新北师大版七年级上册数学期末考试试卷及答案

合集下载

最新北师大版七年级数学上册期末考试题及答案【全面】

最新北师大版七年级数学上册期末考试题及答案【全面】

最新北师大版七年级数学上册期末考试题及答案【全面】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若方程:()2160x --=与3103a x --=的解互为相反数,则a 的值为( ) A .-13 B .13C .73D .-1 2.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.下列说法正确的是( )A .一个数前面加上“-”号,这个数就是负数B .零既是正数也是负数C .若a 是正数,则a -不一定是负数D .零既不是正数也不是负数5.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+17.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC8.如图,AB ∥CD ,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为()A .∠1+∠2﹣∠3B .∠1+∠3﹣∠2C .180°+∠3﹣∠1﹣∠2D .∠2+∠3﹣∠1﹣180°9.若a <b ,则下列结论不一定成立的是( )A .11a b -<-B .22a b <C .33a b->- D .22a b <10.如果,长方形ABCD 中有6个形状、大小相同的小长方形,且3EF =,12CD =,则图中阴影部分的面积为( ).A .108B .72C .60D .48二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:2ab a-=________.2.如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为________.3.如图,在长方形ABCD中,放入六个形状,大小相同的长方形(即空白的长方形),AD=12cm,FG=4cm,则图中阴影部分的总面积是 __________2cm .4.如果一个数的平方根是a+6和2a﹣15,则这个数为________.5.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C 岛看A,B两岛的视角∠ACB=________.6.已知x2{y1==是二元一次方程组mx ny7{nx my1+=-=的解,则m+3n的立方根为________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32137x yx y+=⎧⎨-=-⎩(2)()45113812x y yx y⎧+=+⎪⎨+=⎪⎩2.先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=2019.3.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.4.如图,已知直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、D5、B6、C7、D8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、a(b+1)(b﹣1).2、150°42′3、484、815、70°6、2三、解答题(本大题共6小题,共72分)1、(1)12xy=-⎧⎨=⎩;(2)14xy⎧=⎪⎨⎪=⎩2、(x﹣y)2;1.3、(1)矩形的周长为4m;(2)矩形的面积为33.4、(1)∠PEF=57°;(2)∠EPF=90°.5、()117、20;()22次、2次;()372;()4120人.6、(1)9万元(2)共有5种进货方案(3)购买A款汽车6辆,B款汽车9辆时对公司更有利。

北师大版七年级上册数学期末试卷及答案完整版 3套

北师大版七年级上册数学期末试卷及答案完整版 3套

七年级数学上册期末试卷及答案(考试时间100分钟,试卷满分100分)一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号直接填写在试卷相应位置上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是 A .()21-B .21-C .()31- D .1--2.已知水星的半径约为24400000米,用科学记数法表示为( )米A .80.24410⨯ B .61044.2⨯ C .71044.2⨯ D .624.410⨯ 3.下列各式中,运算正确的是A .3a 2+2a 2=5a 4B .a 2+a 2=a 4C .6a -5a =1D .3a 2b -4ba 2=-a 2b4.如图所示几何体的左视图是5.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③180°-∠α;④12(∠α-∠β).正确的是: A .①②③④B .①②④C .①②③D .①②6.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是103,则m 的值是 A .9B .10C .11D .12二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.已知∠A =30°36′,它的余角 = . 8.如果a -3与a +1互为相反数,那么a = . 9.写出所有在652- 和1之间的负整数: . 10.如果关于x 的方程2x +1=3和方程032=--xk 的解相同,那么k 的值为________.11.点C 在直线AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点, 则线段MN 的长为 .12.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm”和“8cm”分别对应数轴上的-3和x ,那么x 的值为 .13.|x -3|+(y +2)2=0,则y x 为 .14.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .15.一个正方体的平面展开图如图,已知正方体相对两个面上的数之和为零,则a+b = .16.小明同学在某月的日历上圈出2×2个数(如图),正方形方框内的4个数的和是28,那么这4个数是三、解答题(本大题共9小题,共68分.请在试卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本题8分)计算: (1)9+5×(-3)-(-2)2 ÷ 4; (2)()()14-2-61-31-212⨯+⎪⎭⎫ ⎝⎛÷⎪⎭⎫⎝⎛ 18.(本题8分)解下列方程: (1)13421+=+x x ; (2)1612312-+=-x x . 19.(本题5分)先化简,再求值:)]2(23[25222b a ab abc b a abc -+--,其中a =21-,b =-1,c =3. 20.(本题6分)作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.21.(本题6分)在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为xcm,请用x来表示这个无盖长方体的容积;(2)当剪去的小正方体的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.22.(本题7分)如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(画图时保留痕迹)(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.23.(本题8分)如图,已知同一平面内∠AOB=90o,∠AOC=60o,(1)填空∠AOC= ;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60o改成∠AOC=2α(α<45o),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.24.(本题8分)我市为打造八圩港风光带,现有一段河道整治任务由A B 、两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,问A 工程队一共做了多少天? (1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下: 万颖:=++⨯x )241161(6161________ ; 刘寅:()1241161=⨯+y根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x y 、表示的意义,然后在,然后在方框中补全万颖、刘寅同学所列的方程:万颖:x 表示 ,刘寅:y 表示 ,万颖同学所列不完整的方程中的方框内该填 ,刘寅同学所列不完整的方程中的方框内该填 . (2)求A 工程队一共做了多少天.(写出完整的解答过程) 25.(本题10分)已知:线段AB=20 cm .(1)如图1,点P 沿线段AB 自A 点向B 点以2厘米/秒运动,点P 出发2秒后,点Q 沿线段BA 自B 点向A 点以3厘米/秒运动,问再经过几秒后P 、Q 相距5cm?(2)如图2:AO=4 cm , PO=2 cm , ∠POB=60o ,点P 绕着点O 以60度/秒的速度逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P 、Q 两点能相遇,求点Q 运动的速度 .参考答案一、选择题 ACDD BB 二、填空题7.59o 24′ 8.1 9.-2,-1 10.7 11.7cm 戓1cm 12.5 13.-8 14.870 15.-1 16.3,4,10,11 三、解答题17.(1)解:原式=9+(-15)-1 (2分)= -7(4分) (2)解:原式=()()()14-46-31-6-21⨯+⨯⨯=-3+2-56…………………3分 =-57 …………………4分 或原式=()()14-46-61⨯+⨯= -1-56=-57…………………4分 18.(1)解:去分母得 3(x+1)=8x+6………………………………1分 去括号、移项、合并同类项,得 -5x=3………………………………2分 系数化为1,得 x=53-. ………………………………4分 (2)解:去分母得 2(2x-1)=(2x+1)-6………………………………1分 去括号、移项、合并同类项,得 2x=-3………………………………2分 系数化为1,得 x=23-. ………………………………4分 19.解:原式=]243[25222b a ab abc b a abc -+-- (1分) = b a ab abc b a abc 22224325+--- (2分) = 242ab abc - (3分) 当a =21-,b =-1,c =3时. 原式= 2)1()21(43)1()21(2-⨯-⨯-⨯-⨯-⨯ (4分) =23+ =5 (5分) 20.(各2分)1121.(1)容积:2)216(x x - ……………3分(2)当x=3时,容积为300cm 3……………4分 当x=3.5时,容积为283.5 cm 3……………5分答 当剪去的小正方形的边长为3cm 时,无盖长方体的容积大些.……………6分 22.(1)画角平分线(2分),画平行线(3分),画垂线 (4分) (2)AE=ED (5分) (3)DF<DE , (6分)理由:直线外一点和直线上各点连接的所有线段中,垂线段最短.(7分) 23.(1)150° ………………………1分 (2)45° ………………………3分 (3)解:因为∠AOB =90°,∠AOC =2α 所以∠BOC =900+2α因为OD 、OE 平分∠BOC ,∠AOC 所以∠DOC =21∠BOC =45o +α,∠CO E=21∠AOC =α ……6分 所以∠DO E=∠DOC -∠CO E=450 ……8分 说明:其他解法参照给分.24.(1)x 表示A 、B 合做的天数(或者B 完成的天数);y 表示A 工程队一共做的天数; 1 ; y-6 . (每空1分共4分) (2)解:设A 工程队一共做的天数为y 天,由题意得:=-+)6(241161y y 1 …………………6分 解得y=12答:A 工程队一共做的天数为12天. ……8分 用另一种方法类似得分.(2)解答不完整只有答案扣2分. 25.解:(1)设再经过t s 后,点P 、Q 相距5cm , ①P 、Q 未相遇前相距5cm ,依题意可列223205t t +-()+=, 解得,t =115……2分 ②P 、Q 相遇后相距5cm ,依题意可列223205t t ++()+=, 解得,t =215……4分 答:经过115s 或215s 后,点P 、Q 相距5cm . 解:(2)点P ,Q 只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为12060=2s或120180560s += ……6分设点Q 的速度为y m/s ,当2秒时相遇,依题意得,2y 20218-==,解得y =9 当5秒时相遇,依题意得,5y 20614-==,解得y 2.8= 答:点Q 的速度为9m /s 2.8m /s 或. …………8 分 若只有一解得5分.数 学 试 卷 北 师 大 版 七 年 级 上 册一、精心选一选(每小题3分,共30分) 1.-21的相反数是( )A .2B .-2C .21 D .-212.下列式子正确的是( )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 3. 沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D 图1 4.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②6.数a ,b 在数轴上的位置如图2所示,则b a +是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米 8.图5是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( ) A .这天15点时的温度最高B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃D .这天21点时的温度是30℃9.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )温度/℃383430 26 22 15 18 21 24图3 O O O O A B C D 图4图210.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶C .5瓶D .6瓶 二、细心填一填(每空3分,共30分)11.52xy -的系数是 。

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)北师大版七年级上册数学期末试卷(含答案)第一部分:选择题(共50题,每题1分;共50分)1. 以下哪个数是无理数?A. √2B. 1C. 3/4D. 0答案:A解析:无理数是不能表示为有限小数或循环小数的实数。

√2 是一个无理数。

2. 在多项式 4x^3 + 3x – 2 中,x 的次数为:A. 2B. 3C. 1D. 0答案:B解析:多项式中最高次数的项决定了整个多项式的次数,所以 x 的次数为 3。

3. 下面哪个图形中的三角形是锐角三角形?A. B. C. D.答案:A解析:锐角是指小于90度的角,只有图形 A 中的三角形是锐角三角形。

4. 决算表中列出了一个公司在一年中的所有收入和支出。

决算表的目的是:A. 记录公司的股东信息B. 衡量公司盈利能力C. 统计员工的工资D. 呈现公司的年度计划答案:B解析:决算表用于衡量公司在一年中的盈利能力和财务状况。

5. 以下哪个数字是一个素数?A. 1B. 4C. 7D. 9答案:C解析:素数是指只能被 1 和自身整除的正整数,而 7 是一个素数。

6. 对于以下方程 4x + 12 = 20 ,解为:A. x = -2B. x = 2C. x = -8D. x = 8答案:B解析:通过变换方程,我们可以得到 x = 2。

7. 将一个正方形的边长增加 20%,那么面积将变为原来的:A. 100%B. 120%C. 140%D. 144%答案:D解析:边长增加 20% 相当于乘以 1.2,而面积是边长的平方,所以面积将变为原来的 1.2^2 = 1.44,即 144%。

8. 下图中,三角形 ABC 中,∠ACB 的度数为:A. 45°B. 60°C. 90°D. 180°答案:B解析:三角形的内角和为180度,而∠ABC = 90度,因此∠ACB = 180度 - 90度 - 30度 = 60度。

北师大版七年级上册数学期末考试试卷含答案

北师大版七年级上册数学期末考试试卷含答案

北师大版七年级上册数学期末考试试题一、单选题1.单项式-3πxy 2z 3的系数和次数分别是()A .-π,5B .-1,6C .-3π,6D .-3,72.数据353万用科学记数法表示为()A .53.5310⨯B .435.310⨯C .70.35310⨯D .63.5310⨯3.下列是由4个大小相同的小立方块搭成的几何体,从正面和从左面看得到的形状图相同的是()A .B .C .D .4.以下问题,不适合全面调查的是()A .调查和一新冠肺炎感染者密切接触人群B .调查我市中学生心理健康现状C .检测长征运载火箭的零部件质量情况D .调查某中学在职教师的身体健康状况5.同一条直线上三点,,A B C ,4cm,2cm AB BC ==,则AC 的长度为()A .6cmB .4cm 或6cmC .2cm 或6cmD .2cm 或4cm6.已知关于x 的方程()||310m m x -+=是一元一次方程,则m 的值为()A .1B .-1C .1或-1D .以上结果均不正确7.如图1所示,在一个边长为a 的正方形纸片上剪去两个小长方形,得到一个如图2的图案所示,再将剪下的两个小长方形拼成一个新的长方形,如图3所示,则新长方形的周长可表示为()A .23a b -B .410-a bC .24a b -D .48a b-8.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识探究,这7个数的不可能是()A .168B .140C .98D .639.如图,将一张长方形纸片ABCD 沿对角线BD 折叠后,点C 落在点E 处,连接BE 交AD 于F ,再将三角形DEF 沿DF 折叠后,点E 落在点G 处,若DG 刚好平分∠ADB ,那么∠ADB 的度数是()A .18°B .20°C .36°D .45°10.对于直线、射线、线段,在下列各图中能相交的是()A .B .C .D .11.下列整式运算错误的是()A .2ab ba ab -+=B .22222325a b ab a b ab ab +--=-C .()2362x x--=-+D .22222m n m n m n -+-=-12.点A 在数轴上的位置如图所示,则点A 表示的数的相反数为()A .4B .4-C .14D .14-二、填空题13.若a ,b 互为相反数,则(a+b ﹣1)2016=_____.14.计算33522154''︒+︒=_________.15.一个多边形从同一个顶点引出的对角线,将这个多边形分成7个三角形.则这个多边形有_____条边.16.若mn=m+3,则2mn+3m-5nm+10=__________.17.用一个平面去截一个正方体,得到的截面的形状可能是:①圆,②三角形,③长方形,④五边形,⑤六边形,⑥七边形其中的_____.18.如图,将一副三角板按如图所示的位置摆放,若O ,C 两点分别放置在直线AB 上,则∠AOE =____度.19.一只兔子落在数轴的某点P 0上,第1次从P 0向左跳1个单位到P 1,第2次从P 1向右跳2个单位到P 2,第3次从P 2向左跳3个单位到P 3,第4次从P 3向右跳4个单位到P 4,…,若按以上规律跳了100次时,兔子落在数轴上的点P 100所表示的数恰好是2021,则这只兔子的初始位置P 0所表示的数是_____.三、解答题20.计算:()3271130151030⎛⎫⎛⎫---+-÷-⎪ ⎪⎝⎭⎝⎭.21.解方程:141123x x --=-.22.先化简,再求值:已知2(a 2b+ab )﹣2(a 2b ﹣1)﹣2ab 2﹣2,其中a =﹣2,b =2.23.如图1,已知50ABC ∠=︒,有一个三角板BDE 与ABC ∠共用一个顶点B ,其中45EBD ∠=︒.(1)若BD 平分ABC ∠,求EBC ∠的度数;(2)如图2,将三角板绕着点B 顺时针旋转α度(090α︒<<︒),当AB BD ⊥时,求EBC ∠的度数.24.定义新运算“@”与“⊕”:@2a ba b +=,2a b a b -⊕=(1)计算()()()3@221---⊕-的值;(2)若()()()()()3@23,@329A b a a b B a b a b =-+⊕-=-+-⊕--,比较A 和B 的大小25.某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:()1学校这次调查共抽取了名学生;()2求m 的值并补全条形统计图;()3在扇形统计图中,“围棋”所在扇形的圆心角度数为;()4设该校共有学生1000名,请你估计该校有多少名学生喜欢足球.26.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和(10)a a >个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若60a =,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?27.如图,在直角三角形ABC 中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米.P 点从点A 开始以2厘米/秒的速度沿A→B→C 的方向移动,终点为C ;点Q 从点C 开始以1厘米/秒的速度沿C→A→B 的方向移动,终点为B .如果P 、Q 同时出发,用t (秒)表示移动时间.(1)分别求出P 、Q 到达终点时所需时间;(2)若P 在线段AB 上运动,Q 在线段CA 上运动,试求出t 为何值时,QA =AP ;(3)当t 为何值时,三角形QBC 的面积等于三角形ABC 面积的13.参考答案1.C 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:根据单项式系数、次数的定义,单项式-3πxy 2z 3的系数和次数分别是-3π,6.故选C .【点睛】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π是数字,应作为系数.2.D 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】353万=3530000=63.5310 故答案选:D【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C 【分析】根据主视图及左视图的定义求解即可.【详解】A.从正面看有两行组成,上面一行是一个小正方形,下面一行是三个小正方形;从左面看也有两行组成,上面一行是一个小正方形,下面一行是1个小正方形,所以不符合题意.B.从正面看有三行组成,上面两行是各有1个小正方形,最下面一行是两个小正方形;从左面看也有三行组成,每行都只是一个小正方形,不符合题意.C 从正面看第一层是两个小正方形,第二层是一个小正方形;从左边看第一层是两个小正方形,第二层是一个小正方形.D.从正面看有两行组成,上面一行靠右侧一个小正方形,下面一行是两个小正方形;从左面看也有两行组成,上面一行左侧一个小正方形,下面一行是2个小正方形,所以不符合题意.故选C.4.B 【分析】根据普查与抽样调查的特点进行选择判断即可.【详解】A 、调查和一新冠肺炎感染者密切接触人群,需要全面调查;B 、调查我市中学生心理健康现状,不适宜用全面调查,优选抽样调查;C 、检测长征运载火箭的零部件质量情况,需要全面调查;D 、调查某中学在职教师的身体健康状况,需要全面调查;故选:B .5.C 【分析】由题意可分当点C 在线段AB 上和当点C 在线段AB 外,然后根据线段的和差关系可求解.【详解】解:①当点C 在线段AB 上时,则有:∵4cm,2cm AB BC ==,∴2cm AC AB BC =-=;②当点C 在线段AB 外时,则有:∵4cm,2cm AB BC ==,∴6cm AC AB BC =+=;故选C .6.A 【分析】根据一元一次方程的定义解答即可.【详解】∵关于x 的方程()||310m m x -+=是一元一次方程,∴|m|=1,m+1≠0,∴m=1.故选A.7.D 【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:根据题意得小长方形的长为:a-b ,宽为:32a b-,∴新长方形的周长为:322482a b a b a b -⎛⎫⨯+-⨯=-⎪⎝⎭.故选D.8.A 【分析】设最中间的数为x ,根据题意列出方程即可求出判断.【详解】解:设最中间的数为x ,∴这7个数分别为x-8、x-6、x-1、x 、x+1、x+6、x+8,∴这7个数的和为:x-8+x-6+x-1+x+x+1+x+6+x+8=7x ,当7x=168时,此时x=24,由图可知:24的右下角没有数字.当7x=140时,此时x=20,当7x=98时,此时x=14,当7x=63时,此时x=9,故选:A .9.C 【分析】根据折叠的性质可得∠BDC=∠BDE ,∠EDF=∠GDF ,由角平分线的定义可得∠BDA=∠GDF+∠BDG=2∠GDF ,然后根据矩形的性质及角的运算可得答案.【详解】解:由折叠可知,∠BDC=∠BDE ,∠EDF=∠GDF ,∵DG 平分∠ADB ,∴∠BDG=∠GDF ,∴∠EDF=∠BDG ,∴∠BDE=∠EDF+∠GDF+∠BDG=3∠GDF ,∴∠BDC=∠BDE=3∠GDF ,∠BDA=∠GDF+∠BDG=2∠GDF ,∵∠BDC+∠BDA=90°=3∠GDF+2∠GDF=5∠GDF ,∴∠GDF=90°÷5=18°,∴∠ADB=2∠GDF=2×18°=36°.故选:C .10.B 【分析】根据直线能向两方无限延伸,射线能向一方无限延伸,线段不能延伸,据此进行选择.【详解】A .线段CD 不能延伸,直线延伸方向,与线段无交点,直线和线段不能相交;B .射线可以无线延伸,这条射线与这条直线能相交;C .线段CD 不能延伸,射线EF 延伸的方向与线段无交点;D.直线和射线的延伸方向,得两者不能相交.故选B .11.B 【分析】根据各个选项中的式子可以计算出正确的结果,从而可以判断哪个选项符合题意.【详解】解:A 、2ab ba ab -+=,故选项A 正确,不符合题意;B 、2222223252a b ab a b ab a b ab +--=-+,故选项B 错误,符合题意;C 、()2362x x --=-+,故选项C 正确,不符合题意;D 、22222m n m n m n -+-=-,故选项D 正确,不符合题意;故选:B【点睛】本题考查整式的加减运算,熟练掌握运算法则是解答本题的关键.12.B 【分析】点A 在数轴上表示的数是4,根据相反数的定义,判断出点A 表示的数的相反数是多少即可.【详解】解: 点A 在数轴上表示的数是4,∴点A 表示的数的相反数是4-.故选:B .13.1【分析】根据相反数的性质得a+b=0,再代入进行计算即可.【详解】解:∵a ,b 互为倒数,∴a+b=0,∴(a+b ﹣1)2016=20162016(01)(1)1-=-=,故答案为:1.14.5546︒'【详解】解:33522154︒+︒''=54106'︒=5546︒'.故答案为:5546'︒.15.九或916.【分析】经过n 边形的一个顶点的所有对角线把多边形分成(n-2)个三角形,根据此关系式求边数,再求出对角线.【详解】解:设多边形有n 条边,则n-2=7,解得:n=9.所以这个多边形的边数是9,故答案为:九.16.1【详解】解:原式=﹣3mn+3m+10,把mn=m+3代入得:原式=﹣3m ﹣9+3m+10=1,故答案为:1.17.②③④⑤【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.【详解】解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.截面可能为三角形、四边形(梯形,长方形,正方形)、五边形、六边形.故答案为:②③④⑤.18.165【分析】根据题意结合图形可得:∠DOC=45°,∠DOE=30°,继而可求得∠COE 和∠AOE 的度数.【详解】解:由图可得:∠DOC=45°,∠DOE=30°,则∠COE=∠DOC ﹣∠DOE=15°,∴∠AOE=180°﹣∠COE=165°.故答案为165.点睛:本题考查了余角和补角的知识,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.19.1971【分析】根据题意,可以先设这只小兔子的初始位置点P 0所表示的数是a ,然后再写出几个点所表示的数,从而可以发现数字的变化特点,然后即可写出点P 100所表示的数,从而可以求得点P 0所表示的数.【详解】解:设这只小兔子的初始位置点P 0所表示的数是a ,则P 1表示的数是a-1,P 2表示的数是a+1,P 3表示的数是a-2,P 4表示的数是a+2,…,∴P 100表示的数是a+50,∵点P 100所表示的数恰好是2021,∴a+50=2021,解得a=1971,故答案为:1971.20.-14【分析】原式先算乘方及绝对值,再算除法,最后算加减即可得到结果.【详解】解:()3271130151030⎛⎫⎛⎫---+-÷- ⎪ ⎪⎝⎭⎝⎭=171130()(3030--+-÷-=17130()(30)30--+-⨯-=-1-30+17=-31+17=-14.21.x=1【分析】首先将分母去掉,然后进行去括号,移项合并同类项,求出方程的解.【详解】解:方程两边同时乘以6,得3(1-x)=2(4x-1)-6,去括号得:3-3x=8x-2-6,移项得:8x+3x=3+8,合并同类项得:11x=11,解得:x=1.【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程是解题的关键.22.222ab ab -;8【分析】原式去括号,合并同类项进行化简,然后代入求值.【详解】解:2(a 2b+ab )﹣2(a 2b ﹣1)﹣2ab 2﹣2=2a 2b+2ab-2a 2b+2-2ab 2-2=2ab-2ab 2,当a=-2,b=2时,原式=2×(-2)×2-2×(-2)×22=-8+16=8.23.(1)70︒;(2)5︒.【分析】(1)由角平分线性质解题150252ABD DBC ∠=∠=⨯︒=︒,再由EBC EBD DBC ∠=∠+∠解题即可;(2)画出示意图,当AB BD ⊥时,ABC ∠与三角板BDE 有重叠角EBC ∠,根据角的和差解题即可.【详解】(1)BD Q 平分ABC ∠,12ABD DBC ABC ∴∠=∠=∠50ABC ∠=︒ 150252ABD DBC ∴∠=∠=⨯︒=︒452570EBC EBD DBC ∴∠=∠+∠=︒+︒=︒;(2)当AB BD ⊥时,90ABD ∠=︒ABD ABC EBD EBC∠=∠+∠-∠ 90ABC EBD EBC ∴∠+∠-∠=︒5045905EBC ∴∠=︒+︒-︒=︒.【点睛】本题考查角平分线的性质、与三角板有关的角的和差计算等知识,是重要考点,难度较易,掌握相关知识是解题关键.24.(1)1;(2)A B <.【分析】(1)根据题意新运算的符号进行求解;(2)根据新运算符号分别求出A 、B 的值在进行比较大小即可.【详解】解:(1)根据题意得:()()()3@221---⊕-322122--+=-=1;(2)()()3323@233122b a b a A b a a b b -+-=-+⊕-=+=-,()()()392@329=3122a b b a B a b a b b --+=-+-⊕--+=+,3131b b +>- ,A B ∴<.25.(1)100;(2)m=20,补图见解析;(3)36°;(4)250.【分析】(1)用“围棋”的人数除以其所占百分比可得;(2)用总人数乘以“书法”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“围棋”人数所占百分比即可得;(4)用总人数乘以样本中“舞蹈”人数所占百分比可得.【详解】(1)学校本次调查的学生人数为10÷10%=100(名).故答案为:100;(2)m=100﹣25﹣25﹣20﹣10=20,∴“书法”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“书法”所在扇形的圆心角度数为360°×10%=36°.故答案为:36°;(4)估计该校喜欢舞蹈的学生人数为1000×25%=250人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.26.(1)每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:100a+14000,到乙商场购买所花的费用为:80a+15000;(3)购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.【详解】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣10010)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;100a+14000>80a+15000,解得a>50,购买的足球数多于50个时,则到乙商场购买合算;100a+14000<80a+15000,解得a<50,购买的足球数少于50个时,则到甲商场购买合算.∴应到乙商店购买比较合算.27.(1)点P、Q到达终点时所需时间分别为18s和28s;(2)t=4s时,AQ=AP;(3)t=4s或683s时,三角形QBC的面积等于三角形ABC面积的13.【分析】(1)构建路程、速度、时间之间的关系即可解决问题;(2)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12-t,由AQ=AP,可得方程12-t=2t,解方程即可.(3)当Q在线段CA上时,设CQ=t,根据三角形QBC的面积等于三角形ABC面积的1 3,列出方程即可解决问题.(1)解:点P到达终点时所需时间为:(16+20)÷2=18(s).点Q到达终点时所需时间为:(12+16)÷1=28(s).答:点P、Q到达终点时所需时间分别为18s和28s;(2)解:当P在线段AB上运动,Q在线段CA上运动时,CQ=t,AP=2t,则AQ=12-t,∵AQ=AP,∴12-t=2t,∴t=4.∴t=4s时,AQ=AP;(3)解:当Q在CA上时,CQ=t,∵三角形QBC的面积等于三角形ABC面积的1 3,∴S△QBC=13S△ABC即12×t×16=12×16×12×13,解得:t=4;当Q在AB上时,BQ=12+16-t=28-t,∴S△QBC=13S△ABC即12×(28−t)×12=12×12×16×13,解得:t=68 3.∴t=4s或683s时,三角形QBC的面积等于三角形ABC面积的13.。

北师大版七年级上册数学期末试卷(带答案)-百度文库

北师大版七年级上册数学期末试卷(带答案)-百度文库

北师大版七年级上册数学期末试卷(带答案)-百度文库一、选择题1.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 2.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .273.下列运算中正确的是( ) A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=4.如图所示,OB 是一条河流,OC 是一片菜田,张大伯每天从家(A 点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是( )A .B .C .D .5.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%; 方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多( ) A .方案一B .方案二C .方案三D .不能确定6.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米B .30千米C .32千米D .36千米7.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .8.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4B .5C .6D .79.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 10.下列方程为一元一次方程的是( ) A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =011.在方程3x ﹣y =2,x+1=0,12x =12,x 2﹣2x ﹣3=0中一元一次方程的个数为( ) A .1个B .2个C .3个D .4个12.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-2020二、填空题13.图1是一个轴对称图形,且每个角都是直角,长度如图所示,按图2所示方法拼图,两两相扣,相互间不留空隙,那么用99个这样的图形(图1)拼出来的图形的总长度是____(结果用含a ,b 的代数式表示) .14.如图,填在下面各正方形中的四个数字之间有一定的规律,据此规律可得a b c ++=_____________.15.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.16.若关于x 的方程()||1 13n n x -+=是一元一次方程,则n 的值是_________.17.已知方程2x ﹣a =8的解是x =2,则a =_____.18.在班级联欢会上,数学老师和同学们做了一个游戏.她在A B C ,,三个盘子里分别放了一些小球,小球数依次为000,,a b c ,记为()0000,,G a b c =,游戏规则如下:三个盘子中的小球数000a b c ≠≠,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记作一次操作;n 次操作后的小球数记为(),,n n n n G a b c =.若0(3,5,19)G =,则3G =________,2000G =________.19.统计得到的一组数据有 80 个,其中最大值为 141,最小值为 50,取组距为 10,可以分成 _______________组.20.一幅三角尺按如图方式摆放,且1∠的度数比2∠的度数大50,则2∠的大小为__________度.21.当n 取正整数时,(1+x )n 的展开式中每一项的系数可以表示成如下形式:(1)观察上面数表的规律,若(1+x)6=1+6x+15x2+ax3+15x4+6x5+x6,则a=_____;(2)(1+x)7的展开式中每一项的系数和为_____.22.如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连结A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连结A2,B2,C2,得到△A2B2C2.…按此规律,要使得到的三角形的面积超过2013,最少经过_____次操作.三、解答题23.某学校组织七年级学生参加了“热爱宪法,捍卫宪法”的知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计,绘制统计图如下.请根据所给信息,回答下列问题:某校七年级部分学生成绩频数分布直方图某校七年级部分学生成绩扇形统计图(1)求出A 组、B 组人数分别占总人数的百分比; (2)求本次共抽查了多少名学生的成绩;(3)扇形统计图中,D 组对应的圆心角为a ︒,求a 的值;(4)该区共有1000名七年级学生参加了此次竞赛,若主办方想把一等奖的人数控制在150人,那么请你通过计算估计:一等奖的分值应定在多少分及以上? 24.计算:(1)()()32832245-+÷---⨯.(2)|﹣9|÷3+(1223-)×12+32; 25.有理数a 、b 在数轴上的位置如图所示:求:(1)a-b 0(填“>,<,=”) (2)|b-a|=26.已知数轴上三点M ,O ,N 对应的数分别为-3,0,1,点P 为数轴上任意一点,其对应的数为x .(1)如果点P 到点M 、点N 的距离相等,那么x 的值是 ; (2)当x= 时,点P 到点M 、点N 的距离之和是6;(3)如果点P 以每秒钟1个单位长度的速度从点O 向右运动时,点M 和点N 分别以每秒钟4个单位长度和每秒钟2个单位长度的速度也向右运动,且三点同时出发,那么几秒钟时点P 到点M ,点N 的距离相等?27.已知,点A 和点1A 是线段1AA 的两个端点,线段1AA a =,点2A 是点A 和点1A 的对称中心,点3A 是点1A 和点2A 的对称中心,以此类推,(图中未画出)点n A 是点1n A -和点2-n A 的对称中心.(n 为正整数)(1)填空:线段4AA =____________ ;线段5AA =_____________ (用含a 的最简代数式表示)(2)试写出线段n AA 的长度(用含a 和n 的代数式表示,无需说明理由)28.一副三角尺按照如图所示摆放在量角器上,边PD 与量角器0刻度线重合,边AP 与量角器180︒刻度线重合,将三角尺ABP 绕量角器中心点P 以每秒4︒的速度顺时针旋转,当边PB 与0︒刻度线重合时停止运动.设三角尺ABP 的运动时间为t (秒)(1)当5t =秒时,边PB 经过的量角器刻度线对应的度数为_ ; (2)t = 秒时,边PB 平分CPD ∠;(3)若在三角尺ABP 开始旋转的同时,三角尺PCD 也绕点P 以每秒1的速度逆时针旋转,当三角尺ABP 停止旋转时,三角尺PCD 也停止旋转, ①当t 为何值时,边PB 平分CPD ∠;②在旋转过程中,是否存在某一时刻,使得:3:2BPD APC ∠∠=.若存在,请求出t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得. 【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1; A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确. 故选B. 【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.2.C解析:C 【解析】 【分析】将x=-m代入方程,解出m的值即可.【详解】将x=-m代入方程可得:-4m-3m=2,解得:m=-27.故选:C.【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.3.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.4.D解析:D【解析】【分析】做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.5.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m(1-10%)30%=0.37m;方案二降价0.2m+m(1-20%)15%=0.32m;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较..6.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.7.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C 、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D 、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误. 故选C . 【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.B解析:B 【解析】 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.9.B解析:B 【解析】 【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C 选项利用等式的性质进行化简. 【详解】解:A 、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误; B 、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C 、0.5x-0.7x=5-1.3x ,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x ,故本选项错误;D 、1226x x -+-=2,去分母得:3x-3-x-2=12,故本选项错误; 故选:B . 【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.10.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y=3,两个未知数;B. y+3=0,符合;C. x2﹣2x=0,指数是2;D. 1y+y=0,不是整式方程.故选:B.【点睛】考核知识点:一元一次方程.理解定义是关键. 11.B解析:B【解析】【分析】根据一元一次方程的定义逐个判断即可.【详解】一元一次方程有x+1=0,12x=12,共2个,故选:B.【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.12.C解析:C【解析】【分析】依次计算1a、2a、3a、4a、…,得到规律性答案,即可得到2020a的值.【详解】11a=-,212a a=-+=-1,323a a=-+=-2,434a a =-+=-2,5453a a =-+=-,6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n (n 为偶数), ∴202010102=, ∴2020a 的值为-1010,故选:C.【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.二、填空题13.a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b ),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图解析:a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b ),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图形中,重叠部分的长度为a-b , ∴用99个这样的图形(图1)拼出来的图形的总长度=99a-98(a-b )= a+98b . 故答案为:a+98b .【点睛】本题主要考查利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.14.420【解析】【分析】观察并思考前面几个正方形内的四个数之间的联系,找到规律再求解.【详解】解:通过观察前面几个正方形四个格子内的数,发现规律如下:左上角的数2=右上角的数,右上角的数解析:420【解析】【分析】观察并思考前面几个正方形内的四个数之间的联系,找到规律再求解.【详解】解:通过观察前面几个正方形四个格子内的数,发现规律如下:左上角的数⨯2=右上角的数,右上角的数-1=左下角的数,右下角的数=右上角的数⨯左下角的数+左上角的数,∴当左下角的数=19时,19120b =+=,20210a =÷=,201910390c =⨯+=,∴1020390420a b c ++=++=.故答案是:420.【点睛】本题考查找规律,解题的关键是观察并总结规律.15.100【解析】【分析】根据利润率(售价进价) 进价,先利用售价标价折数10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】商品每件标价为150元按标价打8折后售价为:(元/件解析:100【解析】【分析】根据利润率=(售价-进价) ÷进价100%⨯,先利用售价=标价⨯折数÷10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】商品每件标价为150元∴按标价打8折后售价为:1500.8120⨯=(元/件)∴设该商品每件的进价为x 元由题意得:()120100%20%-⨯=x x解得:100x =答:该商品每件的进价为100元.故答案为:100【点睛】本题考查一元一次方程应用中的销售问题,通常利润率计算公式为销售问题等量关系是解题关键点.16.-1【解析】【分析】只含有一个未知数,并且未知数的最高次数为1的方程叫做一元一次方程,据此进一步求解即可.【详解】∵关于的方程是一元一次方程,∴,∴且,即:,故答案为:.【点睛】解析:-1【解析】【分析】只含有一个未知数,并且未知数的最高次数为1的方程叫做一元一次方程,据此进一步求解即可.【详解】∵关于x 的方程()||1 13n n x -+=是一元一次方程, ∴110n n =-≠且,∴1n =±且1n ≠,即:1n =-,故答案为:1-.【点睛】本题主要考查了一元一次方程的定义,熟练掌握相关概念是解题关键.17.-4【解析】【分析】把x=2代入方程计算即可求出a 的值.解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为解析:-4【解析】【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.(6,8,13),(8,10,9),【解析】【分析】根据题意先列出前10个数列,得出从G5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G0=(3,5,19)解析:(6,8,13),(8,10,9),【解析】【分析】根据题意先列出前10个数列,得出从G5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G0=(3,5,19),∴G1=(4,6,17),G2=(5,7,15),G3=(6,8,13),G4=(7,9,11),G5=(8,10,9),G6=(9,8,10),G7=(10,9,8),G8=(8,10,9),G9=(9,8,10),G10=(10,9,8),……∴从G5开始每3次为一个周期循环,∵(2000-4)÷3=665…1,∴G2000=G5=(8,10,9),故答案为:(6,8,13),(8,10,9),.本题考查了列代数式,数字的规律,解题的关键是弄清题意得出从G5开始每3次为一个周期循环的规律.19.10【解析】【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,解析:10【解析】【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,因此数据可以分为10组,故答案为:10.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义来解即可.20.20【解析】【分析】根据余角、补角的定义计算.【详解】解:根据题意可知,∠1+∠2=90°,∠1-∠2=50°,所以∠1=70°,∠2=20°.故答案是:20.【点睛】主要考查了余解析:20【解析】【分析】根据余角、补角的定义计算.解:根据题意可知,∠1+∠2=90°,∠1-∠2=50°,所以∠1=70°,∠2=20°.故答案是:20.【点睛】主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180度.解此题的关键是能准确地从图中找出角之间的数量关系,从而计算出结果.要掌握一副三角板上的特殊角之间的关系.21.27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+1解析:27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+15x2+ax3+15x4+6x5+x6,则a=20;(2)∵当n=1时,多项式(1+x)1展开式的各项系数之和为:1+1=2=21,当n=2时,多项式(1+x)2展开式的各项系数之和为:1+2+1=4=22,当n=3时,多项式(1+x)3展开式的各项系数之和为:1+3+3+1=8=23,当n=4时,多项式(1+x)4展开式的各项系数之和为:1+4+6+4+1=16=24,…∴多项式(1+x)7展开式的各项系数之和=27.故答案为:20,27.【点睛】本题考查整式的运算,数字的变化规律,解题的关键是明确题意,利用数学归纳法解答本题.22.【解析】【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.解:△A BC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2B解析:【解析】【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【详解】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2BC),故面积比为1:2,∵△ABC面积为1,∴S△A1B1B=2.同理可得,S△C1B1C=2,S△AA1C=2,∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;同理可证S△A2B2C2=7S△A1B1C1=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2013,最少经过4次操作.故答案为:4.【点睛】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题23.(1)10%,20%;(2)300;(3)108;(4)90分及其以上【解析】【分析】(1)根据A组,B组在扇形统计图中所对应的圆心角度数即可得出结果;(2)根据题(1)A组所占总人数的百分比以及条形统计图中A组的具体人数即可得出总人数;(3)根据条形统计图中D组的具体人数再结合总人数即可;(4)先求出E组所占的百分比即可得出结果.【详解】解:(1)A组人数占总人数的:36°÷360°×100%=10%,B组人数占总人数的72°÷360°×100%=20%,故A组、B组分别占总人数的10%、20%;(2)30÷10%=300(人),故本次抽查学生总人数300人;(3)90÷300×360°=108°,D组对应的圆心角为108°,a=108;(4)(360°-90°-72°-108°-36°)÷360°×1000=150(人),所以一等奖的分值定在90分及其以上即可.【点睛】本题主要考查的是扇形统计图和条形统计图的结合,正确的理解两个统计图是解题的关键.24.(1)76;(2)10.【解析】【分析】(1)先乘方,再求绝对值和乘法,最后计算加减即可;(2)先计算括号里的减法和乘方,再求绝对值和乘法,最后计算加减.【详解】(1)()()32832245-+÷---⨯,解:原式=()()8328165-+÷---⨯;=()8480-+--;=76;(2)|﹣9|÷3+(1223-)×12+32; 解:原式=9÷3+(16-)×12+9; =3+(-2)+9;=10.【点睛】本题主要考查有理数的混合运算,解决本题的关键是要熟练掌握有理数运算法则.25.(1)>;(2)a -b【解析】【分析】(1)从数轴上可得:a >0,b <0且|a |<|b |,(2)先判断b-a 的正负,再根据绝对值的性质进行化简即可【详解】解:(1)根据数轴可得:a>0,b<0且|a|<|b|,则a >b ,a -b >0,故答案为:>;(2)从数轴上可得:a >0,b <0且|a |<|b |,则b -a <0,根据绝对值的法则可得:|b -a |= a -b ,故答案为:a -b .【点睛】本题考查用数轴表示有理数和绝对值化简,根据点在数轴上的位置判断出0a b >>是解题的关键.26.(1)-1;(2)-4或2;(3)2或12【解析】【分析】(1)根据题意列出关于x的方程x-(-3)=1-x,,求出方程的解即可得到x的值;(2)根据题意列出关于x的方程|x-(-3)|+|x-1|=6,,求出方程的解即可得到结果;(3)设t秒时P到M,到N得距离相等,由题意列出方程,求出方程的解即可得到t的值.【详解】解:(1)根据题意得:x-(-3)=1-x,解得:x=-1,故答案为:-1;(2)根据题意得:|x-(-3)|+|x-1|=6,即|x+3|+|x-1|=6,当x<-3时,-x-3-x+1=6,解得:x=-4,当-3≤x≤1时,-x-3+x-1=6,无解;当x>1时,x+3+x-1=6,解得:x=2,综上:x=-4或2;(3)设t秒时点P到点M,点N的距离相等,根据题意得:|-3+4t-t|=|1+2t-t|,即|3t-3|=|t+1|,∵t≥0,当t<-1时,不存在此种情况;当-1≤x≤1时,3t-3=-t-1,解得:t=12;当t>1时,3t-3=t+1,解得:t=2;综上:t=2或12.【点睛】此题考查了一元一次方程的应用,以及数轴上两点之间的距离计算方法,行程问题中的基本数量关系是解题关键.27.(1) 58a;1116a;(2)nAA=111111248163264a a a a a a+-+-++…+(-12)n-1a【解析】【分析】(1)结合图形,根据线段的中心对称的定义即可得出答案;(2)先用a表示AA3、AA4、AA5、AA6、AA7再探究规律,即可写出线段nAA的长度.【详解】解:(1)∵1AA a =,根据题意得,∴AA 4=111248a a a +-=58a ; 5AA =111248a a a +-+116a =1116a , 故答案为58a ;1116a ; (2)根据题意可得, AA 3=1124a a + AA 4=111248a a a +- AA 5=111248a a a +-+116a AA 6=111112481632a a a a a +-+- AA 7=111111248163264a a a a a a +-+-+ ……n AA =111111248163264a a a a a a +-+-++…+(-12)n-1a 【点睛】 此题主要考查了中心对称及两点之间的距离,解题的关键是理解题意,学会探究规律,利用规律解决问题.28.(1)115°;(2)26.25;(3)①21秒,②18t =秒或25.2秒【解析】【分析】(1)0t =秒时,边PB 经过量角器刻度对应的度数是135︒,由由旋转知,4520︒⨯=,进而即可得到答案;(2)由旋转知,旋转角为4t 度,根据题意,列出关于t 的方程,即可求解;(3)①类似(2)题方法,列出关于t 的方程,即可求解;②分两种情况:当边PA 在边PC 左侧时,当边PA 在边PC 右侧时,用含t 的代数式分别表示出APC ∠与BPD ∠,进而列出方程,即可求解.【详解】()1当5t =秒时,由旋转知,4520︒⨯=, ABP 是等腰直角三角形,45APB ∴∠=,即:0t =秒时,边PB 经过量角器刻度对应的度数是135︒,∴旋转5秒时,边PB 经过量角器刻度对应的度数是13520115︒-=,故答案为:115︒;()2由旋转知,旋转角为4t 度,边PB 平分CPD ∠且60DPC ∠=,1418060451052t ∴=-⨯-=,解得:26.25t =, 故答案为:26.25;()3①同()2的方法得:1418060452t t =-⨯--,解得:21t =; ②当边PA 在边PC 左侧时,由旋转知,1804601205APC t t t ∠=---=-,1804551355BPD t t ∠=--=-, 23BPD APC ∠=∠,()3135512052t t ∴-=-,解得:18t =, 当边PA 在边PC 右侧时,由旋转知,4601805120APC t t t ∠=++-=-,[]180(454)5135BPD t t t ∠=--+=-或()1804451355BPD t t t ∠=-++=-, 23BPD APC ∠=∠,()3513551202t t ∴-=-或()3135551202t t -=-, 解得:18t =(不合题意舍去)或25.2t =,综上所述:18t =秒或25.2秒时,:3:2BPD APC ∠∠=.【点睛】本题主要考查一元一次方程与角的和差倍分关系的综合,根据等量关系,列出一元一次方程,是解题的关键.。

北师大版七年级数学上册期末考试试卷(附带答案)

北师大版七年级数学上册期末考试试卷(附带答案)

北师大版七年级数学上册期末考试试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.∠A =60°,则∠A 的补角是A .160°B .120°C .60°D .30° 2.点M 是线段AB 上一点,下面的四个等式中,不能判定M 一定是AB 中点的是( )A .12MB AB = B .AM MB = C .AM MB AB += D .2AM AB =3.若∠A =36°,则∠A 的余角等于( ) A .144° B .64° C .54° D .44°4.单项式224a b 的系数是( )A .2B .3C .4D .55.如图是一个正方体的平面展开图,每个面分别标有相应的字母,字母E 所对的面所标的字母应该是()A .LB .OC .VD .Y6.近似数4.50所示的数值a 的取值范围是( )A .4.495 4.505a ≤<B .4.040 4.60a ≤<C .4.495 4.505a ≤≤D .4.500 4.5056a ≤≤7.在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( )A .0B .1C .2D .38.如图,直线AB 、CD 相交于点O ,90AOE ∠=︒则EOC ∠和AOD ∠的关系( )A .相等B .互补C .互余D .以上三种都有可能9.小马虎在下面的计算中,只做对了一道题,他做对的题目是( )A .-(a -1)=a -1B .a 4+a 4=a 8C .6a 2b -6ab 2=0D .2ab -2ba =0A.4个B.3个C.2个D.1个二、填空题(共8小题,满分32分)14.如图,图形都是由同样大小的小圆圈按一定规律所组成的,其中第1个形中一共有4个小圆圈,第2个图形中一共有10个小圆圈,第3个图形中一有19个小圆圈,…,按此规律排列,则第n个图形中小圆圈的个数.15.已知点C在直线AB上,若AC=6cm,BC=8cm,E,F分别是线段AC,BC的中点,则线段EF的长是cm.16.据统计,韶关1月份的历史最低温是零下4℃,用数表示这个温度是℃.17.在迎来了中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下,12800个贫困村全部出列.将数据12800用科学记数法表示应为 .18.如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且13CF BC =,则长方形ABCD 的面积是阴影部分面积的 倍.三、解答题(共6小题,每题8分,满分48分)19.如图,直线,,AB CD EF 相交于点O ,且OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由.20.阅读材料:我们知道,4x+2x -x=(4+2-1)x=5x ,类似地,我们把(a+b )看成一个整体,则4(a+b )+2(a+b )-(a+b )-(4+2-1)(a+b )=5(a+b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)BC=______;(2)若以B为原点,写出点A,C,D所对应的数,并求出它们所对应数的和;(3)若点C所对应的数为10-,求出点A,B,D所对应数的和.24.计算(1)149 0.52335⎛⎫-⨯+÷-⨯⎪⎝⎭;(2)2222153(5)933⎛⎫⎛⎫-⨯-+--÷⎪ ⎪⎝⎭⎝⎭.参考答案:1.B2.C3.C4.C5.B6.A7.B8.C9.D 10.C 11.7.78×104 12.5 13.1920.14.()212n nn++15.7或116.4-17.41.2810⨯18.319.(1) 51°48′,(2). OG是EOB∠的平分线20.(1)-2(a-b)2;(2)1812;(3)16.21.(1)66;98(2)()0.6150a a ≤ ()0.830150a a ->(3)小张家这个月用电180度.22.(1)前5个台阶上的数的和为-1.(2)答:第6个台阶上的数x 为-3,从下往上前2022个台阶上的数的和为-409.(3)第51k -次出现标“1”所在的台阶数.23.(1)2 (2)点A ,C ,D 分别对应-2,2,4,和为4 (3)-34 24.(1)1- (2)10-。

最新北师大版数学七年级上册《期末检测题》附答案

最新北师大版数学七年级上册《期末检测题》附答案

2020-2021学年第一学期期末测试北师大版七年级数学试题一、选择题:(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂)1.下列四个数中,最小的数是()A.13- B. 0 C. -2 D. 22.如图所示的直角三角形ABC绕直角边AC旋转一周,所得的几何体从正面看到的形状图是()A. B. C. D.3.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数是()A. 3B. 2C. 1D. 04.下列调查中,适合采用全面调查(普查)方式的是()A. 了解九龙江流域的水污染情况B. 了解漳州市民对中央电视台2019年春节联欢晚会的满意度C. 为保证我国北斗三号卫星成功发射,对其零部件进行检查D. 了解全市“文明好司机”礼让斑马线及行人文明过马路情况5.“植树时只要定出两棵树位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()A. 两点确定一条直线B. 两点之间,线段最短C. 直线可以向两边延长D. 两点之间线段的长度,叫做这两点之间的距离6.下列结论中正确的是()A. 单项式24x yπ的系数是14,次数是4 B. 单项式m的次数是1,无系数C. 在213a ,x y π-,54y x ,0中整式有2个D. 多项式2223x xy ++是三次三项式 7.下列抽样调查中,样本具有代表性的是( )①在某大城市调查我国的扫盲情况;②随机在100所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了20条鱼,了解鱼塘里鱼的生长情况;④在某一农村小学里抽查100名学生,调查我国小学生的健康状况.A. ①②B. ①④C. ②④D. ②③8.小明和小亮各收集了一些废电池.如果小明 ,他的废电池个数就和小亮一样多.设小亮收集了x 个废电池,则两人一共收集了(26)x -个.要将题目补充完整,横线上可填( )A. 少收集3个B. 少收集6个C. 多收集3个D. 多收集6个 9.已知整数1a ,2a ,3a ,4a ,…满足下列条件:10a =,212a a =-+,324a a =-+,436a a =-+,…,12n n a a n +=-+(n 为正整数),依此类推,2019a 的值为A . -2017 B. -2018 C. -2019 D. -202010.如图,把六张大小完全相同的小长方形卡片(如图①)不重叠无缝隙的放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长之和是( )A. 4mB. 4nC. 3m n +D. 4n m -二、填空题(共6小题,每小题4分,满分24分.请将答案填入答题卡的相应横线上) 11.如果单项式6m x y 和33yx 是同类项,则m =__________.12.在千年府衙前回味历史,在石板巷里品味静谧,在骑楼下享受慢时光.没有喧嚣的车流,多了闲适的脚步——这就是漳州古城.2018年,前来漳州古城的游客人次超过1700000.其中1700000用科学记数法表示为__________.13.五边形共有______________条对角线.14.如图是方程313142x x -+-=的求解过程,其中依据等式的基本性质的步骤有__________.(填序号)15.对某中学同年级70名男生的身高进行了测量,得到一组数据,其中最大值是183cm ,最小值是146cm ,对这组数据进行整理时,确定它的组距为5cm ,则至少应分__________组.16.已知关于x 的一元一次方程13102020x x m +=+的解为3x =-,那么关于y 的一元一次方程1(21)310(21)2020y y m •++=++的解为__________. 三、解答题:共9题,满分86分.请在答题卡的相应位置作答17.计算:111()(36)4612--⨯- 18.化简求值:22223(2)2(2)a ab b a ab b -+--+,其中2a =,1b =-19.为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级良好;C 级及格;D 级不及格),并将测试结果绘制成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题.(1)本次抽样测试的学生人数是 .(2)图1中∠α的度数是多少度?并直接把图2条形统计图补充完整;(3)该县九年级学生3500名,如果全部参加这次中考体育科目测试,请你估计不及格的人数多少人? 20.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.21.某公司6天内货品进出仓库的吨数如下,其中正数表示进库的吨数:+31,-32,-16,+35,-38,-20.(1)经过这6天,仓库里的货品是_________(填“增多了”或“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨? (3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?22.已知线段AB 和线段a ,延长线段AB 至点C ,使2BC a =,延长BA 至点D ,使点B 是CD 的中点.(1)用尺规作出图形,并标出相应的字母;(保留作图痕迹,不写作法)(2)若1AB =, 1.5a =,求AD 的长.23.我们规定:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”. 例如:方程24x =-的解为2x =-,而242-=-+,则方程24x =-为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程5x m =是“和解方程”,求m 的值;(2)已知关于x 一元一次方程3x mn n -=+是“和解方程”,并且它的解是x n =,求m ,n 的值. 24.在学习《展开与折叠》这一课时,老师让同学们将准备好的正方体或长方体沿某些棱剪开,展开成平面图形.其中,阿中同学不小心多剪了一条棱,把一个长方体纸盒剪成了图①、图②两部分.根据你所学的知识,回答下列问题:(1)阿中总共剪开了几条棱?(2)现在阿中想将剪断的图②重新粘贴到图①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,他有几种粘贴方法?请在图①上画出粘贴后的图形(画出一种即可);(3)已知图③是阿中剪开的图①的某些数据,求这个长方体纸盒的体积.25.一副三角尺按照如图所示摆放在量角器上,边AB与量角器0刻度线重合,边AE与量角器180刻度线重合,将三角尺ABC绕量角器中心点A以每秒3的速度顺时针旋转,当边AB与180刻度线重合时停止运动.设三角尺ABC的运动时间为t秒.∠时,求t的值;(1)当AC平分BAD(2)若三角尺ABC开始旋转的同时,三角尺ADE也绕点A以每秒1的速度逆时针旋转.当三角尺ABC停止旋转时,三角尺ADE也停止旋转.∠时,求t的值;①当AD平分BAC②在旋转过程中,是否存在某一时刻,使得4BAE CAD ∠=∠?若存在,请求出t 的值;若不存在,请说明理由.答案与解析一、选择题:(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂)1.下列四个数中,最小的数是()A.13- B. 0 C. -2 D. 2【答案】C【解析】【分析】根据有理数比较大小的方法,正数>0>负数,两个负数里,绝对值大的数反而较小.【详解】解:根据有理数比较大小的方法得出:12023-<-<<∴四个数中最小的数为-2.故答案为:C.【点睛】本题考查的知识点是比较有理数的大小,属于基础性题目,易于掌握,此类题目还可以通过在数轴上将数字标注出来比较大小.2.如图所示的直角三角形ABC绕直角边AC旋转一周,所得的几何体从正面看到的形状图是()A. B. C. D.【答案】A【解析】【分析】首先根据面动成体可得出将直角三角形绕直角边AC旋转一周,所得到的几何体为圆锥,再找到圆锥从正面看到的图形即可【详解】解:∵根据面动成体可得出将直角三角形绕直角边AC旋转一周,所得到的几何体为圆锥,∴从正面看到的图形为等腰直角三角形.故答案为:A.【点睛】本题考查的知识点是点、线、面、体的关系以及简单几何体的三视图,熟记简单几何体的三视图是解题的关键.3.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数是()A. 3B. 2C. 1D. 0【答案】B【解析】【分析】根据到原点距离相等的点所表示的数互为相反数,故可知点B表示的数为-2的相反数,即可得出答案. 【详解】解:∵A、B两点到原点的距离相等,且两数不重合,A为-2,∴B为-2的相反数,即B表示2.故答案为:B.【点睛】本题考查的知识点是数轴上点到原点的距离,数轴上到原点距离相等的点有两个且这两个数互为相反数.4.下列调查中,适合采用全面调查(普查)方式的是()A. 了解九龙江流域的水污染情况B. 了解漳州市民对中央电视台2019年春节联欢晚会的满意度C. 保证我国北斗三号卫星成功发射,对其零部件进行检查D. 了解全市“文明好司机”礼让斑马线及行人文明过马路的情况【答案】C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.了解九龙江流域的水污染情况宜采用抽样调查方式;B.了解漳州市民对中央电视台2019年春节联欢晚会满意度宜采用抽样调查方式;C.为保证我国北斗三号卫星成功发射,对其零部件进行检查宜采用全面调查的方式;D. 了解全市“文明好司机”礼让斑马线及行人文明过马路的情况采用抽样调查方式.故答案为:C.【点睛】本题考查的知识点是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于精确度要求较高的调查,事关重大的调查往往选择普查.5.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A. 两点确定一条直线B. 两点之间,线段最短C. 直线可以向两边延长D. 两点之间线段的长度,叫做这两点之间的距离 【答案】A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.6.下列结论中正确的是( )A. 单项式24x yπ的系数是14,次数是4 B. 单项式m 的次数是1,无系数 C. 在213a ,x y π-,54y x,0中整式有2个 D. 多项式2223x xy ++是三次三项式 【答案】D【解析】【分析】 根据单项式的系数、次数和多项式的定义以及整式的概念判断即可.【详解】解:A. 单项式24x yπ的系数是14,次数是3,不符合题意; B. 单项式m 的次数是1,系数是1,不符合题意;C. 在213a ,x yπ-,54y x ,0中整式有213a 、x y π-、0,一共3个,不符合题意; D. 多项式2223x xy ++是三次三项式,正确,符合题意.故答案为:D.【点睛】本题考查的知识点是多项式及单项式的概念及其系数、次数问题,属于基础题目,熟记各知识点是解题的关键.7.下列抽样调查中,样本具有代表性的是()①在某大城市调查我国的扫盲情况;②随机在100所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了20条鱼,了解鱼塘里鱼的生长情况;④在某一农村小学里抽查100名学生,调查我国小学生的健康状况.A. ①②B. ①④C. ②④D. ②③【答案】D【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:①在某大城市调查我国的扫盲情况,样本不符合随机性,因此,不具有代表性,不符合题意;②随机在100所中学里调查我国学生的视力情况,具有代表性,符合题意;③在一个鱼塘里随机捕了20条鱼,了解鱼塘里鱼的生长情况,具有代表性,符合题意;④在某一农村小学里抽查100名学生,调查我国小学生的健康状况,不满足随机性,因此,不具有代表性,不符合题意综上所述,②③符合题意.故答案为:D.【点睛】本题考查的知识点是抽取样本的注意事项,抽取样本一定要符合随机性,这样的样本才具有代表性.8.小明和小亮各收集了一些废电池.如果小明,他的废电池个数就和小亮一样多.设小亮收集了xx 个.要将题目补充完整,横线上可填()个废电池,则两人一共收集了(26)A. 少收集3个B. 少收集6个C. 多收集3个D. 多收集6个【答案】D【解析】【分析】根据两人一共收集(2x-6)个,小亮为x个,则小明收集了(x-6)个,因此,小明需再多收集6个才能和小亮一样多.【详解】解:∵2x-6-x=x-6∵x-6+6=x∴小明多收集6个,他的废电池个数就和小亮一样多.故答案为:D.【点睛】本题考查的知识点是根据所给代数式将题目补充完整,找出题目中的等量关系式是解题的关键. 9.已知整数1a ,2a ,3a ,4a ,…满足下列条件:10a =,212a a =-+,324a a =-+,436a a =-+,…,12n n a a n +=-+(n 为正整数),依此类推,2019a 的值为A. -2017B. -2018C. -2019D. -2020 【答案】B【解析】【分析】根据条件求出前几个数的值,再找出数字的排列规律为:当n 为奇数时,()1n a n =--,当n 为偶数时,n a n =-,代入计算即可.【详解】解:∵10a =, ∴212022a a =-+=-+=- ∴324242a a =-+=--+=- ∴436264a a =-+=--+=- ∴548484a a =-+=--+=-……综上所述,可得出:当n 为奇数时,()1n a n =--,当n 为偶数时,n a n =-,∵2019为奇数,∴2019(1)2018a n =--=-故答案为:B.【点睛】本题考查的知识点是寻找数字的排列规律并求值,解题的关键是根据已给数据找出数据的排列规律,往往先列举前面的几个数字,再分n 为奇数或偶数时分别探寻规律.10.如图,把六张大小完全相同的小长方形卡片(如图①)不重叠无缝隙的放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长之和是( )A. 4mB. 4nC. 3m n +D. 4n m -【答案】B【解析】【分析】 设图①小长方形的长为a ,宽为b ,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得出a+3b=m ,代入计算即可.【详解】解:设图①小长方形的长为a ,宽为b ,上面的长方形的周长:2(m-3b+n-3b)下面的长方形的周长:2(n-a+m-a)周长之和:2m+2n-12b+2n+2m-4a=4m+4n-12b-4a由图②得出:a+3b=m代入可得出:4m+4n-12b-4a=4n故答案为:B.【点睛】本题考查的知识点是代数式的应用,解题的关键是正确的用代数式表示出阴影部分的周长之和.二、填空题(共6小题,每小题4分,满分24分.请将答案填入答题卡的相应横线上) 11.如果单项式6m x y 和33yx 是同类项,则m =__________.【答案】3【解析】【分析】根据同类项的定义直接可求解.【详解】解:∵6mx y 和33yx 是同类项 ∴m=3故答案为:3.【点睛】本题考查的知识点是同类项的定义,在这里需要注意的是所有常数项都是同类项.12.在千年府衙前回味历史,在石板巷里品味静谧,在骑楼下享受慢时光.没有喧嚣的车流,多了闲适的脚步——这就是漳州古城.2018年,前来漳州古城的游客人次超过1700000.其中1700000用科学记数法表示为__________.【答案】61.710⨯【解析】【分析】科学记数法的表示形式为a 10n ⨯的形式,其中0a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:61700000 1.710=⨯故答案为:61.710⨯.【点睛】本题考查的知识点是用科学记数法表示较大的数,需要注意的是当原数的绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.13.五边形共有______________条对角线.【答案】5【解析】【分析】根据多边形的对角线与边的关系,即可求解.【详解】解:∵n 边形共有(3)2n n - 条对角线, ∴五边形共有5(53)2-=5 ∴答案为5. 【点睛】本题考查了多边形的边数与对角线条数的关系,熟记多边形的边数与对角线的关系式(3)2n n -(n 为多边形的边数)是解决此类问题的关键.14.如图是方程313142x x -+-=的求解过程,其中依据等式的基本性质的步骤有__________.(填序号)【答案】①③⑤【解析】【分析】根据等式的基本性质直接判断即可得出答案.基本性质如下:等式两边同时加上(或减去)同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立;等式具有传递性.【详解】解:①去分母,等式两边同时乘以4,依据等式的基本性质2;②去括号,依据去括号法则;③移项,依据等式的基本性质1;④合并同类项,依据合并同类项法则;⑤系数化为1,依据是等式的基本性质2.综上所述,据等式的基本性质的步骤有①③⑤.故答案为:①③⑤.【点睛】本题考查的知识点是等式的基本性质,根据解方程的一般步骤找出所利用的等式性质是解题的关键.15.对某中学同年级70名男生的身高进行了测量,得到一组数据,其中最大值是183cm,最小值是146cm,对这组数据进行整理时,确定它的组距为5cm,则至少应分__________组.【答案】8【解析】【分析】根据组数的计算公式即可得出答案.组数=(最大值-最小值) 组距,计算结果为小数或分数时,用进一法来确定组数.【详解】解:∵1831467.45-= ∵计算结果为小数,我们利用进一法来确定组数,因此组数为8.故答案为:8.【点睛】本题考查的知识点是组数的计算,此类题目要根据题意找出样本数据的最大值和最小值,结合组距,利用公式来求解.16.已知关于x 的一元一次方程13102020x x m +=+的解为3x =-,那么关于y 的一元一次方程1(21)310(21)2020y y m •++=++的解为__________. 【答案】-2【解析】【分析】设2y+1=x ,再根据题目中关于x 的一元一次方程的解确定出y 的值即可.【详解】解:设2y+1=x ,则关于y 的方程化为:13102020x x m +=+, ∴2y +1=x=-3∴y=-2故答案为:-2.【点睛】本题考查的知识点是解一元一次方程,若关于x 、y 的方程毫无关系,一般是将x 的解代入关于x 的方程求出m 值,再代入关于y 的方程,求出y 的值. 三、解答题:共9题,满分86分.请在答题卡的相应位置作答17.计算:111()(36)4612--⨯- 【答案】0【解析】【分析】根据有理数的混合运算法则进行求解即可.可运用乘法的分配律来简便运算. 【详解】解:原式111(36)(36)(36)4612=⨯--⨯--⨯- 963=-++0=【点睛】本题考查的知识点是有理数的混合运算,灵活运用乘法的分配率或结合律可使计算简便化.18.化简求值:22223(2)2(2)a ab b a ab b -+--+,其中2a =,1b =-【答案】224a ab b --+,2【解析】【分析】首先去括号,然后合并同类项,最后代入已知数据计算即可求解.【详解】解:原式2222336422a ab b a ab b =-+-+-224a ab b =--+当2a =,1b =-时,原式2222(1)4(1)=--⨯-+⨯- 424=-++2=【点睛】本题考查的知识点是代数式的化简求值,熟练运用去括号法则、合并同类项法则是解题的关键. 19.为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级良好;C 级及格;D 级不及格),并将测试结果绘制成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题.(1)本次抽样测试的学生人数是 .(2)图1中∠α的度数是多少度?并直接把图2条形统计图补充完整;(3)该县九年级学生3500名,如果全部参加这次中考体育科目测试,请你估计不及格人数多少人?【答案】(1)40;(2)14 ,图见解析;(3)700【解析】试题分析:(1)根据B级有14人占抽样总学生数的35%,求抽样总人数;(2)由∠α=1640×360°得了角度,C级人数为:总人数-A级人数-B级人数-D级人数;(3)估计3500人中的不及格的人数:3500 抽样样本的不及格率;试题解析:解:(1)本次抽样的人数是14÷35%=40(人),故答案是:40;(2)∠α=1640×360°=144°,C级的人数是40﹣16﹣14﹣2=8(人),故答案是:144.;(3)估计不及格的人数是3500×240=175(人),故答案是:175.20.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【答案】共有7人,这个物品的价格是53元.【解析】【分析】根据题意,找出等量关系,列出一元一次方程.【详解】解:设共有x 人,这个物品的价格是y 元,83,74,x y x y -=⎧⎨+=⎩解得7,53,x y =⎧⎨=⎩ 答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程的应用.21.某公司6天内货品进出仓库的吨数如下,其中正数表示进库的吨数:+31,-32,-16,+35,-38,-20.(1)经过这6天,仓库里的货品是_________(填“增多了”或“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨? (3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?【答案】(1)减少了;(2) 6天前仓库里有货品500吨;(3)这6天要付860元装卸费.【解析】【分析】(1)将6天进出仓库的吨数相加求和即可,结果为正则表示增多了,结果为负则表示减少了;(2)结合上问答案即可解答;(3)计算出所有数据的绝对值之和,然后根据进出的装卸费都是每吨5元进行计算.【详解】(1)+31-32-16+35-38-20=-40(吨),∵-40<0,∴仓库里的货品减少了.答:减少了.(2)+31-32-16+35-38-20=-40(吨),即经过这6天仓库里的货品减少了40吨.所以6天前仓库里有货品,460+40=500(吨).答:6天前仓库里有货品500吨.(3)|+31|+|-32|+|-16|+|+35|+|-38|+|-20|=172(吨),172×5=860(元).答:这6天要付860元装卸费.【点睛】本题考查了正数和负数表达相反意义量的意义.22.已知线段AB 和线段a ,延长线段AB 至点C ,使2BC a =,延长BA 至点D ,使点B 是CD 的中点.(1)用尺规作出图形,并标出相应的字母;(保留作图痕迹,不写作法)(2)若1AB =, 1.5a =,求AD 的长.【答案】(1)见解析;(2)2【解析】【分析】(1)根据尺规作图的方法直接作图即可(2)根据(1)中所作图形,可得出BC=BD=2a=3,AD=BD-AB 即可得出答案.【详解】解:(1)∴点C ,点D 为所求作的点(2)∵ 1.5a =∴23BC a ==∵B 是CD 的中点∴3BD BC ==∵1AB =∴312DA BD AB =-=-=【点睛】本题考查的知识点是简单的尺规作图,比较基础,结合所画图形便可找出各线段的关系. 23.我们规定:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”. 例如:方程24x =-的解为2x =-,而242-=-+,则方程24x =-为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程5x m =是“和解方程”,求m 的值;(2)已知关于x 的一元一次方程3x mn n -=+是“和解方程”,并且它的解是xn =,求m ,n 的值. 【答案】(1)254-;(2)4m =-;34n =- 【解析】【分析】(1)根据和解方程定义,将x=5m +代入方程求解即可,(2)根据和解方程定义,将x=mn n 3+-和x n =代入方程求解即可.【详解】解:(1)∵关于x 的一元一次方程5x m =是“和解方程”,∴5m +是方程5x m =的解.∴()55m m += ∴25m 4=-. (2)∵关于x 的一元一次方程3x mn n -=+是“和解方程”,∴mn n 3+-是方程3x mn n -=+的解.又∵x n =是它的解,mn n 3n +-=.∴mn 3=.把x n =代入方程,得3n mn n -=+.∴3n 3n -=+.∴4n 3-=.3n 4=-. ∴m 4=-.【点睛】本题考查了一元一次方程的求解,和解方程的定义,中等难度,理解和解方程的定义,将解代入方程求解是解题关键.24.在学习《展开与折叠》这一课时,老师让同学们将准备好的正方体或长方体沿某些棱剪开,展开成平面图形.其中,阿中同学不小心多剪了一条棱,把一个长方体纸盒剪成了图①、图②两部分.根据你所学的知识,回答下列问题:(1)阿中总共剪开了几条棱?(2)现在阿中想将剪断的图②重新粘贴到图①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,他有几种粘贴方法?请在图①上画出粘贴后的图形(画出一种即可);(3)已知图③是阿中剪开的图①的某些数据,求这个长方体纸盒的体积.12cm【答案】(1)8条;(2)有4种粘贴方法,图形见解析;(3)这个长方形纸盒的体积为3【解析】【分析】(1)长方体共有12条棱,图①中未剪的棱有4条,由此可得出剪开的棱数;(2)根据长方体的展开图直接复原即可,注意两个相对面中间要隔一个面;(3)直接设长方体的高为x,则根据图中数据可得出长、宽的代数式,从而解得x的值,再求体积即可.【详解】解:(1)12-4=8(条)因此,阿中总共剪开了8条棱.(2)有4种粘贴方法.如图,四种情况:(3)设高为x cm ,则宽为(4)x -cm ,长为[7(4)](3)x x --=+cm∴4(3)8x ++=解得:1x =∴体积为:3(31)(41)112cm +⨯-⨯=答:这个长方形纸盒的体积为312cm .【点睛】本题考查的知识点是简单几何体的展开图,主要考查学生的空间想象能力,掌握几何体展开图的特征是解题的关键.25.一副三角尺按照如图所示摆放在量角器上,边AB 与量角器0刻度线重合,边AE 与量角器180刻度线重合,将三角尺ABC 绕量角器中心点A 以每秒3的速度顺时针旋转,当边AB 与180刻度线重合时停止运动.设三角尺ABC 的运动时间为t 秒.(1)当AC 平分BAD ∠时,求t 的值;(2)若三角尺ABC 开始旋转的同时,三角尺ADE 也绕点A 以每秒1的速度逆时针旋转.当三角尺ABC 停止旋转时,三角尺ADE 也停止旋转.①当AD 平分BAC ∠时,求t 的值;②在旋转过程中,是否存在某一时刻,使得4BAE CAD ∠=∠?若存在,请求出t 的值;若不存在,请说明理由.【答案】(1)t=5;(2)①26.25t =;②存在,当t 为10秒或24秒时,4BAE CAD ∠=∠,理由见解析【解析】【分析】(1)由已知条件可得出BAC 60∠=︒,DAE 45∠=︒,AC 平分BAD ∠,则BAD 120∠=︒进而得出三角形旋转过的度数,再除以旋转速度即可得解.(2)①由已知条件BAD 30∠=︒,△ABC 旋转的度数180BAD DAE ∠=︒---△DAE 旋转的度数,求解即可;②分两种情况讨论,AC 在AD 的左侧和AC 在AD 的右侧,再根据旋转分别用含t 的式子求出BAE ∠、CAD ∠,再列等式求t 值即可.【详解】解:(1)如图①,∵AC 平分BAD ∠,且60BAC ∠= ∴11202BAD BAC ∠=∠= 由旋转可知:318012045t =--。

北师大版七年级上学期数学《期末考试卷》及答案

北师大版七年级上学期数学《期末考试卷》及答案
A.95元B.90元C.85元D.80元
二.填空题(共7小题)
11.多项式 次数是______.
12.如果x=2是关于x 方程 x﹣a=1的解,那么a的值是_____.
13.A为数轴上表示2的点,将点A沿数轴向左平移5个单位到点B,则点B所表示的数的绝对值为_____.
14.由若干个相同的小立方体搭成的几何体三视图如图所示,则搭成这个几何体的小立方体的个数是_____.
∴买4个足球、7个篮球共需要(4m+7n)元.
故选A.
[点睛]注意代数式的正确书写:数字写在字母的前面,数字与字母之间的乘号要省略不写.
6.已知线段AB=10cm,C为直线AB上的一点,且BC=4cm,则线段AC=()
A.14cmB.6cmC.14cm或6cmD.7cm
[答案]C
[解析]
[分析]
根据点C在直线AB上,可分两种情况,即点C在点B的左侧和右侧,分别计算即可.
故选A.
考点:几何体的展开图.
5.买一个足球需要m元,买一篮球需要n元,则买4个足球和7个篮球共需要多少元()
A.4m+7nB.28mnC.7m+4nD.11mn
[答案]A
[解析]
[分析]
根据题意可知4个足球需4m元,7个篮球需7n元,故共需(4m+7n)元.
[详解]∵一个足球需要m元,买一个篮球需要n元.
3.下列运算中,正确的是()
A.(-2)+(+1)=-3B.(-2)-(-1)=-1
C.(-2)×(-1)=-2D.(-2)÷(-1)=-2
[答案]B
[解析]
A.(-2)+(+1)=-1,故A选项错误;B.(-2)-(-1)=-1,正确;C.(-2)×(-1)=2,故C选项错误;D.(-2)÷(-1)=2,故D选项错误,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册期末试卷及答案(考试时间100分钟,试卷满分100分)一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号直接填写在试卷相应位置上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是 A .()21-B .21-C .()31- D .1--2.已知水星的半径约为24400000米,用科学记数法表示为( )米A .80.24410⨯ B .61044.2⨯ C .71044.2⨯ D .624.410⨯ 3.下列各式中,运算正确的是A .3a 2+2a 2=5a 4B .a 2+a 2=a 4C .6a -5a =1D .3a 2b -4ba 2=-a 2b4.如图所示几何体的左视图是5.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③180°-∠α;④12(∠α-∠β).正确的是: A .①②③④B .①②④C .①②③D .①②6.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是103,则m 的值是 A .9B .10C .11D .12二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.已知∠A =30°36′,它的余角 = . 8.如果a -3与a +1互为相反数,那么a = . 9.写出所有在652- 和1之间的负整数: . 10.如果关于x 的方程2x +1=3和方程032=--xk 的解相同,那么k 的值为________.11.点C 在直线AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点, 则线段MN 的长为 .12.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm”和“8cm”分别对应数轴上的-3和x ,那么x 的值为 .13.|x -3|+(y +2)2=0,则y x 为 .14.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .15.一个正方体的平面展开图如图,已知正方体相对两个面上的数之和为零,则a+b = .16.小明同学在某月的日历上圈出2×2个数(如图),正方形方框内的4个数的和是28,那么这4个数是三、解答题(本大题共9小题,共68分.请在试卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本题8分)计算: (1)9+5×(-3)-(-2)2 ÷ 4; (2)()()14-2-61-31-212⨯+⎪⎭⎫ ⎝⎛÷⎪⎭⎫⎝⎛ 18.(本题8分)解下列方程: (1)13421+=+x x ; (2)1612312-+=-x x . 19.(本题5分)先化简,再求值:)]2(23[25222b a ab abc b a abc -+--,其中a =21-,b =-1,c =3. 20.(本题6分)作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.21.(本题6分)在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为xcm,请用x来表示这个无盖长方体的容积;(2)当剪去的小正方体的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.22.(本题7分)如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(画图时保留痕迹)(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.23.(本题8分)如图,已知同一平面内∠AOB=90o,∠AOC=60o,(1)填空∠AOC= ;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60o改成∠AOC=2α(α<45o),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.24.(本题8分)我市为打造八圩港风光带,现有一段河道整治任务由A B 、两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,问A 工程队一共做了多少天? (1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下: 万颖:=++⨯x )241161(6161________ ; 刘寅:()1241161=⨯+y根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x y 、表示的意义,然后在,然后在方框中补全万颖、刘寅同学所列的方程:万颖:x 表示 ,刘寅:y 表示 ,万颖同学所列不完整的方程中的方框内该填 ,刘寅同学所列不完整的方程中的方框内该填 . (2)求A 工程队一共做了多少天.(写出完整的解答过程) 25.(本题10分)已知:线段AB=20 cm .(1)如图1,点P 沿线段AB 自A 点向B 点以2厘米/秒运动,点P 出发2秒后,点Q 沿线段BA 自B 点向A 点以3厘米/秒运动,问再经过几秒后P 、Q 相距5cm?(2)如图2:AO=4 cm , PO=2 cm , ∠POB=60o ,点P 绕着点O 以60度/秒的速度逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P 、Q 两点能相遇,求点Q 运动的速度 .参考答案一、选择题 ACDD BB 二、填空题7.59o 24′ 8.1 9.-2,-1 10.7 11.7cm 戓1cm 12.5 13.-8 14.870 15.-1 16.3,4,10,11 三、解答题17.(1)解:原式=9+(-15)-1 (2分)= -7(4分) (2)解:原式=()()()14-46-31-6-21⨯+⨯⨯=-3+2-56…………………3分 =-57 …………………4分 或原式=()()14-46-61⨯+⨯= -1-56=-57…………………4分 18.(1)解:去分母得 3(x+1)=8x+6………………………………1分 去括号、移项、合并同类项,得 -5x=3………………………………2分 系数化为1,得 x=53-. ………………………………4分 (2)解:去分母得 2(2x-1)=(2x+1)-6………………………………1分 去括号、移项、合并同类项,得 2x=-3………………………………2分 系数化为1,得 x=23-. ………………………………4分 19.解:原式=]243[25222b a ab abc b a abc -+-- (1分) = b a ab abc b a abc 22224325+--- (2分) = 242ab abc - (3分) 当a =21-,b =-1,c =3时. 原式= 2)1()21(43)1()21(2-⨯-⨯-⨯-⨯-⨯ (4分) =23+ =5 (5分) 20.(各2分)1121.(1)容积:2)216(x x - ……………3分(2)当x=3时,容积为300cm 3……………4分 当x=3.5时,容积为283.5 cm 3……………5分答 当剪去的小正方形的边长为3cm 时,无盖长方体的容积大些.……………6分 22.(1)画角平分线(2分),画平行线(3分),画垂线 (4分) (2)AE=ED (5分) (3)DF<DE , (6分)理由:直线外一点和直线上各点连接的所有线段中,垂线段最短.(7分) 23.(1)150° ………………………1分 (2)45° ………………………3分 (3)解:因为∠AOB =90°,∠AOC =2α 所以∠BOC =900+2α因为OD 、OE 平分∠BOC ,∠AOC 所以∠DOC =21∠BOC =45o +α,∠CO E=21∠AOC =α ……6分 所以∠DO E=∠DOC -∠CO E=450 ……8分 说明:其他解法参照给分.24.(1)x 表示A 、B 合做的天数(或者B 完成的天数);y 表示A 工程队一共做的天数; 1 ; y-6 . (每空1分共4分) (2)解:设A 工程队一共做的天数为y 天,由题意得:=-+)6(241161y y 1 …………………6分 解得y=12答:A 工程队一共做的天数为12天. ……8分 用另一种方法类似得分.(2)解答不完整只有答案扣2分. 25.解:(1)设再经过t s 后,点P 、Q 相距5cm , ①P 、Q 未相遇前相距5cm ,依题意可列223205t t +-()+=, 解得,t =115……2分 ②P 、Q 相遇后相距5cm ,依题意可列223205t t ++()+=, 解得,t =215……4分 答:经过115s 或215s 后,点P 、Q 相距5cm . 解:(2)点P ,Q 只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为12060=2s或120180560s += ……6分设点Q 的速度为y m/s ,当2秒时相遇,依题意得,2y 20218-==,解得y =9 当5秒时相遇,依题意得,5y 20614-==,解得y 2.8= 答:点Q 的速度为9m /s 2.8m /s 或. …………8 分 若只有一解得5分.。

相关文档
最新文档