变化率问题课件

合集下载

课件1:5.1.1 变化率问题

课件1:5.1.1 变化率问题

∴ΔΔyx=-ΔΔxx++242,
∴k= lim Δx→0
ΔΔyx=Δlixm→0
-ΔxΔ+x-242=-44=-1.
又 x=2 时 y=242=1,
∴切线方程为 y-1=-1×(x-2),即 x+y-3=0.
【课堂小结】
1.函数 y=f (x)在 x=x0 处的切线斜率反映了函数在该点处的
瞬时变化率,它揭示了事物在某时刻的变化情况.即:
【学以致用】
1.一物体的运动方程是 s=3+2t,则在[2,2.1]这段时间
内的平均速度是( )
A.0.4
B.2
C.0.3
D.0.2
B [ v =s22.1.1--s22=4.02-.1 4=2.]
2.物体自由落体的运动方程为 s(t)=12gt2,g=9.8 m/s2,若 v
=lim Δt→0
率及瞬时速度的概念.(易混点) 及数学运算的核心素养.
1.平均变化率
【新知初探】
对于函数 y=f (x),从 x1 到 x2 的平均变化率:
(1)自变量的改变量:Δx=__x_2-__x_1_. (2)函数值的改变量:Δy=__f_(_x_2_)-__f_(_x_1)__.
(3)平均变化率ΔΔyx=
【例 2】 某物体的运动路程 s(单位:m)与时间 t(单位:s)的关
系可用函数 s(t)=t2+t+1 表示,求物体在 t=1 s 时的瞬时速度.
[解] ∵ΔΔst=s1+ΔΔtt-s1
=1+Δt2+1+ΔΔtt+1-12+1+1=3+Δt,
∴lim Δt→0
ΔΔst =Δlitm→0
(3+Δt)=3.
5.1.1 变化率问题
学习目标
核心素养

《变化率问题》课件

《变化率问题》课件

从以上的例子中,我们可以了解到,平均变化率 是指在某个区间内数值的平均变化量. 如果上述问题中的函数关系用 f ( x) 表示,那么问 f x2 f x1 题中的变化率可用式子: 表示。 x2 x1
函数f ( x)从x1到x2的平均变化率
f x2 f x1 平均变化率: x2 x1
习惯上:用 x表示x2 -x1,即:x x2 x1
注意:x是一个整体符号,而不是与x相乘。
可把x看作是相对于x1的一个增量, 可用x1 x代替x2 ;
“增量”:x
x2 x1
令“增量” x x2 x1
f f x2 f x1
可以看出: 随着气球体积逐渐变大,它的 平均膨胀率逐渐变小。
思 考 ?
当空气பைடு நூலகம்量从V1增加到V2时,气
球的平均膨胀率是多少?
r (V2 ) r (V1 ) V2 V1
探究活动
气球的平均膨胀率是一个特殊的情况,我们把
这一思路延伸到函数上,归纳一下得出函数的平均
变化率:
r (V2 ) r (V1 ) f ( x2 ) f ( x1 ) V2 V1 x2 x1
3.1.1 变化率问题
很多人都吹过气球,回忆一下吹气球的过程。
发现:
随着气球内空气容量的增加,气球的半径增加 的越来越慢。 从数学的角度,如何描述这种现象呢?
气球的体积V(单位:L)与半径r(单位:dm)之 间的函数关系是:
4 3 3V 3 V (r ) r r (V ) 3 4
f x2 f x1 f x1 x f x1 f x x2 x1 x
f 于是:平均变化率可以表示为: x

【精品课件】3.1.1-2变化率问题与导数的概念

【精品课件】3.1.1-2变化率问题与导数的概念
§1.1
1 2
变化率 谁创立了导数 与导数
导数是在怎样的背景之下产生的 呢
背景
十七与十八世纪的数学家们常把自己的数学活动跟各种 不同自然领域(物理、化学、力学、技术)中的研究活动联 系起来,并由实际需要提出了许多数学问题。历史上,导数
概念产生于以下两个实际问题的研究。第一:求曲线的切线
问题,这是一个非常古老的问题,可以追溯到希腊著名的科 学家阿基米德(Archimedes,287-212B.C);第二:求非 均速运动的速度,它最早由开普勒(kepler:1571-1630),伽 利略(Galileo:1564—1642),牛顿(Newton:1642-1727)等 提出来.
y
f (x2)
f f ( x2 ) f ( x1 ) 表示函数f(x) 的图像上 x x2 x1 的两点( x1 , f ( x1 )), ( x2 , f ( x2 ))连线的斜率.
f (x1)

x2 – x1 x1 x2
y = f (x)
f (x 2) – f (x1)
4)物体从3s到3 ts的平均速度 v s(3 t ) s(3) 30 5t (m / s)
(3 t ) 3
平均速度 v 近似地刻画了在某一时间段内物体运动的快慢. 如何精确地刻画物体在某一时刻的速度呢?
物体在某一时刻的速度称为瞬时速度。
即如何求物体在t=3s的瞬时速度呢?
t 0
10t0
定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
f ( x0 Δx) f ( x0 ) y lim lim x 0 x x 0 x 称为函数 y = f (x) 在 x = x0 处的导数, 记作 f ( x0 )

变化率问题 课件

变化率问题 课件

解析:(1)∵Δt=3,Δs=s(3)-s(0)=15, ∴该物体在0≤t≤3这段时间里的平均速度 v 1=ΔΔst=5(m/s). (2)∵Δt=3-2=1,Δs=s(3)-s(2)=7, ∴该物体在2≤t≤3这段时间里的平均速度 v 2=ΔΔst=7(m/s). (3)∵Δs=s(t0+Δt)-s(t0)=(2t0+2)·Δt+(Δt)2, ∴该物体在t0≤t≤t0+Δt这段时间里的平均速度 v =ΔΔst =2t0+2+ Δt.
(3)注意自变量与函数值的对应关系,公式中若Δx=x2-x1,则Δy =f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f(x2).
(4)在平均变化率中,当x1取定值后,Δx取不同的数值时,函数的 平均变化率不一定相同;当Δx取定值后,x1取不同的数值时,函数的 平均变化率也不一定相同.
点评:求平均变化率的步骤: 通常用“两步”法,一作差,二作商,即: ①先求出Δx=x2-x1,再计算Δy=f(x2)-f(x1); ②对所求得的差作商,即得 ΔΔxy=fxx22--xf1x1=fx1+ΔΔxx-fx1.
考点二 求平均速度 例2 已知某物体的运动方程为s=t2+2t(s的单位:m,t的单位: s).求: (1)该物体在0≤t≤3这段时间里的平均速度; (2)该物体在2≤t≤3这段时间里的平均速度; (3)该物体在t0≤t≤t0+Δt这段时间里的平均速度.
π 2
附近的平均变化率.
解析:函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率为 fxx0+ 0+ΔΔxx- -fxx00=[3x0+Δx2+Δx2]-3x20+2 =6x0·ΔxΔ+x3Δx2=6x0+3Δx. 当x0=2,Δx=0.1时, 函数y=3x2+2在区间[2,2.1]上的平均变化率为 6×2+3×0.1=12.3.

变化率问题通用课件

变化率问题通用课件

变化率问题解析方法
导数与微分解析法
总结词 详细描述
差分解析法
总结词 详细描述
近似解析法
总结词
近似解析法是通过建立近似函数来研究变化率问题的方法。
详细描述
当函数过于复杂或难以直接求解时,可以采用近似解析法,通过近似函数的性质和结论来研究原函数的变化率问 题。常用的近似解析法包括泰勒级数展开、幂级数展开等。
数值解析法
总结词
详细描述
变化率问题应用实例
经济领域应用
总结词
经济领域中变化率问题应用广泛,涉及 经济增长、通货膨胀、利率变化等方面。
VS
详细描述
在经济学中,变化率问题广泛应用于分析 经济增长、通货膨胀、利率变化等现象。 例如,研究国内生产总值的变化率可以了 解经济增速;分析通货膨胀率的变化有助 于制定货币政策和财政政策;研究利率变 化率则对投资和储蓄决策具有指导意义。
MATLAB具有友好的用户界面和图形化编程方式,使得用户可以更加便捷地进行数值计算和数据处理。
Python软件介绍
Python是一种解释型、高级编程语言,具有简单易学、语法简洁、可读 性强等特点。
Python拥有丰富的第三方库和框架,如NumPy、Pandas、SciPy等,可 以进行科学计算、数据分析、机器学习等多种任务。
工程领域应用
总结词
详细描述
生物领域应用
总结词 详细描述
物理领域应用
总结词
详细描述
变化率问题求解软件介绍
MATLAB软件介绍
MATLAB是一款由MathWorks公司开发的商业数学软件,广泛应用于算法开发、数据可视化、数据分 析以及数值计算等领域。
MATLAB提供了丰富的函数库和工具箱,支持多种编程语言和脚本语言,方便用户进行算法设计和数据 分析。

变化率问题 课件

变化率问题 课件

rV 3
3V
4
.(气2)球当的空平气均容膨积胀率V从1L增加到2L时
(1)当空气容积V从0增加到1 L时, 气球半径显增然加了
r1 r0 0.62cm,
气球的平均膨胀率为
r
1
1
r0
0
0.62>0.16
0.62dm / L.
(2)类似地,当空气容量从1 L增加到2 L时, 气球半径
增加了r2 r1 0.16dm,
问题4:用怎样的数学模型刻画函数 值变化的快慢程度?
比值称为函数在某一区间上的平均变化率
思考1:你能给出函数 f (x) 从x1到x2的平均变
化率的定义吗?
函数 f (x) 从x1到x2的平均变化率为
f(x2 ) f ( x1 ) x2 x1
❖ 习惯上:Δx=x2-x1, Δy=f(x2)-f(x1)
运动员的运动状态有什 h 么问题吗?
h( 65) h(0)
v 49 65 0 49
0(s / m)
O
t 65 98
65 49
t
练一练
一运动质点的位移S与时间t满足S(t)=t2,分别计算S(t)
在下列区间上的平均变化率.(位移单位为m,时间单位为s)
(1)[1, 3];
4
(2)[1, 2];
这4年我国人均GDP“猛增”? 比值反映了在某一时间段内我国人均GDP变化的
快慢程度?
某小区近十年来的房价变化如下图所示
y y元/m2
11000
((1132,,1111000000))
情境2 8000
5500
(121,8000) (101,5500)
2400 (1,2400)

变化率问题(2课时) 高二数学课件(人教A版2019选择性必修第二册)

变化率问题(2课时) 高二数学课件(人教A版2019选择性必修第二册)
l
(2)如何求运动员从起跳到入水过程中在某一时刻0 的瞬时速度?
l
解(1):因为ℎ() = −4.92 + 4.8 + 11,所以运动员在时间段[2,2+]
(或[2+ ,2])的平均速度为ҧ =
=
ℎ(2+∆)−ℎ(2)

-4.9(2+∆)2+4.8(2+∆)+11−(-4.9×22+4.8×2+11)
确定位置0 的直线称为抛物线() = 2 在
点0 (1,1)处的切线.
新知探索
问题6:我们知道,斜率是确定直线的一个要素.如何求抛物线() = 2 在点
l
0 (1,1)处的切线0 的斜率0 呢?
l
从上述切线的定义可见,抛物线() = 2 在点0 (1,1)处的切线0 的斜率与
解:

=
(+∆)−()

(1):当 = 2,∆ =
=
2(+∆)2 +3−(2 2 +3)


0.01时,

= 4 + 2∆.
= 4 × 2 + 2 × 0.01 = 8.02(/).
练习
例2.已知质点做直线运动,且位移(单位:)随时间(单位:)变化的函数为
答案:12 − − 11 = 0.
(2+∆)−(2)

∆→0
解:切线的斜率为
= 12 + 3∆ = 12,
∵切线过点(2,13),
∴所求切线方程为 − 13 = 12( − 2),即12 − − 11 = 0.
练习
题型一:运动物体的平均速度
例1.已知() = 5 2 .

变化率问题 课件

变化率问题 课件

【解题探究】1.函数平均变化率计算式子中,Δx,Δy分别表 示什么? 2.求函数平均变化率的关键是什么? 探究提示: 1.Δx是自变量的改变量,即Δx=x2-x1.Δy是函数值的改变 量,即Δy=f(x2)-f(x1)=f(x1+Δx)-f(x1). 2.关键是求函数值的改变量与自变量的改变量之比, 即 y.
x0
2x
x0
2x
均为函数f(x)在x=a处的导数的表达式.
【类题试解】(2013·杭州高二检测)已知函数y=f(x)在区间
(a,b)内可导,且x0∈(a,b),则 lim f (x0 h) f (x0 h)
h0
h
的值为( )
A.f′(x0) C.-2f′(x0)
B.2f′(x0) D.0
【解析】选B.方法一:由题意,得
2
2.一个小球自由下落,它在下落3秒时的速度是多少?并说明 它的意义(重力加速度为9.8 m/s2).
【解题探究】1.运动物体的平均速度与瞬时速度有什么关系? 2.题2中“下落3秒时的速度”的含义是什么? 探究提示: 1.运动物体在某一时刻的瞬时速度是这一时刻平均速度的极 限. 2.其含义是求此小球在下落3秒时的瞬时速度.
变化率问题 导数的概念
一、函数y=f(x)从x1到x2的平均变化率
1.定义式: y = f (x2 ) f (x1) .
x
x2 x1
2.实质:函数值的改变量与自变量的改变量之比.
3.意义:刻画函数值在区间[x1,x2]上变化的快慢.
思考:(1)函数f(x)在区间[x1,x2]上的平均变化率的大小与曲 线y=f(x)在区间[x1,x2]上的“陡峭”程度有什么关系? 提示:平均变化率的绝对值越大,曲线y=f(x)在区间[x1,x2]上越 “陡峭”,否则相反. (2)平均变化率可以是零吗?举例说明. 提示:可以为零,如常数函数f(x)=a(a为常数).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半径的增加量越来越小
半径的增加量
即 随着气球体积的增大,比值体积的增加量越来越小
我们知道, 气球的体积V 单位: L与半径r(单位: dm)之间
的函数关系是 V r 4 r 3 ,
3
如果把半径r表示为体积V的函数, 那么
rV 3
3V
.
4
当空气容积V从0增加到1L时, 气球半径增加了
r1 r0 0.62cm, 气球的平均膨胀率为 r1 r0 0.62dm / L.
示.如何求他在某时刻的 速 度 ? 他 距水面的最大 高度是多少?
1.1.1 变化率问题
问题1 气球膨胀率
很多人都吹过气球.回忆一下吹气球的过程, 可以发现, 随着气球内空气容量的 增加, 气球的半径增加得越来 越慢.从数学的角度, 如何描述这种现象呢 ?
“气球半径增加得越来越慢”意思就是说
随着气球体积的增大,当气球体积增加量相同时,相应
如果上述两个问题中的函数关系用y=f(x)表示,
那么问题中的变化率可用式子:
f x2 f x1 表示,我们把这个式子称为:
x2 x1
函数y=f(x)从x1到x2的平均变化率。
习惯上将x2-x1表示为: x 即x x2 x1
习惯上将y2-y1表示为: y 即y y2 y1
f
所以,平均变化率可以表示为:数学中引入了函数,随着对函数的研究,产生了微 积分,微积分的创立以自然科学中四类问题的处理直 接相关:
一、已知物体运动的路程作为时间的函数,求物体在任意 时刻的速度与加速度等; 二、求曲线的切线;
三、求已知函数的最大值与最小值;
四、求长度、面积、体积和重心等。
类似地,当空气容量从1L增加1到02L时, 气球半径增加了
r2 r1 0.16dm, 气球的平均膨胀率为 r2 r1 0.16dm / L.
2 1 可以看出,随着气球体积逐渐变大,它的平均膨 胀率逐渐变小了. 思考 :当空气的容量从V1增加到V2时, 气球的平均膨胀率
是多少? r(V2 ) r(V1) V2 V1
直线AB的斜率
3.函数的平均变化率的几何意义和物理意义
几何意义:函数y=f(x)图象上割线AB的斜率。
物理意义:函数s=s(t)在时间段﹝t1,t2﹞上的平均速度,即
v st2 st1
t2 t1
二、典型例题 题型一:求函数的平均变化率
例1:求函数y=2x2+1在x0到x0+△x之间的平 均变化率。并计算当x0=1,△x=2时平均变化 率的值。
导数是微积分的核心概念之一.它是研究函数增减、变 化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:
研究某个变量相对于另一个变量变化的快慢程度.
你看过高台跳水比赛吗 ? 照片中锁定了运动员比
赛的瞬间.已知起跳 1s后, 运动员相对于水面的高
度 h 单位 : m可用函数
ht 4.9t2 6.5t 10表
则平均变化率又可表示为:
f x2 f x1 f ( x1 x) f ( x1 )
x2 x1
x
y
fx2 f x 1
y fx
B
A
x2 x1
fx2 fx1
思考 观察函数 f x
的图象图1.1.1, 平均
变化率
y f x2 f x1
x
x2 x1
O
x1
x2
x 表示什么?
图1.1 1
题型二:求割线的斜率
例2:经过曲线f(x)=x2+1上A,B两点作割线, 已知xA=1, xB=2, 求割线AB的斜率.
题型三:平均变化率的应用
例3:试比较正弦函数y=sinx在x=0和
x
2
附近的平均变化率哪一个大?
题吗?
探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合
图形可知:
h
h( 65) h(0)
v 49
0(s / m)
65 0
虽 但然 是在运动409员 t并 没4695有这静段止时,间所里以平说均,速用度平为均0
速度并不能精确地描述运动员的运动状态
o
t
一、平均变化率的概念
0.5 0
在1 t 2这段时间里 , v h2 h1 8.2 m / s.
2 1
在t1
t
t2这段时间里, v
ht2
t2
ht1
t1
探究: 计算运动员在0 t 65 这段时间里的平均速度, 49
并思考下面的问题 :
1运动员在这段时间里是 静止的吗?
2你认为用平均速 度描述运动员运动状态有什么问
问题2 高台跳水
人们发现 , 在高台跳水运动中 , 运动员相对于水
面的高度 h 单位 : m与起跳后的时间 t单位 : s
存在函数关系ht 4.9t2 6.5t 10.
如果我们用运动员某段时间内的平均速度v描
述其运动状态,那么
在0 t 0.5这段时间里 , v h0.5 h0 4.05m / s;
x2
f
x1
y
x2 x1
x
注意: 1. x 是相对于x1的一个“增量”,它可 以为正,也可以为负,但不能为等于0. 而 y
是相应函数值的改变量,它可以为正,可以为负,也可以
等于0。特别是当函数为常数函数时,y 0
2.如果把 x看作是相对于x1的一个“增量”,
则x2可以用 x1 x 来代替。
相关文档
最新文档