刚性转子动平衡实验报告
转子动平衡实验报告

148
0.29
五思考题
1 转子(试件)在什么情况下作静平衡?什么情况下作动平衡?
答:(1)静平衡:在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。
(2)动平衡:在转子两个校正面上同时进行校正平衡,校正后的剩余不平衡,以保证转子动态时是在许用不平衡量的规定的范围内,为动平衡又称双面平衡。
二实验设备及工具
DPH-I型智能平衡机构,测试系统由计算机,数据采集器,高灵敏度有电力传感器和光电相位传感器等组成。
三 动平衡实验截图
动平衡测试系统
采集数据分析窗口
四实验记录及结果
次
数
左边
右边
角度
克数(g)
角度
克数(g)
1
6
1.12
2
0.99
2
148
0.48
193
0.33
3
247
0.4
214
0.38
六收获和体会
答:通过转子动平衡实验,我们更加了解到了怎样消除惯性力对机构的不利影响:噪音,震动等,对于不同的试件,我们通常根据试件的直径D与两校正面的距离b:
(1)D/b≥5时,试件只需满足静平衡,相反,就必须作动平衡。
(2)然而据使用要求,只要满足转子平衡后用途要求的前提下,能做静平衡的,就不要做动平衡,能做动平衡的,就不要作静平衡。因为静平衡比动平衡更容易,省工,省力,省时间,省费用。
转子动平衡实验报告
班级学号
11010431
姓名
王凯
实验日期
2013.4.16
同 组 人
指导教师
成绩
一实验目的
机械制造与自动化专业《实验5刚性转子的静平衡动平衡实验》

实验五 刚性转子的静平衡动平衡实验一、实验目的1. 加深对转子静、动平衡概念的理解。
2.掌握刚性转子静、动平衡试验的原理及根本方法。
二、实验设备1 导轨式静平衡架或圆盘形静平衡架;2.J10mm 5.2a1311331-=-==Z Zn n i 13n n -=1311331-=-=--=Z Zn n n n i H H H132n n n H -=⎪⎩⎪⎨⎧==∑∑0M F ⎪⎩⎪⎨⎧==∑∑0B A M M mr F 2ω=rcos φ·L 的作用下,使摆架产生周期性的上下振动 摆架振幅大小的惯性力矩为222222cos ϕωl r m M =要使摆架不振动必须要平衡力矩M 2。
在试件上选择圆盘作为平衡平面,加平衡质量m∑=0AM2=+p M M 0cos cos 222222=+p p p p l r m l r m ϕωϕω0cos cos 2222=+p p p p l r m l r m ϕϕ⎩⎨⎧+=-==)180cos(cos cos 02222p p p p p l r m l r m ϕϕϕ〔质量〕和r 〔矢径〕之积称为质径积,mrL 称为质径矩,ϕ称为相位角。
转子不平衡质量的分布是有很大的随机性,而无法直观判断它的大小和相位。
因此很难公式来计算平衡量,但可用实验的方法来解决,图静平衡架其方法如下:选补偿盘作为平衡平面,补偿盘的转速与试件的转速大小相等但转向相反,这时的平衡条件也可按上述方法来求得。
在补偿盘上加一个质量'p m 〔图〕,那么产生离心惯性力对轴的力矩''''='p p p p p l r m M ϕωcos 2根据力系平衡公式〔3〕∑=0A M02='+p M M0cos cos 2222=''''+p p p p l r m l r m ϕϕ要使上式成立必须有⎪⎩⎪⎨⎧'-='-='''=)180cos(cos cos 02222p p p p p l r m l r m ϕϕϕ 〔7〕此时摆架就不振动了,百分表的摆动范围为零。
刚性转子动平衡实验报告

图 1 转子系统与力系简化刚性转子动平衡实验浙江大学,令狐烈一、实验目的(1) 掌握刚性转子动平衡的基本原理和步骤; (2) 掌握虚拟基频检测仪和相关测试仪器的使用;二、实验内容和实验原理1.实验内容采用虚拟仪器技术对一多圆盘刚性转子进行动平衡。
转子系统如图1所示,转子存在原始不平衡质量,左右两个圆盘为平衡平面。
拟测试原始不平衡量及相位,并在两个平衡平面上配重,便残余不平衡量控制在一定范围。
2.实验原理一个动不平衡的刚性回转体绕其回转轴线转动时,该构件上所有的不平衡重量所产生的离心惯力总可以转化为任选的两个垂直于回转轴线的平面内的两个当量不平衡质量r1和r2)所产生的离心力和动平衡的任务就是在这两个任选的平面(称为平衡基面)内的适当位置(r3平和r4平)加上两个适当大小的平衡重G3平和G4,使它们产生的平衡力与不平衡重量产生的不平衡力大小相等,而方向相反。
此时,ΣP=0且ΣM=0,使该回转体达到动平衡。
三、实验装置 序号 名 称 数量 1 多盘转子系统1 2 调速器 1 3 调速电机 1 4 相位传感器 1 5 双悬臂梁水平位移传感器1 6 电子天平1 7微型计算机(安装清华大学的dynamic balance 软件)1四、实验步骤1. 虚拟仪器接线进入“刚性转子动平衡”程序,点击“设备模拟连接”图标,按图3示用鼠标左键连接虚拟测试仪器,如连线错误,用鼠标左键单击“重新连接”按钮。
确认无误后,用鼠标左键单击“连接完毕”按钮,如果出现“连接错误”的提示,则连接有错,需要按“确定”,再按“重新连接”。
如果出现“连接正确”的提示,按“确定”后,可获得与图4相同的虚拟动平衡仪应用程序界面。
2. 原始不平衡量测试(1) 将转速控制器转速b n 设定为1200r/min ,启动转子2至3分钟使转速保持稳定。
(2) 点击“基频检测”图标,进入图4的状态下,用鼠标左键按下左上角按钮“开始”启动虚拟动平衡仪,点击“A 通道”、“B 通道”进行通道切换。
刚性转子动平衡实验_5

实验二刚性转子动平衡实验一、实验目的和要求(1)巩固和验证回转构件动平衡的基本概念;(2)掌握刚性转子动平衡试验的基本原理和操作方法。
二、主要仪器设备JPH-A型动平衡试验台三、实验原理转子动平衡的力学条件由于转子材料的不均匀、制造的误差、结构的不对称等因素, 转子存在不平衡质量。
因此当转子旋转后就会产生离心惯性力组成一个空间力系, 使转子动不平衡。
要使转子达到动平衡, 则必须满足空间力系的平衡条件为了使转子获得动平衡, 首先选定两个回转平面Ⅰ及Ⅱ作为平衡基面。
再将各离心惯性力分解到平衡基面Ⅰ及Ⅱ内。
这样就把空间力系的平衡问题转化为两个平面汇交力系的平衡问题。
在基面上加一平衡质量, 使两平衡面内的惯性力之和分别为零, 这样转子便可得以动平衡。
四、实验步骤(1)将试件右端圆盘上装上待平衡质量, 加强不平衡性, 将平衡块装在同一个区域内, 打破平衡。
(2)开启电源, 转动调速旋钮, 使实验转速定在300转左右, 待摆架振动稳定后, 记下振幅大小, 停机。
(3)在补偿盘的槽内距轴心最远处加上适当的平衡质量, 开机后摇动手柄观察百分表振幅变化, 记下最小振幅大小, 停机。
(4)由振幅大小进行判断是否继续增加质量块, 如需要则重复步骤3, 如不需要则进入步骤5。
(5)转动试件使补偿盘上的平衡块转到最高位置, 取下平衡块安装到试件的平衡面中相应的最高位置。
然后开机并记下振幅大小。
(6)停机后, 由振幅大小进行判断是否继续补偿平衡, 如需要则按重复步骤3, 如不需要则进入步骤7。
(7)开机让试件自由转动, 若振幅很小则表示平衡工作结束, 如果还存在一些微小振幅, 适当调节平衡块的相位, 直至百分表的振幅为0.01-0.02mm, 记下振幅大小。
五、实验数据记录及分析六、质疑或建议实验时只是平衡一个基面, 如果要继续平衡另一个基面, 是不是要把整个试件拆下来, 然后改换另外一侧重新装上去吗?此过程需要注意哪些问题?。
刚性转子动平衡实验实验报告

实验刚性转子动平衡实验任务书一、 实验目的:1. 掌握刚性转子动平衡的基本原理和步骤;2. 掌握虚拟基频检测仪和相关测试仪器的使用;3. 了解动静法的工程应用。
二、 实验内容采用两平面影响系数法对一多圆盘刚性转子进行动平衡三、 实验原理工作转速低于最低阶临界转速的转子称为刚性转子,反之称为柔性转子。
本实验采取一种刚性转子动平衡常用的方法—两平面影响系数法。
该方法可以不使用专用平衡机,只要求一般的振动测量,适合在转子工作现场进行平衡作业。
根据理论力学的动静法原理,一匀速旋转的长转子,其连续分布的离心惯性力系,可向质心C 简化为过质心的一个力R (大小和方向同力系的主向量∑=iSR )和一个力偶M (等于力系对质心C 的主矩()∑==cicmS m M )。
如果转子的质心在转轴上且转轴恰好是转子的惯性主轴,即转轴是转子的中心惯性主轴,则力R 和力偶矩M 的值均为零。
这种情况称转子是平衡的;反之,不满足上述条件的转子是不平衡的。
不平衡转子的轴与轴承之间产生交变的作用力和反作用力,可引起轴承座和转轴本身的强烈振动,从而影响机器的工作性能和工作寿命。
刚性转子动平衡的目标是使离心惯性力系的主向量和主矩的值同时趋近于零。
为此,先在转子上任意选定两个截面I 、II (称校正平面),在离轴线一定距离r 1、r 2(称校正半径),与转子上某一参考标记成夹角θ1、θ2处,分别附加一块质量为m 1、m 2的重块(称校正质量)。
如能使两质量m 1和m 2的离心惯性力(其大小分别为m 1r 1ω2和m 2r 2ω2,ω为转动角速度)正好与原不平衡转子的离心惯性力系相平衡,那么就实现了刚性转子的动平衡。
两平面影响系数法的过程如下:(1)在额定的工作转速或任选的平衡转速下,检测原始不平衡引起的轴承或轴颈A 、B 在某方位的振动量11010V ψ∠=V 和22020V ψ∠=V ,其中V 10和V 20是振动位移(也可以是速度或加速度)的幅值,ψ1和ψ2是振动信号对于转子上参考标记有关的参考脉冲的相位角。
转子动平衡实验实验报告

转子动平衡实验实验报告转子动平衡实验实验报告一、引言转子动平衡是机械工程中非常重要的一项技术,它对于提高机械设备的运行效率、延长设备寿命以及减少噪音和振动都具有重要意义。
本实验旨在通过转子动平衡实验,探究转子不平衡对机械设备的影响以及如何进行动平衡调整。
二、实验目的1. 了解转子动平衡的原理和方法。
2. 学习使用动平衡仪器进行转子动平衡实验。
3. 掌握动平衡调整的技巧和方法。
三、实验装置和方法1. 实验装置:转子动平衡试验台、电动机、动平衡仪器等。
2. 实验步骤:a. 将待测试的转子安装在转子动平衡试验台上。
b. 连接动平衡仪器,并进行校准。
c. 启动电动机,观察转子的振动情况,并记录数据。
d. 根据动平衡仪器的指示,进行动平衡调整。
e. 重复步骤c和d,直到转子的振动降至合理范围。
四、实验结果与分析在实验过程中,我们测试了不同转子在不同转速下的振动情况,并进行了动平衡调整。
通过实验数据的记录和分析,我们得出以下结论:1. 转子不平衡会导致机械设备的振动增加。
在实验过程中,我们发现当转子存在不平衡时,其振动幅度明显大于平衡后的转子。
这种振动不仅会影响设备的正常运行,还会加速设备的磨损和损坏。
2. 动平衡调整可以有效减少转子的振动。
通过实验,我们发现使用动平衡仪器对转子进行调整后,转子的振动幅度明显减小,达到了较为理想的状态。
这表明动平衡调整是一种有效的方法,可以降低机械设备的振动水平。
3. 动平衡调整需要耐心和技巧。
在实验过程中,我们发现动平衡调整并不是一次性完成的,而是需要多次尝试和调整。
调整时需要根据动平衡仪器的指示,逐步调整转子的平衡状态,直到达到较为理想的结果。
这需要操作者具备一定的耐心和技巧。
五、实验总结通过本次转子动平衡实验,我们深入了解了转子动平衡的原理和方法,学习并掌握了动平衡仪器的使用技巧。
我们发现转子不平衡会对机械设备的振动和运行产生负面影响,而动平衡调整是一种有效的方法来降低振动水平。
刚性转子动平衡实验报告

刚性转子动平衡实验报告刚性转子动平衡实验报告引言刚性转子动平衡是机械工程中一个重要的研究领域,它涉及到机械系统的稳定性、振动和噪音控制等问题。
本文将介绍一项关于刚性转子动平衡的实验,并对实验结果进行分析和讨论。
实验目的本次实验的目的是通过对刚性转子进行动平衡实验,探究转子的不平衡量对系统振动的影响,并寻找合适的平衡方法,以提高系统的稳定性和运行效果。
实验装置实验装置包括一台转子平衡机、传感器、数据采集系统等。
转子平衡机通过电机驱动转子旋转,传感器用于检测转子的振动信号,数据采集系统用于记录和分析实验数据。
实验步骤1. 将转子安装在转子平衡机上,并确保转子能够自由旋转。
2. 启动转子平衡机,使转子开始旋转。
3. 通过传感器采集转子的振动信号,并将数据传输至数据采集系统。
4. 对采集到的数据进行分析和处理,计算出转子的不平衡量。
5. 根据不平衡量的大小和位置,选择合适的平衡方法进行调整。
6. 重复以上步骤,直至转子的振动达到要求的范围。
实验结果与分析通过实验,我们得到了转子的振动数据,并计算出了转子的不平衡量。
根据实验数据,我们可以发现转子的不平衡量与振动幅值之间存在着明显的关系。
当不平衡量较大时,转子的振动幅值也较大;而当不平衡量较小时,转子的振动幅值较小。
为了减小转子的振动幅值,我们采用了两种常见的平衡方法:静平衡和动平衡。
静平衡是通过在转子上加上适当的质量块,使得转子在静止状态下达到平衡。
通过实验,我们发现静平衡对于较小的不平衡量效果较好,可以有效地降低转子的振动幅值。
然而,对于较大的不平衡量,静平衡的效果较差,需要采用其他平衡方法。
动平衡是在转子旋转的过程中,通过在转子上加上适当的质量块,使得转子在运行状态下达到平衡。
通过实验,我们发现动平衡对于较大的不平衡量效果较好,可以显著地降低转子的振动幅值。
然而,对于较小的不平衡量,动平衡的效果较差,可能会引入额外的不平衡。
结论通过本次实验,我们对刚性转子动平衡有了更深入的了解。
转子动平衡实验报告

转子动平衡实验报告一、实验目的本次实验旨在通过转子动平衡实验,掌握转子动平衡的基本原理、方法和技术,了解转子不平衡的危害和预防措施,培养学生的实验操作能力和分析问题的能力。
二、实验原理1. 转子不平衡的危害转子不平衡会导致机械振动、噪声、轴承损坏等问题,严重时还会引起设备事故。
2. 转子动平衡的基本原理转子动平衡是通过在旋转状态下对转子进行试重或加重来消除不平衡量,使得转子在旋转时产生的离心力达到最小值。
3. 转子动平衡的方法和技术(1)静态平衡法:将转子放置在水平支撑上,在两端分别加上相同质量的试重块,使得转子处于水平位置。
(2)动态平衡法:将转子放置在专用设备上,在高速旋转状态下测量振幅和相位差,并根据计算结果进行试重或加重调整。
三、实验步骤1. 准备工作:检查设备是否完好,清洁工作台和转子。
2. 静态平衡法实验:(1)将转子放置在水平支撑上。
(2)在两端分别加上相同质量的试重块,使得转子处于水平位置。
(3)移动试重块,直到转子处于完全静止状态。
(4)记录试重块位置和质量,计算出不平衡量。
3. 动态平衡法实验:(1)将转子放置在专用设备上,并启动设备。
(2)测量振幅和相位差,并记录数据。
(3)根据计算结果进行试重或加重调整,直到振幅和相位差达到最小值。
四、实验结果与分析根据静态平衡法和动态平衡法的实验数据,计算出了转子的不平衡量,并进行了调整。
经过多次实验,最终达到了较好的动平衡效果。
通过对比不同方法的优缺点,可以发现动态平衡法更加精确、快速、适用范围更广,在工业生产中更为常用。
五、实验总结本次实验通过对转子动平衡的原理、方法和技术进行掌握和应用,提高了学生的实验操作能力和分析问题能力。
同时也加深了对机械振动和不平衡的危害认识,为今后的工作打下了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6)
m1 p1 , m2 p2 为校正质量, 1 , 2 为校正质量的方位角。
求解矢量方程最好能使用计算机。本试验采用专用的动平衡计算程序。 (5)根据计算结果,在转子上安装校正质量,重新起动转子,如振动已减小到满意程度,
则平衡结束,否则可重复上面步骤,再进行一次修正平衡。
4
(二)、实验结果的分析与讨论
序号
名称
1 转子系统
2 调速器
3 光电变换器
4 电涡流位移计
5 电子天平 6 微型计算机
数量 1
1
1
2 1 1
主要技术指标 转速:0~4000r/min 临界转速≥5000r/min
调速:500~4100r/min
转速:0.1~5000 r/min
频率:0~1000Hz 位移:2mm 峰峰值 200±0.01g
矢量关系见图二(a),(b)。显然,矢量V A1 V A0 及V B1 V B0 为平面 I 上加试重 Q1 所引 起的轴承振动的变化,称为试重 Q1 的效果矢量。方位角为零度的单位试重的效果矢量称为
影响系数。因而,我们可由下式求得影响系数。
V A1 V A0
A1
Hale Waihona Puke Q1(1)V B1 V B0
B1
Q1
在转轴上且转轴恰好是转子的惯性主轴,即转轴是转子的中心惯性主轴,则力 R 和力
偶矩 M 的值均为零。这种情况称转子是平衡的;反之,不满足上述条件的转子是不平
衡的。不平衡转子的轴与轴承之间产生交变的作用力和反作用力,可引起轴承座和转轴
1
本身的强烈振动,从而影响机器的工作性能和工作寿命。
图一 转子系统与力系简化
参考型号 R4A 定制 通用型
生产厂家 清华大学振动实 验室 清华大学振动实 验室 清华大学振动实 验室
85811
清华桑拓研究所
ES-200A 通用型
长沙湘平公司
三、 实验原理
工作转速低于最低阶临界转速的转子称为刚性转子,反之称为柔性转子。本实验采取一
种刚性转子动平衡常用的方法—两平面影响系数法。该方法可以不使用专用平衡机,只
(1) 实验结果分析:实验中通过刚性转子动平衡校正,平衡率 1, 2 分别达到
87.1%和 94.9%,满足实验要求。由实验结果可验证理论。另外,实验的主 要误差来源之一是固定加载物的位置与计算值有一定偏差,其二是可能无 法找到质量与计算结果完全相同的加载物。 (2) 实验方法讨论:实验过程中老师介绍的差量法适用于无法恰好找到与计算 值相等的加载物的情况。主要操作步骤是称取两份加载物,使质量之差为 所求理论质量值,将大质量加载物固定于所求角度值处,另一小质量加载 物固定在对面相差 180°处。这个方法可以一定程度上改善实验条件,但 另一方面也增加了加载物固定位置带来的实验误差。另外,实验使用数字 化测量的手段,将各种测量值(如位移)转化为电信号,增加测量精度, 方便数据处理的同时也简化了测量过程。
正好与原不平衡转子的离心惯性力系相平衡,那么就实现了刚性转子的动平衡。
四、 实验数据与矢量关系图 (1) 实验数据
平衡转速 nb = 1500 r/min
A 轴承 I 平面
幅值
相位
B 轴承 II 平面
幅值
相位
原始振动V A0 , V B0
6.2 m
30 deg
9.8
m
327 deg
I 平面试重 Q1
要求一般的振动测量,适合在转子工作现场进行平衡作业。
根据理论力学的动静法原理,一匀速旋转的长转子,其连续分布的离心惯性力系,可向
质心 C 简化为过质心的一个力 R (大小和方向同力系的主向量 R
S i )和一个力
偶 M (等于力系对质心 C 的主矩 M
m C (S i ) ΜC ),见图一。如果转子的质心
8.34 克
330 deg
V A1 ,V B1
8.2 m
77 deg
8.2 m
328 deg
II 平面试重 Q 2
V A2 ,V B2
6.4 m
计算校正量 p1, p2
8.06 克
实际加重质量 m1,m 2
8.03 克
平衡后振动V A ,V B
0.8 m
平衡率 A, B
87.1 %
(2)实测数据的矢量关系图
19 deg 80.4 deg 80 deg 306 deg
8.34 克 14.1 m 18.7 克 18.6 克 0.5 m 94.9 %
150 deg 319 deg 346.9 deg 349 deg 90 deg
2
五、 实验方法和实验结果的分析和讨论
(一)、实验方法 本实验根据两平面影响系数法,过程如下:
刚性转子动平衡的目标是使离心惯性力系的主向量和主矩的值同时趋近于零。为此,先在转
子上任意选定两个截面 I、II(称校正平面),在离轴线一定距离 r1 、 r 2 (称校正半径),与 转子上某一参考标记成夹角 1 、 2 处,分别附加一块质量为 m1 、m2 的重块(称校正质量)。 如能使两质量 m1 和 m2 的离心惯性力(其大小分别为 m1r1 2 和 m2 r 2 2 , 为转动角速度)
(1)在额定的工作转速或任选的平衡转速下,检测原始不平衡引起的轴承或轴颈 A、B 在
某方位的振动量VA0 VA0 A 和VB0 VB0 B ,其中VA0 和VB0 是振动位移(也可以是
速度或加速度)的幅值, A 和 B 是振动信号对于转子上参考标记有关的参考脉冲的相位 角。
(2)根据转子的结构,选定两个校正面 I、II 并确定校正半径 r1 、 r 2 。先在平面 I 上加一 “试重”(试质量) Q1 mt1 1 ,其中 mt1 Q1 为试重质量, 1 为试重相对参考标记的方 位角,以顺转向为正。在相同转速下测量轴承 A、B 的振动量 V A1 和 VB1 。
刚性转子动平衡实验报告
专业及班级 车辆 10-1 姓名 潘浩 实验成绩
日期 2012-12
第 2 次实验
同组人姓名:潘浩、于航、高雅静、陈晓旋、张艳萍、张丽莎、刘欣 一、 实验目的
(1)掌握刚性转子动平衡的基本原理和步骤; (2)掌握虚拟基频检测仪和相关测试仪器的使用; (3)了解动静法的工程应用
二、 实验设备
5
(2)
3
图二 矢量关系图
(3)取走 Q1 ,在平面 II 上加试重 Q 2 mt2 2 ,mt2 Q2 为试重质量, 2 为试重方位角。 同样测得轴承 A、B 的振动量VA2 和VB2 ,从而求得效果矢量V A2 V A0 和V B2 V B0 (见图
二(c),(d)及影响系数
α A2
V A2 V A0 Q2
(3)
α B2
V B2 V B0 Q2
(4)
(4)校正平面 I、II 上所需的校正质量 p1 m1
组求得:
1 和 p2 m2
α A1 p1 α A2 p2 α B1 p1 α B2 p2
V A0 V B0
2 ,可通过解下列矢量方程 (5)
α A1 α A2 p1 α B1 α B2 p2
V A0 V B0