最新初中数学数据分析解析

合集下载

初中二年级数据的分析

初中二年级数据的分析

初中二年级数据的分析数据分析是一种重要的数学工具,它可以帮助我们理解和解释各种数据。

在这篇文章中,我们将对初中二年级的数据进行分析,以便更好地了解学生的学习情况和成绩表现。

1. 学生人数统计初中二年级的学生人数为500人,其中男生250人,女生250人。

每个班级大约有50名学生,共有10个班级。

2. 学科成绩分布对于不同学科的成绩分布,我们采用百分比来表示。

数学成绩分布:- 优秀(90分以上):30%- 良好(80-89分):40%- 中等(70-79分):20%- 及格(60-69分):8%- 不及格(60分以下):2%语文成绩分布:- 优秀(90分以上):25%- 良好(80-89分):35%- 中等(70-79分):25%- 及格(60-69分):10%- 不及格(60分以下):5%英语成绩分布:- 优秀(90分以上):35%- 良好(80-89分):30%- 中等(70-79分):25%- 及格(60-69分):8%- 不及格(60分以下):2%3. 学生学科偏好通过问卷调查了解学生对不同学科的偏好程度。

根据问卷结果,约60%的学生对数学感兴趣,30%的学生对语文感兴趣,10%的学生对英语感兴趣。

4. 周考成绩的统计每周学校进行一次周考,我们对五次周考成绩进行统计分析。

以下是周考成绩的平均分和标准差:数学周考成绩:- 平均分:78分- 标准差:6分语文周考成绩:- 平均分:85分- 标准差:4分英语周考成绩:- 平均分:82分- 标准差:5分通过周考成绩的统计,我们可以看出数学科目的成绩较为稳定,语文科目的成绩相对较高,而英语的成绩波动较大。

5. 学生缺勤情况分析我们对学生的缺勤情况进行了统计,发现初中二年级的学生平均每个月有2次缺勤记录。

其中,男生和女生的缺勤次数相近。

6. 课外活动参与情况通过调查了解学生课外活动的参与情况。

根据调查结果,约50%的学生参加了文学社团,30%的学生参加了体育俱乐部,20%的学生参加了艺术团队。

北师大版八年级上册数学[数据的分析——知识点整理及重点题型梳理]

北师大版八年级上册数学[数据的分析——知识点整理及重点题型梳理]

北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习数据的分析——知识讲解【学习目标】1、了解加权平均数的意义和求法,会求一组数据的平均数,体会用样本平均数估计总体平均数的思想.2、了解中位数和众数的意义,掌握它们的求法.进一步理解平均数、中位数和众数所代表的不同的数据特征.3、了解极差、方差和标准差的意义及求法,体会它们在刻画数据波动时的不同特征.体会用样本方差估计总体方差的思想,掌握分析数据的思想和方法.4、从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯. 【要点梳理】要点一、算术平均数和加权平均数一般地,对于n 个数123n x x x x 、、、…,我们把()1231n x x x x n⋅⋅⋅++++叫做这n 个数的算术平均数,简称平均数,记作x .计算公式为()1231n x x x x x n=⋅⋅⋅++++. 要点诠释:平均数表示一组数据的“平均水平”,反映了一组数据的集中趋势.(1)当一组数据较大时,并且这些数据都在某一常数a 附近上、下波动时,一般选用简化计算公式x x a '=+.其中x '为新数据的平均数,a 为取定的接近这组数据的平均数的较“整”的数.(2)平均数的大小与一组数据里的每个数据均有关系,其中任一数据的变动都会相应引起平均数的变动.所以平均数容易受到个别特殊值的影响.若n 个数12n x x x 、、…的权分别是12n w w w 、、…、,则112212......n nnx w x w x w w w w ++++++叫做这n 个数的加权平均数. 要点诠释:(1)相同数据i x 的个数i w 叫做权,i w 越大,表示i x 的个数越多,“权”就越重. 数据的权能够反映数据的相对“重要程度”.(2)加权平均数实际上是算术平均数的另一种表现形式,是平均数的简便运算. 要点二、中位数和众数 1.中位数一般地,n 个数据按照大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数. 要点诠释:(1)一组数据的中位数是唯一的;一组数据的中位数不一定出现在这组数据中.(2)由一组数据的中位数可以知道中位数以上和以下数据各占一半. 2.众数一组数据中出现次数最多的那个数据叫做这组数据的众数. 要点诠释:(1)一组数据的众数一定出现在这组数据中;一组数据的众数可能不止一个. (2)众数是一组数据中出现次数最多的数据而不是数据出现的次数. 要点三、平均数、中位数与众数的联系与区别联系:平均数、众数、中位数都是用来描述数据集中趋势的量,其中以平均数最为重要. 区别:平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个别数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适.中位数与数据排列位置有关,个别数据的波动对中位数没影响;众数主要研究各数据出现的频数,当一组数据中不少数据多次重复出现时,可用众数来描述. 要点四、极差、方差和标准差 1.极差一组数据中最大数据与最小数据的差,称为极差,极差=最大数据-最小数据. 要点诠释:极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.一组数据极差越小,这组数据就越稳定. 2.方差方差是各个数据与平均数差的平方的平均数.方差2s 的计算公式是:()[]222212)(...)(1x x x x x x nS n -++-+-=,其中,x 是1x ,2x ,…n x 的平均数. 要点诠释:(1)方差反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.(2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变. (3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2k 倍.3.标准差方差的算术平方根叫做这组数据的标准差,用符号s 表示,即:;标准差的数量单位与原数据一致.4.极差、方差和标准差的联系与区别联系:极差与方差、标准差都是表示一组数据离散程度的特征数.区别:极差表示一组数据波动范围的大小,它受极端数据的影响较大;方差反映了一组数据与其平均值的离散程度的大小.方差越大,稳定性也越小;反之,则稳定性越好.所以一般情况下只求一组数据的波动范围时用极差,在考虑到这组数据的稳定性时用方差. 要点五、用样本估计总体在考察总体的平均水平或方差时,往往都是通过抽取样本,用样本的平均水平或方差近似估计得到总体的平均水平或方差. 要点诠释:(1)如果总体数量太多,或者从总体中抽取个体的试验带有破坏性,都应该抽取样本.取样必须具有尽可能大的代表性.(2)用样本估计总体时,样本容量越大,样本对总体的估计也越精确.样本容量的确定既要考虑问题本身的需要,又要考虑实现的可能性所付出的代价.【典型例题】类型一、平均数、中位数、众数1、(2015•福州)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0 B.2.5 C.3 D.5【答案与解析】解:(1)将这组数据从小到大的顺序排列为1,2,3,4,x,处于中间位置的数是3,∴中位数是3,平均数为(1+2+3+4+x)÷5,∴3=(1+2+3+4+x)÷5,解得x=5;符合排列顺序;(2)将这组数据从小到大的顺序排列后1,2,3,x,4,中位数是3,此时平均数是(1+2+3+4+x)÷5=3,解得x=5,不符合排列顺序;(3)将这组数据从小到大的顺序排列后1,x,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,不符合排列顺序;(4)将这组数据从小到大的顺序排列后x,1,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,符合排列顺序;(5)将这组数据从小到大的顺序排列后1,2,x,3,4,中位数,x,平均数(1+2+3+4+x)÷5=x,解得x=2.5,符合排列顺序;∴x的值为0、2.5或5.故选C.【总结升华】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数举一反三:【变式】若数据3.2,3.4,3.2,x,3.9,3.7的中位数是3.5,则其众数是________,平均数是________.【答案】3.2;3.5;解:由题意3.43.5, 3.62xx+==,所以众数是3.2,平均数是3.5.2、(2016•广州)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表: 小组 研究报告 小组展示 答辩 甲 91 80 78 乙 81 74 85 丙798390计算各小组的平均成绩,并从高分到低分确定小组的排名顺序:如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?【思路点拨】(1)运用求平均数公式()1231n x x x x n⋅⋅⋅++++即可求出三人的平均成绩,比较得出结果;(2)将三人的成绩按比例求出测试成绩,比较得出结果. 【答案与解析】解:(1)由题意可得, 甲组的平均成绩是:(分), 乙组的平均成绩是:(分), 丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙; (2)由题意可得, 甲组的平均成绩是:(分), 乙组的平均成绩是:(分), 丙组的平均成绩是:(分),由上可得,甲组的成绩最高. 答案:甲组的成绩最高【总结升华】本题考查算术平均数、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件. 举一反三:【变式】小王在八年级第一学期的数学成绩分别为:测验一得89分,测验二得78分,测验三得85分,期中考试得90分,期末考试得87分,如果按照平时、期中、期末的10%、30%、60%量分,那么小王该学期的总评成绩应该为多少?【答案】解:小王平时测试的平均成绩897885843x ++==(分).所以8410%9030%8760%87.610%30%60%⨯+⨯+⨯=++(分). 答:小王该学期的总评成绩应该为87.6分.3、下表是七年级(2)班30名学生期中考试数学成绩表(已破损).已知该班学生期中考试数学成绩平均分是76分. (1)求该班80分和90分的人数分别是多少?(2)设此班30名学生成绩的众数为a ,中位数为b ,求a b +的值. 【答案与解析】解:(1)设该班得80分的有x 人,得90分的有y 人.根据题意和平均数的定义,得257330,763050260570780901003,x y x y +++++=⎧⎨⨯=⨯+⨯+⨯+++⨯⎩ 整理得13,89109,x y x y +=⎧⎨+=⎩ 解得8,5.x y =⎧⎨=⎩即该班得80分的有8人,得90分的有5人.(2)因为80分出现8次且出现次数最多.所以a =80,第15、16两个数均为80分,所以b =80,则a b +=80+80=160.【总结升华】本题为统计题,考查平均数、众数与中位数的意义.解题的关键是准确理解题意,建立等量关系. 举一反三:【变式】某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了统计图表如图所示的统计图.零花钱数额(元) 5 10 15 20 学生个数(个)a15205请根据图表中的信息,回答以下问题.(1)求a 的值;(2)求这50名学生每人一周内的零花钱额的众数和平均数. 【答案】解:(1) a =50-15-20-5=10.(2)众数是15.平均数为150(5×10+10×15+15×20+20×5)=12.类型二、极差、方差和标准差4、(2015•徐州)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85 100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.【思路点拨】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“等于差方的平均数”)【答案与解析】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,∴九(1)的平均数为(75+80+85+85+100)÷5=85,九(1)的中位数为85,九(1)的众数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,∴九(2)班的中位数是80;班级平均数(分)中位数(分)众数(分)九(1)85 85 85九(2)85 80 100(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)(3),【总结升华】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式. 举一反三:【变式】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分)甲 95 82 88 81 93 79 84 78 乙8375808090859295(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由. 【答案】解:1(9582888193798478)858x =+++++++=甲(分), 1(8375808090859295)858x =+++++++=乙(分).甲、乙两组数据的中位数分别为83分、84分. (2)由(1)知85x x ==甲乙分,所以22221[(9585)(8285)(7885)]35.58s =-+-++-=甲, 22221[(8385)(7585)(9585)]418s =-+-++-=乙.①从平均数看,甲、乙均为85分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为x x =甲乙,22s s <乙甲,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得成绩. 类型三、统计思想5、我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如图所示的条形统计图.(1)求这10个样本数据的平均数、众数和中位数;(2)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7t 的约有多少户.【思路点拨】(1)根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;(2)首先计算样本中家庭月均用水量不超过7t 的用户所占的百分比,再进一步估计总体. 【答案与解析】解:(1)观察条形图,可知这组样本数据的平均数是62 6.54717.52816.810x ⨯+⨯+⨯+⨯+⨯==.∴这组样本数据的平均数为6.8.∴在这组样本数据中,6.5出现了4次,出现的次数最多. ∴这组数据的众数是6.5.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是 6.5,有6.5 6.56.52+=. ∴这组数据的中位数是6.5.(2)∵10户中月均用水量不超过7t 的有7户,有7503510⨯=. ∴根据样本数据,可以估计出小刚所在班50名同学家庭中月均用水量不超过7t 的约有35户.【总结升华】本题考查的是条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.掌握平均数、中位数和众数的计算方法.。

初中数学数据分析知识点总复习含答案解析

初中数学数据分析知识点总复习含答案解析

初中数学数据分析知识点总复习含答案解析一、选择题1.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.8【答案】C【解析】【分析】+=,由众数是3知a、b中一个数据为3、另一个数据为先根据平均数为5得出a b107,再根据中位数的定义求解可得.【详解】解:Q数据3,a,4,b,8的平均数是5,+=,3a4b825∴++++=,即a b10又众数是3,∴、b中一个数据为3、另一个数据为7,a则数据从小到大为3、3、4、7、8,∴这组数据的中位数为4,故选C.【点睛】此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.2.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.3.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数5.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()A.84分B.85分C.86分D.87分【答案】A【解析】【分析】按照笔试与面试所占比例求出总成绩即可.【详解】根据题意,按照笔试与面试所占比例求出总成绩:648090841010⨯+⨯=(分)故选A【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.6.对于一组统计数据:1,1,4,1,3,下列说法中错误的是()A.中位数是1 B.众数是1C.平均数是1.5 D.方差是1.6【答案】C【解析】【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】解:将数据重新排列为:1、1、1、3、4,则这组数据的中位数1,A选项正确;众数是1,B选项正确;平均数为111345++++=2,C选项错误;方差为15×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;故选:C.【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.7.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较【答案】A【解析】【分析】根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.【详解】解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,∵甲班的中位数是104,乙班的中位数是106,∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,∴甲优<乙优,故选:A.【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.8.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1(26282826242122)25++++++=,7故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70 B.1.75,1.65 C.1.80,1.70 D.1.80,1.65【答案】A【解析】【分析】11.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.12.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.中位数31,众数是22 B.中位数是22,众数是31C.中位数是26,众数是22 D.中位数是22,众数是26【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22故选:C.【点睛】此题考查中位数,众数的定义,解题关键在于看懂图中数据13.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( ) A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定【答案】A【解析】【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【详解】因为s2甲=0.002<s2乙=0.03,所以,甲比乙的产量稳定.故选A【点睛】本题考核知识点:方差. 解题关键点:理解方差意义.14.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65【答案】C【解析】【分析】根据平均数,中位数,众数的定义求解即可.【详解】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【点睛】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键. 15.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.70,1.75 B.1.70,1.70 C.1.65,1.75 D.1.65,1.70【答案】A【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选A.点睛:本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数【答案】B【解析】【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B.【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.17.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.18.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数【答案】B【解析】【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.19.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4【答案】A【解析】【分析】根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.【详解】∵数据2,x,4,8的平均数是4,∴这组数的平均数为2484x+++=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是242+=3.∵2在这组数据中出现2次,出现的次数最多,∴众数是2.故选A.【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.20.根据众数的概念找出跳高成绩中人数最多的数据即可.【详解】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.75,共有4人,所以,众数是1.75.因此,众数与中位数分别是1.75,1.70.故选A.【点睛】本题考查了中位数和众数的计算,解题的关键是理解中位数和众数的概念,直接根据概念进行解答.此外,也考查了学生从图表中获取信息的能力.。

初中数学第20章《数据的分析》教材分析

初中数学第20章《数据的分析》教材分析

人教版初中数学第20章《数据的分析》教材分析本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

全章共分三节:20。

1数据的代表。

本节是研究代表数据集中趋势的统计量:平均数、中位数和众数。

本节中,教科书首先给出一个实际问题,通过分析解决这个实际问题,引进加权平均数的概念。

为了突出“权”的作用和意义,教科书通过两个例题,从不同方面体现“权”的作用。

接下去,教科书对加权平均数进行扩展,包括如何将算数平均数与加权平均数统一起来,如何求区间分组的数据的加权平均数,如何利用计算器的统计功能求平均数,如何利用样本平均数估计总体平均数的问题等。

对于中位数和众数,教科书通过几个具体实例,研究了它们的统计意义。

在本节最后,教科书通过一个具体实例,研究了综合利用平均数、中位数和众数解决问题的例子,并对这三种统计量进行了概括总结,突出了它们各自的统计意义和各自的特征。

20。

2数据的波动。

本节是研究刻画数据波动程度的统计量:极差和方差。

教科书首先利用温差的例子研究了极差的统计意义。

方差是统计中常用的一种刻画数据离散程度的统计量,教科书对方差进行了比较详细的研究。

首先通过一个实际问题提出对两组数据的波动情况的研究,并画出散点图直观地反映数据的波动情况,在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的。

随后,又介绍了利用计算器的统计功能求方差的方法。

本节最后,教科书利用所学知识解决本章前言中提出的问题,并研究了用样本方差估计总体方差的问题。

20。

3课题学习体质健康测试中的数据分析。

教科书在最后一节安排了一个具有一定综合性和实践性的“课题学习”。

这个“课题学习”选用了与学生生活联系密切的体质健康问题。

最新初中数学数据分析知识点(详细全面)讲解学习

最新初中数学数据分析知识点(详细全面)讲解学习

最新初中数学数据分析知识点(详细全面)讲解学习
学习资料
精品文档第五讲、数据分析
一、数据的代表
(一)、(1)平均数:。

注:
(2)加权平均数:

(3)平均数的计算方法
①定义法:。

(4)算术平均数与加权平均数的区别与联系
①联系:都是平均数,算术平均数是加权平均数的一种特殊形式(它特殊在各项的权相等,均为1
)。

②区别:算术平均数就是简单的把所有数加起来然后除以个数。

而加权平均数是指各个数所占的比重不同,按照相应的比例把所有数乘以权值再相加,最后除以总权值。

(二)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。

(注:不是唯一的,可存在多个)
(三)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

(注:
(一)极差:
(1)概念:一组数据中的最大数据与最小数据的差叫做这组数据的极差。

(2)意义:能够反映数据的变化范围,是最简单的一种度量数据
波动情况的量,极差越大,波动越大。

(二)方差:
(1)概念:(2)意义:衡量数据波动大小的量,方差越大,数据的波动越大;方差越小,数据的波动越小,数据的波动越稳定。

初中数学数据分析知识点整理

初中数学数据分析知识点整理

初中数学数据分析知识点整理数据分析是数学学科中的一门重要内容,在初中阶段,学生需要掌握一些基本的数据分析知识点。

本文将对初中数学数据分析的知识点进行整理,希望能帮助同学们更好地学习和理解这一部分知识。

1. 数据的收集和整理数据分析的第一步是收集和整理数据。

数据可以从实际问题中获取,可以是测量或观察得到的数字。

在初中阶段,常见的数据收集方式包括调查问卷、实验记录、观察记录等。

在整理数据时,需要将数据分类、排序和组织起来。

常见的方式包括制作表格、计算频数和制作直方图等。

2. 数据的表示和描述数据可以通过不同的方式来表示和描述。

常见的表示方式包括文字描述、图表和统计指标。

文字描述是最直接的方式,可以用来描述数据的特征、趋势和规律。

例如,“这个班级的学生身高主要集中在150cm至160cm之间”。

图表是更形象和直观的表示方式,包括折线图、柱状图、饼图等。

图表可以帮助我们更清晰地看到数据的分布和变化。

例如,制作一个柱状图来展示不同班级学生身高的分布情况。

统计指标是对数据进行数值化描述的方式,包括平均数、中位数、众数等。

这些指标可以帮助我们更准确地理解和描述数据的特征。

例如,计算一个班级学生身高的平均数,可以得到这个班级学生的平均身高是155cm。

3. 中心趋势的度量中心趋势是用来表示数据集中位置的指标。

常见的中心趋势度量有平均数、中位数和众数。

平均数是最常用的中心趋势度量,可以通过将所有数据相加并除以数据的个数得到。

平均数对数据的异常值比较敏感,当数据集中有异常值时,平均数可能不太准确。

中位数是将数据按大小顺序排列后位于中间位置的数值。

中位数对数据的异常值不敏感,能更好地反映数据的集中趋势。

众数是出现次数最多的数值。

如果有多个数值出现的次数相同,那么这些数值都是众数。

众数适用于描述离散型数据。

4. 变异程度的度量变异程度是用来表示数据分散程度的度量。

常见的变异程度度量有极差、方差和标准差。

极差是最大值与最小值之间的差异。

初中数学知识归纳数据的收集整理与分析

初中数学知识归纳数据的收集整理与分析

初中数学知识归纳数据的收集整理与分析数据的收集是数学研究和应用的基础,能够帮助我们更好地理解和分析问题。

在初中数学中,归纳数据的收集整理与分析是一项重要的技能,本文将介绍如何进行有效的数据收集、整理和分析。

一、数据的收集数据的收集是指通过调查、实验等方式获取相关信息的过程。

在数学中,我们可以通过问卷调查、观察、实验等方式收集数据。

在进行数据收集时,我们应该注意以下几点:1.明确目的:在开始数据收集之前,我们应该明确自己的研究目的,了解自己想要回答的问题是什么。

只有明确了目的,才能有针对性地进行数据收集。

2.选择样本:在收集数据时,我们往往无法对整个人群或对象进行调查或观察,而是选择一个样本进行研究。

选择样本时,我们应该注意样本的代表性,尽量使其能够反映整体情况。

3.选择合适的数据收集方法:数据收集方法有很多种,我们应根据实际情况选择合适的方法。

例如,如果我们想调查学生的学习时间,可以通过发放问卷进行调查;如果我们想研究植物的生长情况,可以通过观察和记录数据来收集。

二、数据的整理数据的整理是指将收集到的数据进行分类、排序和清理的过程。

在整理数据时,我们应该注意以下几点:1.分类归类:根据收集到的数据的特点,我们可以将其进行分类归类。

例如,如果我们调查学生的兴趣爱好,可以将其分为体育、音乐、艺术等不同的类别。

2.排序排列:根据需要,我们可以将数据进行排序排列,以便更好地进行分析。

例如,如果我们研究学生的考试成绩,可以按照分数从高到低进行排列。

3.清理数据:在整理数据的过程中,我们可能会发现一些异常或错误的数据,我们应该将其进行清理。

例如,如果我们发现某个学生的考试成绩明显异常,我们可以将其排除在外。

三、数据的分析数据的分析是指对整理到的数据进行进一步的研究和处理,以获得有用的信息和结果。

在进行数据分析时,我们应该注意以下几点:1.统计分析:统计分析是数据分析的一种重要方法,通过对数据的计数、比较、计算等操作,我们可以得到更详细的结论。

初中数学中考复习考点知识与题型专题讲解37 数据的分析(解析版)

初中数学中考复习考点知识与题型专题讲解37 数据的分析(解析版)

初中数学中考复习考点知识与题型专题讲解专题37 数据的分析【知识要点】考点知识一 数据的集中趋势算术平均数:简称平均数,记作“x̅”,读作“x 拔”。

公式:平均数= n 个数的和 个数 =nx x x n +⋅⋅⋅++21 【注意】分析平均数时,容易被数据的极值影响,导致错误的判断。

加权平均数概念:若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则nn n w w w w x w x w x +⋅⋅⋅+++⋅⋅⋅++212211,叫做这n 个数的加权平均数.【注意】若各数据权重相同,则算术平均数等于加权平均数。

中位数的概念:将一组数据由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这个数据的中位数,如果数据的个数是偶数,则中间两个数的平均数就是这组数据的中位数。

确定中位数的一般步骤:第1步:排序,由大到小或由小到大。

第2步:确定是奇个数据(n+12)或偶个数据(n 2个数和它后一个数(n 2+1)个数的平均数)。

第3步:如果是奇个数据,中间的数据就是中位数。

如果是偶数,中位数是中间两个数据的平均数。

众数的概念:一组数据中出现次数最多的数据就是这组数据的众数。

【注意】如果一组数据中有两个数据的频数一样且都是最大,那么这两个数据都是这组数据的众数,所以一组数据中众数的个数可能不唯一。

众数的意义:当一组数据有较多的重复数据时,众数往往能更好地反映其集中的趋势。

平均数、中位数、众数的区别:1、平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,在现实生活中较为常用.但它受极端值的影响较大。

2、 当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,众数不受极端值的影响,这是它的一个优势。

但当各个数据的重复次数大致相等时,众数往往没有意义。

3.中位数只需很少的计算,不受极端值的影响,这在有些情况下是一个优点。

考点知识二 数据的波动方差的概念:在一组数据1x ,2x ,…,n x 中,各个数据与平均数的差的平方的平均数叫做这组数据的方差,记作.计算公式是:求一组数据方差的步骤:先平均、再做差、然后平方、最后再求平均数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.22B.24C.25D.26
【答案】C
【解析】
【分析】
把7个数相加再除以7即可求得其平均数.
【详解】
由题意得,九年级七科老师在线答疑问题总个数的平均数是 ,
故选:C
【点睛】
此题考查了平均数的计算,掌握计算方法是解答此题的关键.
8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差 .后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()
成绩(单位:米)
2.10
2.20
2.25
2.30
2.35
2.40
2.45
2.50
人数
2
3
2
4
5
2
1
1
则下列叙述正确的是( )
A.这些运动员成绩的众数是5
B.这些运动员成绩的中位数是2.30
C.这些运动员的平均成绩是2.25
D.这些运动员成绩的方差是0.0725
【答案】B
【解析】
【分析】
根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.
平均每月阅读本数
4
5
6
7
8
人数
2
6
5
4
3
这些同学平均每月阅读课外书籍本数的中位数和众数为( )
A.5,5B.6,6C.5,6D.6,5
【答案】D
【解析】
【分析】
根据中位数和众数的定义分别进行解答即可.
【详解】
把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;
5出现了6次,出现的次数最多,则众数是5.
【答案】D【解析】【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断.
【详解】
A、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用
抽样调查的调查方式,故本选项错误;
、甲乙两种麦种连续3年的平均亩产量的方差为: , ,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;
7
时间(小时)
7
8
9
10
那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()
A.17,8.5B.17,9C.8,9D.8,8.5
【答案】D
【解析】
【分析】
根据中位数、众数的概念分别求得这组数据的中位数、众数.
【详解】
解:众数是一组数据中出现次数最多的数,即8;
由统计表可知,处于20,21两个数的平均数就是中位数,
1
2
3
4
5
小乙
45
63
55
52
60
小丁
51
53
58
56
57
设两人的五次成绩的平均数依次为 , ,成绩的方差一次为 , ,则下列判断中正确的是( )
A. , B. ,
C. , D. ,
【答案】B
【解析】
【分析】
根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案.
【详解】

则 ,

则 ,
所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.
故选B.
【点睛】
理解平均数,中位数,众数的意义.
4.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )
A.8B.9C.10D.12
【答案】C
【解析】
【分析】
根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.
2.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:
分数/分
80
85
90
95
人数/人
3
4
2
1
那么,这10名选手得分的中位数和众数分别是( )
A.85.5和80B.85.5和85C.85和82.5D.85和85
【答案】D
【解析】
【分析】
众数是一组数据中出现次数最多的数据,注意众数可以不只一个;
即中位数为5
故选C.
【点睛】
此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
9.已知一组数据:6,2,8, ,7,它们的平均数是6.则这组数据的中位数是()
A.7B.6C.5D.4
【答案】A
【解析】
分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.
详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.
A.平均分不变,方差变大B.平均分不变,方差变小
C.平均分和方差都不变D.平均分和方差都改变
【答案】B
【解析】
【分析】
根据平均数,方差的定义计算即可.
【详解】
解:∵小亮的成绩和其他39人的平均数相同,都是90分,
∴该班40人的测试成绩的平均分为90分,方差变小,
故选:B.
【点睛】
本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
【详解】
当x=8时,有两个众数,而平均数只有一个,不合题意舍去.
当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,
将这组数据按从小到大的顺序排列为8,10,10,12,
处于中间位置的是10,10,
所以这组数据的中位数是(10+10)÷2=10.
故选C.
【点睛】
本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
数据85出现了4次,最多,故为众数;
按大小排列第5和第6个数均是85,所以中位数是85.
故选:D.
【点睛】
本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
5.某青年排球队12名队员的年龄情况如下:
年龄(单位:岁)
18
19
20
21
22
人数
1
4
3
2
2
则12名队员的年龄()
A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁
C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁
【答案】D
【解析】
【分析】
中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).
A.平均数B.中位数C.众数D.方差
【答案】D
【解析】
【详解】
解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D.原来数据的方差= = ,
添加数字2后的方差= = ,
13.关于数据-4,1,2,-1,2,下面结果中,错误的是( )
A.中位数为1B.方差为26C.众数为2D.平均数为0
【答案】B
【解析】
【分析】
【详解】
A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1,故正确;
B. , ,故不正确;
C.∵众数是2,故正确;
D. ,故正确;
故选B.
14.下列说法正确的是( )
故选A.
点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.
10.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:
B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;
C、平均数为(7+5+3+5+10)÷5=6,此选项正确;
D、方差为 ×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;
故选:D.
【点睛】
本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.
、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;
、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;.
故选 .
【点睛】
本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.
15.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
相关文档
最新文档