有关传送带的能量问题

合集下载

(最新优质)高一物理专题十四 :传送带与板块中的能量(附解析)

(最新优质)高一物理专题十四 :传送带与板块中的能量(附解析)

专题十四传送带与板块中的能量学科素养部分一.核心素养聚焦考点一科学思维——传送带中的能量问题例题1.如图所示,水平传送带长为s,以速度v始终保持匀速运动,把质量为m的货物放到A点,货物与皮带间的动摩擦因素为μ。

当货物从A点运动到B点的过程中,摩擦力对货物做的功可能是()A.等于12mv2B.小于12mv2C.大于μmgs D.小于μmgs【答案】ABD【解析】货物在传送带上相对地面的运动可能先加速后匀速,也可能一直加速而货物的最终速度小于v,故摩擦力对货物做的功可能等于12mv2,可能小于12mv2,可能等于μmgs,可能小于μmgs,故选A、B、D.例题2.如图所示,足够长的传送带以恒定速率沿顺时针方向运转。

现将一个物体轻轻放在传送带底端,物体第一阶段被加速到与传送带具有相同的速度,第二阶段匀速运动到传送带顶端.则下列说法中正确的是()A.第一阶段和第二阶段摩擦力对物体都做正功B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C .第二阶段摩擦力对物体做的功等于第二阶段物体机械能的增加量D .两个阶段摩擦力对物体所做的功等于物体机械能的减少量 【答案】AC【解析】两阶段中摩擦力方向都是沿传送带向上的,与速度方向相同,A 正确;两阶段中都是除了摩擦力外还有重力对物体做功,而由动能定理知合外力所做功才等于物体动能的变化量,B 错误;除了重力外只有摩擦力对物体做功,由功能原理知C 正确;两阶段中摩擦力都做正功,机械能在整个过程中一直是增加的,D 错误。

例题3.如下图所示,浅色传送带A 、B 两端距离L =24m ,以速度v 0=8m/s 逆时针匀速转动,并且传送带与水平面的夹角为θ=30°,现将一质量为m =2kg 的煤块轻放在传送带的A 端,煤块与传送带间动摩擦因数g 取10m/s 2,则下列叙述正确的是A .煤块从A 端运动到B 端所经历时间为3s B .煤块从A 端运动到B 端重力的瞬时功率为240WC .煤块从A 端运动到B 端留下的黑色痕迹为4mD .煤块从A 端运动到B 端因摩擦产生的热量为24J 【答案】AC【解析】煤块刚放上传送带时的加速度大小为:22130303030510/8/mgsin mgcos a gsin gcos s m s m μμ︒+︒=︒+︒===,则煤块速度达到与传送μ=带共速所需的时间为s a v t 1101==,这段时间内的位移m a v x 42121==。

传送带模型中的能量问题全解

传送带模型中的能量问题全解
的货物放到A点,货物与传送带间的动摩擦因数为 μ ,当货物从A点运动到 B点的过程中,摩擦力对货物做的功不可能是( )
1 2 A.等于 mv 2 C .大于 μ mgs
1 2 B.小于 mv 2 D.小于μ mgs
答案 C
THANK YOU
A
v
B
答案: (1)
(2)t=1s (3)0.5m (4)2.5s (5)4J
Ff 4 N
a 1m / s 2
2.如图所示,水平传送带AB逆时针匀速转动,一个质量为
M=1.0 kg的小物块以某一初速度由传送带左端滑上,通过速度
传感器记录下物块速度随时间的变化关系如图所示(图中取向左为
传送带装置示意图,绷紧的传送带AB始终保持v=1m/s的恒定速率运行. 一质量为m=4kg的行 李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又 以与传送带相等的速率做匀速直线运动 . 设行李与传送带间的动摩擦因数 μ =0.1,AB间的距离 l=2m,g=10m/s2. 求: (1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小 (2)求行李做匀加速运动的时间 (3)行李在传送带上形成的划迹的长度 (4)行李从A运动到B的时间 (5)电机带动传送带匀速传动输出的总能量。
不打滑,质量为0.1kg的小物块与传送带间的动摩擦因数为μ = 3 。
当传送带沿逆时针方向以 v 1 =3m/s 的速度匀速运动时,将小物块 无初速地放在A点后,它会运动至B点。(g取10m/s2) (1)求物体刚放在A点的加速度? (2)物体从A到B约需多长时间? (3)整个过程中摩擦产生的热量?
0.5.设皮带足够长.取g=10 m/s2,在邮件与皮带发生相对滑 动的过程中,求 (1)邮件滑动的时间t; (2)邮件对地的位移大小x; (3)邮件与皮带间的摩擦力对皮带做的功W.

传送带的能量分析

传送带的能量分析
v
30°
例3.质量m=1kg的物体从半径为R=0.2m的1/4光滑圆弧轨道顶端 正上方h=0.6m处的P点由静止开始下落,滑到水平传送带上的A点, 恰好能滑至传送带右端B点,圆弧底端切线与传送带相切,传送 带AB之间的距离为L=5m,传送带一直以v=4m/s的速度向左匀速运 动, 求: (1)物体与传送带间的动摩擦因素μ。 (2)物块返回后能从圆弧顶端上升的最大高度。 (3)试描述物体接下来的运动。 (4)物体从P点开始到第二次到 达最大高度的过程中,带动传送 P 带转动的电动机多做了多少功?
传送带的能量分析
例1.水平放置的传送带以v=2.0m/s匀速运转。将 m=0.40kg的物体轻放在传送带左端,经过一段时 间,物体和传送带具有了同样的速度。由于放上 了该物体,传送带的电机在这段时间内多做的功 是多少?
例2. 一传送皮带与水平面夹角为30°,以2m/s的恒定 速度顺时针运行。现将一质量为10kg的工件轻放于底 端,经一段时间送到高2m的平台上,工件与皮带间的 动摩擦因数为μ= 3 2 ,取g=10m/s2 求带动皮带的电动机由于传送工件多消耗的电能。
为L。每个箱子在A处投放后,在到达B之前已经相对于传送带
静止,且以后也不再滑动(忽略经BC段时的微小滑动)。已知
在一段相当长的时间T 内,共运送小货箱的数目为N。这装置
由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩
擦。
D
求电动机的平均输出功率P。Fra bibliotekA BC
R
A
B
L
例3.一传送带装置示意如图,其中传送带经过AB区域时是水平
的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,未画
出),经过CD区域时是倾斜的,AB和CD都与BC相切。现将大

2022高考物理微专题42 “传送带”模型中的能量问题

2022高考物理微专题42  “传送带”模型中的能量问题

微专题42 “传送带”模型中的能量问题1.计算摩擦力对物块做的功和摩擦力对传送带做功要用动能定理,计算摩擦生热要用Q =F f x 相对或能量守恒.2.电机多做的功一部分增加物块的机械能,一部分因摩擦产生热量. 1.(多选)如图1所示,传送带以v 的速度匀速运动.将质量为m 的物体无初速度放在传送带上的A 端,物体将被传送带带到B 端.已知物体到达B 端之前已和传送带相对静止,则下列说法正确的是( )图1A .传送带对物体做功为m v 2B .传送带克服摩擦力做功为m v 2C .电动机由于传送物体多消耗的能量为m v 2D .在传送物体过程中产生的热量为m v 2 答案 BC解析 物体与传送带相对静止前,物体受重力、支持力和摩擦力,根据动能定理知传送带对物体做的功等于物体的动能的增加量,传送带对物体做功为W =12m v 2,物体与传送带相对静止后,物体受重力和支持力,传送带对物体不做功,故A 错误;在传送物体过程产生的热量等于滑动摩擦力与相对路程的乘积,即Q =F f Δx ,设加速时间为t ,物体的位移为x 1=12v t ,传送带的位移为x 2=v t ,根据动能定理知摩擦力对物体做的功W 1=F f x 1=12m v 2,热量Q =F f Δx=12m v 2,传送带克服摩擦力做的功W 2=F f x 2=m v 2,故B 正确,D 错误;电动机由于传送物体多消耗的能量等于物体动能增加量和摩擦产生的热量之和,等于m v 2,故C 正确. 2.(多选)如图2所示,水平传送带顺时针转动,速度为v 1,质量为m 的物块以初速度v 0从左端滑上传送带,v 0>v 1,经过一段时间物块与传送带速度相同,此过程中( )图2A .物块克服摩擦力做的功为12m v 12B .物块克服摩擦力做的功为12m (v 02-v 12)C .产生的内能为12m (v 02-v 12)D .产生的内能为12m (v 0-v 1)2答案 BD解析 物块的初速度大于传送带的速度,物块受到的摩擦力向左,其向右匀减速运动直至与传送带共速,由动能定理有-W f =12m v 12-12m v 02,得W f =12m v 02-12m v 12,故A 错误,B 正确;物块和传送带间摩擦生热,相对位移为Δx =v 0+v 12·v 0-v 1μg -v 1·v 0-v 1μg =(v 0-v 1)22μg ,故热量为Q=μmg ·Δx =m (v 0-v 1)22,故C 错误,D 正确.3.已知一足够长的传送带与水平面的倾角为θ,以恒定的速度顺时针转动.某时刻在传送带适当的位置放上具有一定初速度、质量为m 的小物块,如图3甲所示.以此时为t =0时刻,小物块的速度随时间的变化关系如图乙所示(图甲中取沿传送带向上的方向为正方向,图乙中v 1>v 2).下列说法中正确的是( )图3A .0~t 1内传送带对小物块做正功B .小物块与传送带间的动摩擦因数μ小于tan θC .0~t 2内传送带对小物块做功为12m v 22-12m v 12D .0~t 2内小物块与传送带间因摩擦产生的热量大于小物块动能的减少量 答案 D解析 由题图乙可知,物块先向下运动后向上运动,又知传送带的运动方向向上,0~t 1内,物块向下运动,传送带对物块的摩擦力方向沿传送带向上,传送带对物块做负功,故A 错误;在t 1~t 2内,物块向上运动,则有μmg cos θ>mg sin θ,得μ>tan θ,故B 错误;0~t 2内,根据v -t 图像中图线与t 轴所围“面积”等于位移可知,物块的总位移沿传送带向下,高度下降,重力对物块做正功,设为W G ,根据动能定理有W +W G =12m v 22-12m v 12,则传送带对物块做的功W ≠12m v 22-12m v 12,故C 错误;0~t 2内物块的重力势能减小,动能也减小,都转化为系统产生的热量,则由能量守恒定律可知,系统产生的热量大小一定大于物块动能的减少量,故D 正确.4.(2020·陕西西安市西安中学第六次模拟)如图4甲所示,一倾角为θ=37°的传送带以恒定速度运行.现将一质量m =1 kg 的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.则下列说法中正确的是( )图4A .0~8 s 内物体位移的大小为18 mB .物体和传送带间的动摩擦因数为0.625C .0~8 s 内物体机械能增量为78 JD .0~8 s 内物体因与传送带摩擦产生的热量Q 为126 J 答案 D解析 根据v -t 图像与时间轴围成的“面积”等于物体的位移,可得0~8 s 内物体的位移x =12×2×(2+4) m +2×4 m =14 m ,故A 错误. 物体运动的加速度a =ΔvΔt =1 m/s 2,根据μmg cos 37°-mg sin 37°=ma 解得μ=0.875,选项B错误;0~8 s 内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为ΔE =mgx sin 37°+12m ×(4 m/s)2=92 J ,故C 错误;0~8 s 内只有前6 s 发生相对滑动,0~6 s 内传送带运动距离为:x 带=4×6 m =24 m ;0~6 s 内物体位移为:x 物=6 m ;则0~6 s 内两者相对位移Δx =x 带-x 物=18 m ,产生的热量为Q =μmg cos θ·Δx =126 J ,故D 正确.5.(多选)(2019·湖北荆州市一检)如图5所示,足够长的传送带与水平方向的倾角为θ,物块a通过平行于传送带的轻绳跨过光滑轻滑轮与物块b 相连,b 的质量为m ,重力加速度为g .开始时,a 、b 及传送带均静止,且a 不受传送带摩擦力作用,现让传送带逆时针匀速转动,则在b 上升h 高度(未与滑轮相碰)过程中( )图5A .物块a 的重力势能减少mghB .摩擦力对a 做的功等于a 机械能的增量C .摩擦力对a 做的功等于物块a 、b 动能增量之和D .任意时刻,重力对a 、b 做功的瞬时功率大小相等 答案 ACD解析 开始时,a 、b 及传送带均静止且a 不受传送带摩擦力作用,有m a g sin θ=m b g ,则m a =m b sin θ=m sin θ,b 上升h ,则a 下降h sin θ,则a 重力势能的减小量为ΔE p a =m a g ·h sin θ=mgh ,故A 正确;根据能量守恒定律,摩擦力对a 做的功等于a 、b 系统机械能的增量,因为系统重力势能不变,所以摩擦力对a 做的功等于系统动能的增量,故B 错误,C 正确;任意时刻a 、b 的速率大小相等,对b ,克服重力做功的瞬时功率P b =mg v ,对a 有:P a =m a g v sin θ=mg v ,所以重力对a 、b 做功的瞬时功率大小相等,故D 正确.6.如图6所示,光滑轨道ABCD 是大型游乐设施过山车轨道的简化模型,最低点B 处的入、出口靠近但相互错开,C 是半径为R 的圆形轨道的最高点,BD 部分水平,末端D 点与右端足够长的水平传送带无缝连接,传送带以恒定速度v 逆时针转动,现将一质量为m 的小滑块从轨道AB 上竖直高度为3R 的位置A 由静止释放,滑块能通过C 点后再经D 点滑上传送带,已知滑块滑上传送带后,又从D 点滑入光滑轨道ABCD 且能到达原位置A ,则在该过程中(重力加速度为g )( )图6A .在C 点滑块对轨道的压力为零B .传送带的速度可能为5gRC .摩擦力对物块的冲量为零D .传送带速度v 越大,滑块与传送带因摩擦产生的热量越多 答案 D解析 对滑块从A 到C ,根据动能定理有mg (h -2R )=12m v C 2-0,根据F N +mg =m v C 2R ,解得F N =mg ,选项A 错误;从A 到D ,根据动能定理有mgh =12m v D 2,解得v D =6gR ,由于滑块还能到达原位置A ,则传送带的速度v ≥v D =6gR ,选项B 错误;滑块在传送带上运动的过程中,动量方向变为相反,动量变化量不为0,则摩擦力对滑块的冲量不为0,选项C 错误;滑块与传送带之间产生的热量Q =μmg Δx ,传送带的速度越大,在相同时间内二者相对位移(Δx )越大,则产生的热量越多,故选项D 正确.7.(多选)(2019·安徽蚌埠市第三次质量检测)如图7所示,在一水平向右匀速运动的长传送带的左端A 点,每隔相同的时间轻放上一个相同的工件.经测量,发现前面那些已经和传送带达到相同速度的工件之间的距离均为L .已知传送带的速率恒为v ,工件与传送带间的动摩擦因数为μ,工件质量为m ,重力加速度为g ,则下列说法正确的是( )图7A .工件在传送带上加速运动的时间一定等于L vB .传送带对每个工件做的功为12m v 2C .每个工件与传送带间因摩擦而产生的热量一定等于12μmgLD .传送带因传送每一个工件而多消耗的能量为m v 2 答案 BD解析 工件在传送带上先做匀加速直线运动,当速度与传送带速度相等时工件做匀速直线运动,加速度为a =μg ,则加速的时间为t =vμg ,故A 错误;传送带对每个工件做的功使工件的动能增加,根据动能定理得:W =12m v 2,故B 正确;工件与传送带相对滑动的路程为:Δx=v v μg -v 22μg =v 22μg ,则摩擦产生的热量为:Q =μmg Δx =m v 22,故C 错误;根据能量守恒得,传送带因传送一个工件多消耗的能量E =12m v 2+Q =m v 2,故D 正确.8.如图8所示,传送带与地面的夹角θ=37°,A 、B 两端间距L =16 m ,传送带以速度v =10 m/s ,沿顺时针方向运动,物体质量m =1 kg ,无初速度地放置于A 端,它与传送带间的动摩擦因数μ=0.5,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:图8(1)物体由A 端运动到B 端的时间; (2)系统因摩擦产生的热量. 答案 (1)2 s (2)24 J解析 (1)物体刚放上传送带时受到沿斜面向下的滑动摩擦力和重力,由牛顿第二定律得:mg sin θ+μmg cos θ=ma 1,设物体经时间t 1,加速到与传送带同速, 则v =a 1t 1,x 1=12a 1t 12解得:a 1=10 m/s 2 t 1=1 s x 1=5 m<L因mg sin θ>μmg cos θ,故当物体与传送带同速后,物体将继续加速 由mg sin θ-μmg cos θ=ma 2 L -x 1=v t 2+12a 2t 22解得:t 2=1 s故物体由A 端运动到B 端的时间t =t 1+t 2=2 s. (2)物体与传送带间的相对位移 x 相=(v t 1-x 1)+(L -x 1-v t 2)=6 m 故Q =μmg cos θ·x 相=24 J.9.如图9所示,与水平面成30°角的传送带以v =2 m/s 的速度按如图所示方向顺时针匀速运动,AB 两端距离l =9 m .把一质量m =2 kg 的物块(可视为质点)无初速度地轻轻放到传送带的A 端,物块在传送带的带动下向上运动.若物块与传送带间的动摩擦因数μ=7153,不计物块的大小,g 取10 m/s 2.求:图9(1)从放上物块开始计时,t =0.5 s 时刻摩擦力对物块做功的功率是多少?此时传送带克服摩擦力做功的功率是多少?(2)把这个物块从A 端传送到B 端的过程中,传送带运送物块产生的热量是多大? (3)把这个物块从A 端传送到B 端的过程中,摩擦力对物块做功的平均功率是多少? 答案 (1)14 W 28 W (2)14 J (3)18.8 W 解析 (1)物块受沿传送带向上的摩擦力为: F f =μmg cos 30°=14 N由牛顿第二定律得:F f -mg sin 30°=ma , a =2 m/s 2物块与传送带速度相同时用时为:t 1=v a =22 s =1 s因此t =0.5 s 时刻物块正在加速, 其速度为:v 1=at =1 m/s则此时刻摩擦力对物块做功的功率是: P 1=F f v 1=14 W此时刻传送带克服摩擦力做功的功率是: P 2=F f v =28 W(2)当物块与传送带相对静止时:物块的位移x 1=12at 12=12×2×12 m =1 m<l =9 m摩擦力对物块做功为:W 1=F f x 1=14×1 J =14 J 此段时间内传送带克服摩擦力所做的功: W 2=F f v t 1=28 J这段时间产生的热量:Q =W 2-W 1=14 J(3)物块在传送带上匀速运动的时间为: t 2=l -x 1v =4 s把物块由A 端传送到B 端摩擦力对物块所做的总功为: W 总=mgl sin 30°+12m v 2把物块从A 端传送到B 端的过程中,摩擦力对物块做功的平均功率是: P =W 总t 1+t 2=18.8 W. 10.(2019·河北邯郸市测试)如图10所示,一根轻弹簧左端固定于竖直墙上,右端被质量m =1 kg 且可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带,AB 长L =5 m ,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC 长s =1.5 m ,它与物块间的动摩擦因数μ2=0.3,在C 点右侧有一半径为R 的光滑竖直圆弧与BC 平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F 处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以v =5 m/s 的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的E p =18 J 能量全部释放时,小物块恰能滑到与圆心等高的E 点,取g =10 m/s 2.图10(1)求右侧圆弧的轨道半径R ;(2)求小物块最终停下时与C 点的距离;(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.答案 (1)0.8 m (2)13 m (3)37 m/s ≤v ≤43 m/s解析 (1)物块被弹簧弹出,由E p =12m v 02,可知v 0=6 m/s因为v 0>v ,故物块滑上传送带后先减速,物块与传送带相对滑动过程中, 由:μ1mg =ma 1,v =v 0-a 1t 1,x 1=v 0t 1-12a 1t 12得到:a 1=2 m/s 2,t 1=0.5 s ,x 1=2.75 m因为x 1<L ,故物块与传送带同速后相对静止,最后物块以5 m/s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:12m v 2=μ2mgs +mgR代入数据整理可以得到:R =0.8 m.(2)设物块从E 点返回至B 点的速度为v B ,由12m v 2-12m v B 2=μ2mg ·2s得到v B =7 m/s ,因为v B >0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性可知其以相同的速率离开传送带,设最终停在距C 点x 处,由12m v B 2=μ2mg (s -x ),得到:x =13m.(3)设传送带速度为v 1时物块恰能到F 点,在F 点满足mg sin 30°=m v F 2R从B 到F 过程中由动能定理可知:12m v 12-12m v F 2=μ2mgs +mg (R +R sin 30°)解得:v 1=37 m/s设传送带速度为v 2时,物块撞挡板后返回能再次上滑恰到E 点, 由:12m v 22=μ2mg ·3s +mgR解得:v 2=43 m/s若物块在传送带上一直加速运动,由12m v B m 2-12m v 02=μ1mgL知其到B 点的最大速度v B m =214 m/s综合上述分析可知,只要传送带速度37 m/s ≤v ≤43 m/s 就满足条件.。

传送带模型中的能量问题

传送带模型中的能量问题

高三物理传送带模型中的能量问题1.如图所示,比较长的传送带与水平方向的夹角θ=37°,在电动机带动下以v 0=4 m/s 的恒定速率顺时针方向运行.在传送带底端P 处有一离传送带很近的固定挡板,可将传送带上的物体挡住.在距P 距离为L =9 m 的Q 处无初速度地放一质量m =1 kg 的物体,它与传送带间的动摩擦因数μ=0.5,物体与挡板的碰撞能量损失及碰撞时间不计,取g =10 m/s 2,sin37°=0.6,求物体从静止释放到第一次返回上升至最高点的过程中:(1)相对传送带发生的位移;(2)系统因摩擦产生的热量;(3)传送带多消耗的电能;(4)物体的最终状态及该状态后电动机的输出功率.【解析】(1)要分上和下两个过程处理,注意相对路程和相对位移是不一样的。

解法1:力和运动法.物体由静止释放,沿传送带向下加速运动,相对传送带亦向下滑,受力如图1所示,有mgsin θ-μmgcos θ=ma 1,得a 1=2 m/s 2 与P 碰前速度v 1=2a 1L =6 m/s设物体从Q 到P 的时间为t 1,则t 1=v 1a 1=3 s 设物体对地位移为x 1,可知x 1=L =9 m ,相对传送带向下的位移Δx 1=x 1+v 0t 1=21 m物体与挡板碰撞后,以速度v 1反弹,向上做减速运动,因v 1>v 0,物体相对传送带向上滑,设速度减小到与传送带速度相等的时间为t 2,此过程受力如图2所示,有mgsin θ+μmgcos θ=ma 2得a 2=10 m/s 2,t 2=v 1-v 0a 2=0.2 s 在t 2时间内物体对地向上的位移x 2=v 1+v 02t 2=1 m 相对传送带向上的位移Δx 2=x 2-v 0t 2=0.2 m 物体速度与传送带速度相等后,由于mgsin θ>μmgcos θ物体不能匀速,将相对传送带向下滑,对地向上做加速度大小为a 3=a 1=2 m/s 2的减速运动,设速度减小到零的时间为t 3,t 3=v 0a 3=2 s 此过程中物体对地向上的位移x 3=v 02t 3=4 m 相对传送带向下的位移Δx 3=v 0t 3-x 3=4 m整个过程中两者相对滑动位移为Δx =Δx 1-Δx 2+Δx 3=24.8 m.解法2:相对运动法.以传送带为参考系,在求出相对初速度和相对加速度后,三个阶段物体相对传送带的位移分别为Δx 1=v 0t 1+12a 1t 21=21 m Δx 2=(v 1-v 0)t 2-12a 2t 22=0.2m Δx 3=12a 3t 23=4 m 第二阶段物体相对传送带向上运动,两者相对滑动总位移为Δx =Δx 1-Δx 2+Δx 3=24.8 m.解法3:图象法.设沿传送带向上为正方向,画出如图3所示物体和传送带运动的v -t 图象,直接用物体和传送带v -t 图线所夹的面积表示相对发生的位移:Δx 1=(v 0+v 0+v 1)t 12=21 m ,Δx 2=(v 1-v 0)t 22=0.2 m Δx 3=12v 0t 3=4 m 两者相对滑动的总位移为Δx =Δx 1-Δx 2+Δx 3=24.8 m.(2)系统因摩擦产生的热量,是由于一对滑动摩擦力作用点移动的不同导致做功不等而造成的,产生的热量不是与传送带和物体间的相对移动的位移而是与相对移动的距离有关(如图4所示阴影部分面积):Q =Q 1+Q 2+Q 3=F f ·Δl =μmgcos θ(Δx 1+Δx 2+Δx 3)=100.8 J.出现相对来回的情况时,热量要用相对路程而不能用相对位移(3)传送带消耗的电能是因为传送带要克服摩擦力做功,这与传送带对地运动位移有关(如图5所示阴影部分面积),在物体向下加速和相对传送带向下运动的减速阶段,摩擦力对传送带做负功消耗电能,在物体相对传送带向上运动的减速阶段,摩擦力对传送带做正功,减少电能损耗.ΔE 电=-F f (x 传送带1-x 传送带2+x 传送带3)=-μmgcos θ(v 0t 1-v 0t 2+v 0t 3)=-76.8 J即传送带多消耗的电能为76.8 J.可由功能关系处理,从开始到回到最高点过程中,系统增加了热能100.8 J ,减少了重力势能mgxsin θ,x=x1-x2-x3=4m, mgxsin θ=24j,系统动能就有变,系统总的增加了100.8-24=76.8j 所以传送带多消耗的电能是76.8j(4)物体返回上升到最高点时速度为零,以后将重复上述过程,且每次碰后反弹速度、上升高度依次减小,最终达到一个稳态:稳态的反弹速度大小应等于传送带速度4 m/s ,此后受到的摩擦力总是斜向上,加速度为gsin θ-μgcos θ=2 m/s 2,方向斜向下,物体相对地面做往返“类竖直上抛”运动,对地上升的最大位移为x m =v 202a 1=4 m ,往返时间为T =2v 0a 1=4 s 传送带受到的摩擦力大小始终为F f =μmgcos θ,稳态后方始终斜向下,故电动机的输出功率稳定为P =F f v 0=μmgcos θ×v 0=16 W.传送带受到物体的摩擦力方向向下,电动机对传送带的力要向上,这样,电动机的输出功率用力和时间的积就可以求出了。

传送带中的能量问题解析

传送带中的能量问题解析

传送带中的能量问题解析传送带作为一种运输工具,其能量的转化主要考虑两个方面:①、增加物体的机械能(动能和势能)②、增加系统的内能(即由于物体和皮带之间发生相对运动因摩擦而产生的热量)例1. 如图,电机带动传送带以速度v 匀速传动,一质量为m 的小木块由静止放在传送带上(传送带足够长)若小木 块与传送带之间的动摩擦因数为µ,当小木块与传送带相对静止时,求:⑴、小木块的位移。

⑵、传送带经过的路程。

⑶、小木块获得的动能。

⑷、摩擦过程产生的热量。

⑸电机带动传送带匀速转动输出的总能量。

分析:木块刚放上时速度为零,必然受到传送带的滑动摩擦力作用做匀加速直线运动,达到与传送带有共同速度后不再有相对运动,整个过程中木块获得一定的动能,系统要产生摩擦热。

对木块:相对滑动时,a=µg,达到相对静止所用的时间为t=v g μ,木块的位移21122v s vt g μ==,传送带的位移22v s vt g μ==,木块相对传送带的位移2212v s s s g μ=-=,小木块获得的动能212k E mv =,产生的热量221211()()2Q fs f s s mg s s mv μ==-=-=,电动机输出的总能量转化为小木块的动能和系统产生的热量2k E E Q mv =+=注意:当木块的初速为零时,木块经过的位移和木块相对皮带的位移恰好相等,这一特点要记住,在解题中很有用处。

2.如图,已知传送带两轮的半径r =1m ,传动中传送带不打滑,质量为1kg 的物体从光滑轨道A 点无初速下滑(A 点比B 点高h =5m ),物体与传送带之间的动摩擦因数2.0=μ,当传送带静止时,物体恰能在C 点离开传送带,则(1)BC 两点间距离为多少?(2)若要使物体从A 点无初速释放后能以最短时间到达C 点,轮子转动的角速度大小应满足什么条件?(3)当传送带两轮以12rad/s 的角速度顺时针转动时,物体仍从A 点无初速释放,在整个过程中物体与皮带系统增加的内能为多少?解:(1)设物体质量为m ,在C 点时运动速度为C v ,BC 间距离为s 。

微专题34 传送带模型的能量分析

微专题34  传送带模型的能量分析

微专题34 传送带模型的能量分析【核心要点提示】传送带模型能量分析的问题主要包括以下两个核心问题(1)摩擦系统内摩擦热的计算:依据Q =F f ·x 相对,找出摩擦力与相对路程大小即可。

要注意的问题是公式中的x 相对并不是指的是相对位移大小。

特别是相对往返运动中,x 相对为多过程相对位移大小之和。

(2)由于传送物体而多消耗的电能:一般而言,有两种思路:①运用能量守恒,多消耗的电能等于系统能量的增加的能量。

以倾斜向上运动传送带传送物体为例,多消耗的电能k E E E Q =∆+∆+重摩擦②运用功能关系,传送带克服阻力做的功等于消耗的电能E fS =传 【微专题训练】如图所示,水平传送带长为s ,以速度v 始终保持匀速运动,把质量为m 的货物放到A 点,货物与传送带间的动摩擦因数为μ,当货物从A 点运动到B 点的过程中,摩擦力对货物做的功不可能是( )A .等于12mv 2B .小于12mv 2C .大于μmgsD .小于μmgs【解析】货物在传送带上相对地面的运动可能先加速后匀速,也可能一直加速,而货物的最终速度应小于等于v ,根据动能定理知摩擦力对货物做的功可能等于12mv 2,可能小于12mv 2,可能等于μmgs ,可能小于μmgs ,故选C. 【答案】C(2016·湖北省部分高中高三联考)如图所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程,下列说法正确的是( )A .电动机多做的功为mv 2/2B .物体在传送带上的划痕长v 2/2μgC .传送带克服摩擦力做的功为mv 2/2D .电动机增加的功率为μmgv【解析】电动机多做的功转化成了物体的动能和内能,物体在这个过程中获得的动能就是12mv 2,所以电动机多做的功一定要大于12mv 2,故A 错误;物体在传送带上的划痕长等于物体在传送带上的相对位移,物体达到速度v 所需的时间t =v μg ,在这段时间内物体的位移x 1=v 22μg ,传送带的位移x 2=vt =v 2μg ,则物体相对位移x =x 2-x 1=v 22μg ,故B 正确;传送带克服摩擦力做的功就为电动机多做的功,所以由A 的分析可知,C 错误;电动机增加的功率即为克服摩擦力做功的功率,大小为fv =μmgv ,所以D 正确。

传送带中的能量转化问题解题技巧

传送带中的能量转化问题解题技巧

传送带中的能量转化问题解题技巧A点到C点的时间为t,由匀加速直线运动公式可得:s = 1/2at^2 + vt其中v为物体在A点的初始速度,由于是无初速下滑,所以v = 0.代入题目数据可得:5 = 1/2at^2 + 0t = sqrt(10/a)由于BC段物体与传送带不打滑,所以物体在BC段的加速度为g - μg,代入上式可得:5 = 1/2(g - μg)t^2a = (g - μg)/2 = 2.45m/s^2物体在BC段的速度为v_BC = at = 7.78m/s,由此可得BC 段的长度为:s = v_BC * t = 19.4m2)物体以最短时间到达C点时,BC段的长度为最短,即BC段的长度为19.4m。

轮子转动的角速度大小为v_BC/r,代入题目数据可得:v_BC/r = 7.78rad/s3)物体与传送带系统增加的内能为动能转化为热能和摩擦产生的热能之和。

物体在BC段失去的重力势能全部转化为动能,即:E_k = mgh = 49J由于物体与传送带之间有摩擦,所以会产生热能,热能的大小为:Q = μmgd = 9.8J因此,物体与传送带系统增加的内能为:E = E_k + Q = 58.8J联解③、④得到:v' = 2gμL由①、⑤联解得到:v = at其中,S1为木块从A运动到B相对皮带的位移,公式为S1 = L + vt,其中v为初速度,L为A点到B点的距离。

木块开始向左做匀加速运动,到停止滑动所经历的时间为t2,这段时间内木块相对皮带发生相对位移S2,公式为S2 = v2/2gμ,其中v为匀加速运动的末速度。

全过程中产生最大热量Q为:Q = (M+m)gμ(S1+S2) = (v+2gμL)²/2gμ解答此题时应注意:第一问按常规的完全非弹性碰撞模型处理即可;v < 2gμL的含义是木块不会从皮带上滑出;第二问属于临界问题,要使系统产生的热量最多,意味着要使块和皮带之间的相对位移最大;求相对位移和相对速度时,同向相减,反向相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关传送带的能量问题
一、计算题()
1.如图所示,一质量为m=1 kg的可视为质点的滑块,放在光滑的水平平台上,平台的左端与水平传送带相接,传送带以v=2 m/s的速度沿顺时针方向匀速转动(传送带不打滑),现将滑块缓慢向右压缩轻弹簧,轻弹簧的原长小于平台的长度,滑块静止时弹簧的弹性势能为E p=4.5 J,若突然释放滑块,滑块向左滑上传送带。

已知滑块与传送带的动摩擦因数为μ=0.2,传送带足够长,g=10 m/s2。

求:
(1) 滑块第一次滑上传送带到离开传送带所经历的时间。

(2) 滑块第一次滑上传送带到离开传送带由于摩擦产生的热量。

2.如图所示,质量m的小物体,从光滑曲面上高度h处释放,到达底端时水平进入轴心距离L的水平传
送带,传送带可由一电机驱使顺时针转动.已知物体与传送带间的动摩擦因数为μ.求:
(1)求物体到达曲面底端时的速度大小v0?
(2)若电机不开启,传送带不动,物体能够从传送带右端滑出,则物体滑离传送带右端的速度大小v1
为多少?
(3)若开启电机,传送带以速率v2(v2>v0)顺时针转动,且已知物体到达传送带右端前速度已达到
v2,则传送一个物体电动机对传送带多做的功为多少?
3.电机带动水平传送带以速度v匀速传动,一质量为m的小木块由静止轻放在传送带上,如图所示.若小
木块与传送带之间的动摩擦因数为μ,当小木块与传送带相对静止时,求:
(1)小木块的位移;
(2)传送带转过的路程;
(3)摩擦过程产生的摩擦热;
(4)电机带动传送带匀速转动输出的总能量.
4.如图所示,绷紧的传送带在电动机带动下,始终保持v0=4m/s的速度匀速运行,传送带与水平地面的夹角
θ=30°,现把一质量m=10kg的工件轻轻地放在传送带底端,由传送带送至h=2m的高处.已知工件与传送带
间动摩擦因数μ=,g取10m/s2.
(1)试通过计算分析工件在传送带上做怎样的运动?
(2)工件从传送带底端运动至高h=2m处的过程中摩擦力对工件做了多少功?
(3)在运送工件过程中,电动机多消耗的电能.
5.如图所示,绷紧的传送带在电动机的带动下,始终保持v0=2m/s的速度匀速行驶,传送带与水平地面的夹
角θ=30°.现把一质量m=10kg的工件轻轻地放在传送带底端,由传送带送至h=2m的高处,已知工件与传
送带间动摩擦因数μ=,g=10m/s2.求:
(1)试通过计算分析工件在传送带上做怎样的运动?
(2)在工件从传送带底端运动至h=2m高处的过程中,摩擦力对工件做了多少功?
(3)由于传送工件,电动机多消耗的能量△E为多少?
6.如图,传送带AB总长为l=10m,与一个半径为R=0.4m 的光滑圆轨道BC相切于B点.传送带速度恒
为v=6m/s,方向向右.现有一个滑块以一定初速度v0从A点水平冲上传送带,滑块质量为m=10kg,滑块与传送带间的动摩擦因数为μ=0.1.已知滑块运动到B端时,刚好与传送带共速.求
(1)v0;
(2)滑块能上升的最大高度h;
(3)求滑块第二次在传送带上滑行时,滑块和传送带系统产生的内能.
高中物理试卷第1页,共1页。

相关文档
最新文档