 10k = 7x - 7k,进一步化简得到k = 2x。

所以数学和英语都优秀的比例为(0.8x - 2x)/x = 0.6。

即60%的学生数学和英语都优秀。

4. 问题描述:一家餐厅推出了套餐A和套餐B,其中套餐A的价格为30元,套餐B的价格为50元。

经过一段时间的销售后,总销售额为3000元,总销售套餐数为80。

中考数学复习---《数据的分析 》知识点总结与专项练习题(含答案)

中考数学复习---《数据的分析 》知识点总结与专项练习题(含答案)

中考数学复习---《数据的分析 》知识点总结与专项练习题(含答案)知识点总结 1. 平均数:①算术平均数:对于n 个数n x x x x ,,,...321,则()n x x x x nx ++++=−...1321表示这一组数据的平均数。

②加权平均数:对于n 个数n x x x x ,,,...321的权重分别是n w w w w ,,,,...321,则()n n w x w x w x w x nx ++++=−...1332211表示这一组数数据的加权平均数。

权重的表示一半用比的形式或者百分比占比的形式。

2. 中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

3. 众数:一组数据中出现次数最多的数据就是这组数据的平均数。

4. 极差:一组数据的最大值减去最小值。

5. 方差:若一组数是n x x x x ,,,...321,他们的平均数是−x ,则这组数据的方差为:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛−++⎪⎪⎭⎫ ⎝⎛−+⎪⎪⎭⎫ ⎝⎛−=−−−222212...1x x x x x x n s n 。

方差表示这组数据的波动情况,方差越大,数据越波动,方差越小,数据越稳定。

6. 根据已知数据的平均数与方差求关联数据的平均数与方差:若一组数据n x x x x ,,,...321的平均数是−x ,方差是2s 。

则: ①数据n ax ax ax ax ,,,,...3,21的平均数为−x a ,方差为2as 。

②数据b x b x b x b x n ++++,,,,...321的平均数为b x +−,方差为2s 。

③数据b ax b ax b ax b ax n ++++,,,,...321的平均数为b x a +−,方差为2as 。

7. 标准差:一组数均的方差的算术平方根就是这组数据的标准差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学数据分析技巧及练习题附答案一、选择题1.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.中位数31,众数是22 B.中位数是22,众数是31C.中位数是26,众数是22 D.中位数是22,众数是26【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22故选:C.【点睛】此题考查中位数,众数的定义,解题关键在于看懂图中数据2.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:分数/分80859095人数/人3421那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.3.一组数据2,x,6,3,3,5的众数是3和5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B【解析】【分析】由众数的定义求出x=5,再根据中位数的定义即可解答.【详解】解:∵数据2,x,3,3,5的众数是3和5,∴x=5,则数据为2、3、3、5、5、6,这组数据为352=4.故答案为B.【点睛】本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.4.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.5.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.6.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()A.84分B.85分C.86分D.87分【答案】A【解析】【分析】按照笔试与面试所占比例求出总成绩即可.【详解】根据题意,按照笔试与面试所占比例求出总成绩:64⨯+⨯=(分)8090841010故选A【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.7.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较【答案】A【解析】【分析】根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.【详解】解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,∵甲班的中位数是104,乙班的中位数是106,∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,∴甲优<乙优,故选:A.【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.8.某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.5【答案】D【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.5 2+=;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.9.已知一组数据:6,2,8,x,7,它们的平均数是6.则这组数据的中位数是()A.7 B.6 C.5 D.4【答案】A【解析】分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.故选A.点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.10.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.8【答案】C【解析】【分析】先根据平均数为5得出a b10+=,由众数是3知a、b中一个数据为3、另一个数据为7,再根据中位数的定义求解可得.【详解】解:Q数据3,a,4,b,8的平均数是5,3a4b825∴++++=,即a b10+=,又众数是3,a∴、b中一个数据为3、另一个数据为7,则数据从小到大为3、3、4、7、8,∴这组数据的中位数为4,故选C.此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.11.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.12.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;1x ×(110+106+109+111+108+110)=109,C错误;621S 6=[(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B 错误;中位数是109.5,D 错误; 故选A . 【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.13.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单位:℃):7,4,2,1,2,2----,关于这组数据,下列结论不正确的是( ) A .平均数是B .中位数是C .众数是D .方差是【答案】D 【解析】 【分析】一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]. 【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9 故选D .14.下列说法正确的是( )A .要调查人们对“低碳生活”的了解程度,宜采用普查方式B .一组数据:3,4,4,6,8,5的众数和中位数都是3C .必然事件的概率是100%,随机事件的概率是50%D .若甲组数据的方差S 甲2=0.128,乙组数据的方差是S 乙2=0.036,则乙组数据比甲组数据稳定 【答案】D 【解析】A 、由于涉及范围太广,故不宜采取普查方式,故A 选项错误;B 、数据3,4,4,6,8,5的众数是4,中位数是4.5,故B 选项错误;C 、必然事件的概率是100%,随机事件的概率是50%,故C 选项错误;D 、方差反映了一组数据的波动情况,方差越小数据越稳定,故D 选项正确. 故选D .15.已知一组数据2a -,42a +,6,83a -,9,其中a 为任意实数,若增加一个数据5,则该组数据的方差一定() A .减小 B .不变 C .增大 D .不确定【答案】A 【解析】 【分析】先把原来数据的平均数算出来,再把方差算出来,接着把增加数据5以后的平均数算出来,从而可以算出方差,再把两数进行比较可得到答案. 【详解】解:原来数据的平均数=242683925555a a a -++++-+==,原来数据的方差=222222(25)(45)(265)(835)(95)5a a a S --+-++-+--+-=,增加数据5后的平均数=2426839530565a a a -++++-++==(平均数没变化),增加数据5后的方差=22222221(25)(45)(265)(835)(95)(55)6a a a S --+-++-+--+-+-=, 比较2S ,21S 发现两式子分子相同,因此2S >21S (两个正数分子相同,分母大的反而小), 故答案为A. 【点睛】本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.16.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( ) A .小明的成绩比小强稳定 B .小明、小强两人成绩一样稳定 C .小强的成绩比小明稳定D .无法确定小明、小强的成绩谁更稳定 【答案】A 【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8. 平均成绩一样,小明的方差小,成绩稳定,【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.17.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数【答案】B【解析】【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B.【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.18.数据2、5、6、0、6、1、8的中位数是()A.8 B.6 C.5 D.0【答案】C【解析】【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.将数据从小到大排列为:0,1,2,5,6,6,8∵这组数据的个数是奇数∴最中间的那个数是中位数即中位数为5故选C.【点睛】此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.19.下列说法正确的是( )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【答案】D【解析】【分析】根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;D,数据5,6,7,7,8的中位数与众数均为7,正确,故选D.【点睛】本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.20.某小组长统计组内6人一天在课堂上的发言次数分別为3,3,4,6,5,0.则这组数据的众数是()A.3 B.3.5 C.4 D.5【答案】A【解析】【分析】根据众数的定义,找数据中出现次数最多的数据即可.【详解】在3,3,4,6,5,0这组数据中,数字3出现了2次,为出现次数最多的数,故众数为3.故选A.【点睛】本题考查了众数的概念.众数是一组数据中出现次数最多的数据.。

相关文档
最新文档