基于可重定位分区分配算法的内存管理的设计与实现

合集下载

《操作系统》试题库-判断题

《操作系统》试题库-判断题

1、以批处理方式和交互方式控制作业运行都需要注册(LOGON)。

(×)批处理方式是按用户使用作业控制语言书写的。

作业说明书控制作业运行,不需注册。

或交互方式控制作业运行需要注册。

2、早期的批处理系统中,用户可以用交互式方式方便地使用计算机。

(×)3、分时系统中,时间片越小越好。

(×)当时间片过小时,进程调度时间所占比重加大。

4、作业控制语言是供用户编写程序以实现某项计算任务。

(×)作业控制语言是供书写作业说明书的,以控制作业的执行(不同于编程语言)。

5、对批处理作业,运行时不须提供相应的作业控制信息。

……………………………(×)6、联机用户接口是指用户与操作系统之间的接口,它不是命令接口。

………………(×)7、操作系统是系统软件中的一种,在进行系统安装时可以先安装其它软件,然后再装操作系统。

(×)8、SPOOLing系统实现设备管理的虚拟技术,即:将独占设备改造为共享设备,它由专门负责I/O的常驻内存的进程以及输入、输出井组成。

(√)9、批处理系统的(主要优点)是系统的吞吐量大、资源利用率高、系统的开销较小。

(√)10、(Windows 98操作系统)是支持多任务的操作系统。

(√)11、原语是一种不可分割的操作。

(√)12、交互式作业也称为脱机用户作业。

(×)改正:“脱机”改为“联机”13、用户程序有时也可以在核心态下运行. (×)14、实时系统中的作业周转时间有严格的限制. (×)15、执行系统调用时可以被中断. (√)16、原语和系统调用的主要区别在于两者的实现方法不同. (×)17、在大型多道程序设计系统中, 为充分利用外部设备, 应使运行的若干程序都是I/O型的.(√)18、设置中断屏蔽指令可以在目态下执行. (×)19、MS-DOS是一种多用户操作系统。

(×)20、在UNIX系统中,因为有SPOOLING技术存在,用户无法做真正的联机打印输出。

国开电大 操作系统 形考作业1-3答案

国开电大 操作系统 形考作业1-3答案

国开电大操作系统形考作业1-3答案文章中未出现段落格式错误或明显有问题的部分。

1.操作系统属于系统软件,其基本职能是控制和管理系统内各种资源,有效地组织多道程序的运行。

操作系统对缓冲区的管理属于设备管理的功能。

操作系统内核与用户程序、应用程序之间的接口是系统调用。

2.UNIX操作系统核心层的实现结构设计采用的是层次结构。

UNIX命令的一般格式是命令名[选项][参数]。

工业过程控制系统中运行的操作系统最好是实时系统。

3.进程控制块是描述进程状态和特性的数据结构,一个进程只能有唯一的进程控制块。

程序是静态概念,进程是动态概念。

两个进程合作完成一个任务,在并发执行中,一个进程要等待其合作伙伴发来信息,或者建立某个条件后再向前执行,这种关系是进程间的同步关系。

两个进程争夺同一个资源不一定死锁。

若干进程因竞争资源而无休止地循环等待着,而且都不释放已占有的资源,是系统出现死锁的原因。

4.进程从运行状态变为阻塞状态的原因是输入或输出事件发生。

如果信号量S的值是0,此时进程A执行P(S)操作,那么,进程A会进入阻塞态,让出CPU。

若P、V操作的信号量S初值为2,当前值为-1,则表示有1个等待进程。

5.批处理系统的主要缺点是失去了交互性。

为了描述进程的动态变化过程,采用了一个与进程相联系的进程控制块,根据它而感知进程的存在。

为用户分配主存空间,保护主存中的程序和数据不被破坏,提高主存空间的利用率,是存储管理的功能。

实时操作系统追求的目标是快速响应。

6.该操作系统应该是分时系统,以使系统中所有的用户都能得到及时的响应。

系统调用是由操作系统提供的内部调用,它只能通过用户程序间接使用。

一个进程可以包含多个线程,这样可以更好地利用系统资源,提高系统的并发性和响应速度。

因此,引入线程的好处包括:提高系统的并发性、提高系统的响应速度、更好地利用系统资源、提高程序的可靠性和可维护性等。

进程状态的转换包括:从创建到就绪、从就绪到运行、从运行到阻塞、从阻塞到就绪、从运行到结束。

《操作系统原理》课程标准

《操作系统原理》课程标准

理、动态链接和共享的概念;掌握存储体系的概念、存储管理的任务、页式 存储管理和段式存储管理的实现原理和地址变换、虚拟存储技术、页面置换 算法; 7 8 9 10 了解设备分类、I/O 系统;理解缓冲技术和 Spooling 系统及磁盘调度算法; 掌握 I/O 控制方式、设备分配技术; 了解文件的概念、文件系统的主要操作、文件系统的安全性;理解文件系统 的功能;掌握文件及其分类、文件的逻辑结构和物理结构的概念,文件、目 录及目录结构; 理解外存的组织形式、文件存储空间的管理方法; 理解联机命令接口、命令解释程序;掌握 Shell 命令语言、系统调用;
(2)知识目标 序号 1 2 3 4 5 6 知 识 目 标
掌握操作系统基本概念、特征、类型、功能和组织结构; 理解程序的并发执行及其特征;掌握多道程序设计、并发、进程的概念、进 程的状态及其转换、进程控制原语; 理解临界资源、临界区概念、信号量机制、PV 操作及其应用、进程间的通 信;掌握进程的同步与互斥实现方法;了解进程通信、线程的概念; 掌握作业调度和进程调度算法、理解处理机调度的层次; 掌握死锁的概念与必要条件、死锁的预防与避免、资源分配图; 了解分区管理方案、段页式存储管理、覆盖技术;理解交换技术、局部性原
模 概论 用户接口 进程管理 处理机调度与死锁 进程同步 存储管理 设备管理 文件管理 磁盘存储器管理 综合 合计 3、能力训练项目设计



学 时 4 4 6 6 6 8 6 6 4 2 52
根据模块内容,可将多个单元的训练要求综合考虑,设计内含多个训练任务的、具有 平行、递进关系或包含关系的一级训练项目。训练的形式包扩示范讲解,课堂练习和课外作 业。
2、课程内容设计 (1)设计的整体思路:主要内容以操作系统的功能为单位组织教学模块,兼顾篇幅进 一步细分。各模块内容相对独立,以利学习进度的控制。针对本课程理论性强、概念繁多、 知识面广的特点,各单元的学习从提出实际问题开始,引出相应的概念,介绍解决问题的方 法和技术, 并在讲授中对理论概念辅以相应的练习以加深理解和融会贯通。 据此将课程划分 为下列模块。 (2)模块设计表:

电大计算机本科《操作系统》作业及答案

电大计算机本科《操作系统》作业及答案

《操作系统》课程作业(四)姓名班级学号一、选择题(选择一个正确答案的代码填入括号中)1.通常,用户编写的程序中所使用的地址是()。

A.逻辑地址 B.物理地址2.3.4.5.6.调入其他所需数据,称为()。

A.覆盖技术B.对换技术C.虚拟技术D.物理扩充7.分区管理中进行分区的是主存的()。

A.系统区域 B.用户区域C.程序区域 D.整个区域8.分区管理要求对每一个作业都分配()的内存单元。

A.地址连续B.若干地址不连续C.若干连续的页面D.若干不连续的页面9.固定分区中各分区的大小是()。

A.相同的 B.相同或者不同,但预先固定10.11.12.A.绝对地址=界限寄存器值+逻辑地址B.绝对地址=下限寄存器值+逻辑地址C.绝对地址=基址寄存器值+逻辑地址D.绝对地址=块号 块长+页内地址13.最先适应分配算法把空闲区()A.按地址顺序从小到大登记在空闲区表中B.按地址顺序从大到小登记在空闲区表中C.按长度以递增顺序登记在空闲区表中D.按长度以递减顺序登记在空闲区表中14.最容易形成很多小碎片的可变分区算法是()。

A.最先适应算法 B.最佳适应算法C.位示图法 D.以上都不是15.16.17.18.19.虚拟存储器的容量是由计算机的地址结构决定的,若CPU有32位地址,则它的虚拟地址空间为()。

A.100K B.640K C.2G D.4G20.在请求分页虚拟存储管理中,若所需页面不在内存中,则会引起()。

A.输入输出中断 B.时钟中断C.越界中断 D.缺页中断21.下列存储管理方案中,不要求将进程全部调入并且也不要求连续存储空间的是()。

A.固定分区 B.可变分区C.页式存储管理 D.请求分页式存储管理22.存储管理中,页面抖动是指()。

23.1.2.3.固定分区存储管理的各分区的大小不可变化,这种管理方式不适合多道程序设计系统。

()4.可重定位分区存储管理可以对作业分配不连续的内存单元。

()5.采用动态重定位技术的系统,目标程序可以不经任何改动,而装入物理内存。

(实验6)基于动态分区分配的内存管理的模拟设计与实现

(实验6)基于动态分区分配的内存管理的模拟设计与实现

(实验6)基于动态分区分配的内存管理的模拟设计与实现实验6 内存的连续分配算法一.实验目的掌握内存的连续分配方式的各种分配算法二.实验内容本系统模拟操作系统内存分配算法的实现,实现固定分区和动态分区分配,算法,采用PCB定义结构体来表示一个进程,定义了进程的名称和大小,进程内存起始地址和进程状态。

内存分区表采用单链表来模拟实现。

三.实验题目基于动态分区分配的内存管理的模拟设计与实现四.实验要求1.定义与算法相关的数据结构,如PCB,空闲分区2.在使用动态分区分配算法时必须实现紧凑和对换功能3.武汉理工大学《操作系统》课程设计说明书14{ if(FFA(id,size)==OK) cout<<"分配成功!"<<<"分配失败!"< { if(BFA(id,size)==OK) cout<<"分配成功!"<<<"分配失败!"< { if(WFA(id,size)==OK) cout<<"分配成功!"<<<"分配失败!"<<="" }="">Show() { Node *cur=head->next; while(cur){ cout<<"***********************************"<<endl;< p=""> cout<<"区号:"; if(cur->data.ID==FREE) cout<<"无"<<data.ID<<<"起始地<="" p="">址:"<data.addr<<<"分区长<="" p="">度:"<data.size<<<"状态:";<="" p="">if(cur->data.state==BUSY) cout<<"已分配"<<<"未分配"<next; 武汉理工大学《操作系统》课程设计说明书 15 } } int main() { cout<<" 动态分区分配方式的模拟"<<endl;< p="">cout<<"********************************************"<<endl; < p="">cout<<"请输入内存大小(KB):"; cin>>area; while(area<=0){ cout<<"输入错误,请重新输入内存大小(KB)"; cin>>area; } while(1){ cout<<"********************************************"<<endl ;< p="">cout<<"** 1.FFA 2.BFA 3.WFA 0.EXIT **"<<endl;< p="">cout<<"********************************************"<<endl; < p="">cout<<"请选择:"; int ch; cin>>ch; if(ch==0) { break; } Init(area); int choice; while(1) { cout<<"********************************************"<<end< p="">l; cout<<"** 1.分配 2.回收 3.查看0.退出**"<<endl;< p="">cout<<"********************************************"<<endl; < p="">cout<<"请输入您的操作:"; cin>>choice; if(choice==1) { cout<<"请输入进程个数"; int num; cin>>num;for(;num>0;num--) { Assign(ch); // 分配内存} 武汉理工大学《操作系统》课程设计说明书 16 } elseif(choice==2) // 内存回收 { int ID; cout<<"请输入您要释放的分区号:"; cin>>ID; Free(ID); } elseif(choice==3) Show();//显示主存else if(choice==0) break;else //输入操作有误{ cout<<"输入有误,请重试!"<<endl;< p="">continue; } } } return 0; }4.</endl;<> </endl;<> </endl;<> </end<> </endl;<> </endl;<> </endl;<> </endl;<> </endl;<> </endl;<>。

4.10 可重定位分区分配

4.10  可重定位分区分配

多重分区分配
6.分区的保护
为了防止一个作业有意或无意地破坏操作系统或其它作 业。一般说来,没有硬件支持,实现有效的存储保护是困难的。 通常采取: 界限寄存器方式


保护键方式
两种措施,或二者兼而有之。
保护过程----防止地址越界
一般由硬件提供一对寄存器: 基址寄存器:存放起始地址 限长寄存器:存放长度 (上界寄存器/下界寄存器)
CH4.10 可重定位分区分配
4.10 可重定位分区分配
1. 动态重定位的引入
图 4-3-1 紧凑的示意
2. 动态重定位的实现
图 4-3-2 动态重定位示意图
3. 动态重定位分区分配算法
图 4-3-3 动态分区分配算法流程图
4.可重定位分区的优缺点
优点:解决了可变分区分配所引入的“外零头” 问题。消
1)界限寄存器保护
如果60K > 访问地址 访问地址 > =124K则产生 访问地址界中断
2)基址、限长寄存器保护
如果相对地址 > 限长寄存器的值则产生访问 地址界中断
防止操作越权
对于允许多个进程共享的存储区域,每个进程都有
自己的访问权限。如果一个进程对共享区域的访问违反
了权限规定,则发生操作越权,即读写保护。
除内存碎片,提高内存利用率。
缺点:提高硬件成本,紧凑时花费CPU时间。
5.多重分区
以上讨论都是基于一个作业在主存中占据的是一个连续
分区的假定。
为了支持结构化程序设计,操作系统往往把一道作业分 成若干片段如子程序、主程序、数据组等)。这样,片段之 间就不需要连续了。 只要增加一些重定位寄存器,就可以有效地控制一道作 业片段之间的调用。 如下图作业A、B分别被分成两个片段放进互不相连的 区域中。由两个变址寄存器实现控制。

基于可重定位分区分配算法的内存管理的设计与实现

基于可重定位分区分配算法的内存管理的设计与实现

组号成绩计算机操作系统课程设计报告题目基于可重定位分区分配算法的存管理的设计与实现专业:计算机科学与技术班级:学号+:指导教师:2016年12月23 日一.设计目的掌握存的连续分配方式的各种分配算法二.设计容基于可重定位分区分配算法的存管理的设计与实现。

本系统模拟操作系统存分配算法的实现,实现可重定位分区分配算法,采用PCB定义结构体来表示一个进程,定义了进程的名称和大小,进程存起始地址和进程状态。

存分区表采用空闲分区表的形式来模拟实现。

要求定义与算法相关的数据结构,如PCB、空闲分区;在使用可重定位分区分配算法时必须实现紧凑。

三.设计原理可重定位分区分配算法与动态分区分配算法基本上相同,差别仅在于:在这种分配算法中,增加了紧凑功能。

通常,该算法不能找到一个足够大的空闲分区以满足用户需求时,如果所有的小的空闲分区的容量总和大于用户的要求,这是便须对存进行“紧凑”,将经过“紧凑”后所得到的大空闲分区分配给用户。

如果所有的小空闲分区的容量总和仍小于用户的要求,则返回分配失败信息四.详细设计及编码1.模块分析(1)分配模块这里采用首次适应(FF)算法。

设用户请求的分区大小为u.size,存中空闲分区大小为m.size,规定的不再切割的剩余空间大小为size。

空闲分区按地址递增的顺序排列;在分配存时,从空闲分区表第一个表目开始顺序查找,如果m.size≥u.size且m.size-u.size≤size,说明多余部分太小,不再分割,将整个分区分配给请求者;如果m.size≥u.size且m.size-u.size>size,就从该空闲分区中按请求的大小划分出一块存空间分配给用户,剩余的部分仍留在空闲分区表中;如果m.size<u.size则查找下一个空闲分区表项,直到找到一个足够大的空闲分区;如果没有找到一个足够大的存空闲分区,但所有的小的空闲分区的容量总和大于用户的要求,就进行紧凑,将紧凑后得到的大的空闲分区按上述的方式分配给用户;但如果所有的小的空闲分区的容量总和仍不能满足用户需要,则分配失败。

可变分区存储管理的内存分配算法模拟实现----最佳适应算法 -回复

可变分区存储管理的内存分配算法模拟实现----最佳适应算法 -回复

可变分区存储管理的内存分配算法模拟实现----最佳适应算法-回复可变分区存储管理是一种常用的内存分配算法,用于管理计算机系统中的内存空间。

其中,最佳适应算法是其中一种经典的实现方式。

本文将围绕最佳适应算法展开,详细介绍其原理、实现方法以及优缺点。

首先,我们需要明确什么是可变分区存储管理。

在计算机系统中,内存是被划分为多个可用的分区,每个分区有不同的大小。

当一个程序需要内存时,系统会选择一个适合该程序大小的分区进行分配。

使用可变分区存储管理算法,系统可以灵活地分配和回收内存,并提高内存的利用率。

最佳适应算法是可变分区存储管理中的一种常用算法。

其核心思想是始终选择最小但足够容纳所需内存的分区进行分配。

这样可以最大程度地减少内存碎片的产生,提高系统内存利用率。

下面我们将一步一步来模拟实现最佳适应算法。

首先,我们需要创建一个数据结构来表示内存分区。

我们可以使用一个链表来存储每个分区的信息,每个节点包含分区的起始地址、结束地址和大小。

初始时,整个内存空间被视为一个大的可用分区。

接下来,当一个程序需要内存时,我们需要遍历整个分区链表,找到一个大小不小于所需内存的最小分区。

我们可以使用一个变量来记录当前找到的最小分区的大小,以及一个指针来指向该分区节点。

在遍历过程中,如果找到一个分区的大小恰好等于所需内存,那么直接分配给程序,并将该节点从链表中删除即可。

如果找到的分区的大小大于所需内存,我们需要进行分割操作。

即将该分区分成两个部分,一个部分分配给程序,另一个部分保留未分配状态,并将其添加到链表中。

同时,我们需要更新原有分区节点的起始地址和大小。

最后,当一个程序终止并释放内存时,我们需要将该内存块归还给系统,并进行合并操作。

即将释放的内存块与相邻的空闲内存块进行合并,以减少内存碎片。

通过以上步骤,我们可以实现最佳适应算法来管理内存分配。

但是,最佳适应算法也有其优缺点。

首先,最佳适应算法相对于其他算法来说,可以更好地减少内存碎片的产生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组号成绩计算机操作系统课程设计报告题目基于可重定位分区分配算法的内存管理的设计与实现专业:计算机科学与技术班级:学号+:指导教师:2016年12月23 日一.设计目的掌握内存的连续分配方式的各种分配算法二.设计内容基于可重定位分区分配算法的内存管理的设计与实现。

本系统模拟操作系统内存分配算法的实现,实现可重定位分区分配算法,采用PCB定义结构体来表示一个进程,定义了进程的名称和大小,进程内存起始地址和进程状态。

内存分区表采用空闲分区表的形式来模拟实现。

要求定义与算法相关的数据结构,如PCB、空闲分区;在使用可重定位分区分配算法时必须实现紧凑。

三.设计原理可重定位分区分配算法与动态分区分配算法基本上相同,差别仅在于:在这种分配算法中,增加了紧凑功能。

通常,该算法不能找到一个足够大的空闲分区以满足用户需求时,如果所有的小的空闲分区的容量总和大于用户的要求,这是便须对内存进行“紧凑”,将经过“紧凑”后所得到的大空闲分区分配给用户。

如果所有的小空闲分区的容量总和仍小于用户的要求,则返回分配失败信息四.详细设计及编码1.模块分析(1)分配模块这里采用首次适应(FF)算法。

设用户请求的分区大小为u.size,内存中空闲分区大小为m.size,规定的不再切割的剩余空间大小为size。

空闲分区按地址递增的顺序排列;在分配内存时,从空闲分区表第一个表目开始顺序查找,如果m.size≥u.size且m.size-u.size≤size,说明多余部分太小,不再分割,将整个分区分配给请求者;如果m.size≥u.size且m.size-u.size>size,就从该空闲分区中按请求的大小划分出一块内存空间分配给用户,剩余的部分仍留在空闲分区表中;如果m.size<u.size则查找下一个空闲分区表项,直到找到一个足够大的空闲分区;如果没有找到一个足够大的内存空闲分区,但所有的小的空闲分区的容量总和大于用户的要求,就进行紧凑,将紧凑后得到的大的空闲分区按上述的方式分配给用户;但如果所有的小的空闲分区的容量总和仍不能满足用户需要,则分配失败。

(2)内存回收模块进行内存回收操作时,先随机产生一个要回收的进程的进程号,把该进程从进程表中中删除,它所释放的空闲内存空间插入到空闲分区表;如果回收区与插入点的前一个空闲分区相邻,应将回收区与插入点的前一分区合并,修改前一个分区的大小;如果回收区与插入点的后一个空闲分区相邻,应将回收区与插入点的后一分区合并,回收区的首址作为新空闲分区的首址,大小为二者之和;如果回收区同时与插入点的前、后空闲分区相邻,应将三个分区合并,使用前一个分区的首址,取消后一个分区,大小为三者之和。

(3)紧凑模块将内存中所有作业进行移动,使他们全都相邻接,把原来分散的多个空闲小分区拼接成一个大分区。

2.流程图3.代码实现#include<stdio.h>#include<stdlib.h>#include<time.h>#include<windows.h>#define TURE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2#define SIZE 15////////////////////////////进程表//////////////int ppNo=1; //用于递增生成进程号int pLength=0;struct PCB{int pNo; //进程号(名)int pSize; // 进程大小int pOccupy; // 实际占用的内存int pStartAddr; // 进程起始地址int pState; //进程状态};struct PCB pList[200];//////////////////空闲分区表部分///////////////typedef int Status;typedef struct emptyNode{ //空闲分区结构体int areaSize; //空闲分区大小int aStartAddr; //空闲分区始址struct emptyNode *next;}emptyNode,*LinkList;int ListDelete(struct PCB *pList,int i);//AAA/删除下标为i的进程void pSort(struct PCB *pList); //AAA/内存中的进程按始址递增排序void compact(LinkList &L,struct PCB *pList);//AAA/紧凑,内存中进程移动,修改进程数据结构;空闲分区合并,修改空闲分区表数据结构void amalgamate(LinkList &L); //AAA/回收后进行合并空闲分区void recycle(LinkList &L,struct PCB *pList); //AAA/回收,从进程表中删除进程,把释放出的空间插入到空闲分区链表中Status InitList(LinkList &L); //1AAA/构造一个新的有头节点的空链表L Status ClearList(LinkList &L); //2AAA/将链表L重置为空表Status ListInsert(LinkList &L,LinkList s1); //AAA/*****根据始址进行插入void DeleteElem(LinkList &L,int aStartAddr);//*****删除线性表中始址值为aStartAddr的结点void PrintList(LinkList L); //AAA/*****输出各结点的值void creatP(struct PCB *p); //AAA/初始化进程int search(LinkList &L,int pSize); //AAA/检索分区表,返回合适分区的首址int add(LinkList &L); //AAA/返回空闲分区总和void pListPrint(struct PCB *pList); //AAA/输出内存中空间占用情况void distribute(LinkList &L,struct PCB *process);int ListDelete(struct PCB *pList,int i)//AAA/删除下标为i的进程{for(;i<pLength-1;i++){pList[i]=pList[i+1];}pLength--;}//ListDeletevoid pSort(struct PCB *pList){ //AAA/内存中的进程按始址递增排序int i,j;struct PCB temp;for(i=0;i<pLength-1;i++){for(j=0;j<pLength-i-1;j++){if(pList[j].pStartAddr>pList[j+1].pStartAddr){temp=pList[j];pList[j]=pList[j+1];pList[j+1]=temp;}}}}//AAA/紧凑,内存中进程移动,修改进程数据结构;空闲分区合并,修改空闲分区表数据结构void compact(LinkList &L,struct PCB *pList){printf("进行紧凑\n");//1、进程移动,修改进程数据结构int i;pList[0].pStartAddr=0; //第一个进程移到最上面for(i=0;i<pLength-1;i++){pList[i+1].pStartAddr=pList[i].pStartAddr+pList[i].pOccupy;}//2、空闲分区合并,修改空闲分区表数据结构LinkList p=L->next,s;int sumEmpty=0;while(p!=NULL)//求空闲区总和{sumEmpty+=p->areaSize;p=p->next;}ClearList(L); //清空空闲分区表s=(LinkList)malloc(sizeof(emptyNode));s->aStartAddr=pList[pLength-1].pStartAddr+pList[pLength-1].pOccupy;s->areaSize=sumEmpty;ListInsert(L,s);printf("\n紧凑后的>>>>\n");pListPrint(pList);PrintList(L);}void amalgamate(LinkList &L){//AAA/回收后进行合并空闲分区LinkList p=L->next,q=p->next;while(q!=NULL){if(p->aStartAddr+p->areaSize==q->aStartAddr){p->areaSize+=q->areaSize;DeleteElem(L,q->aStartAddr);//删除被合并的结点q=p->next;}else{p=q;q=q->next;}}}//AAA/回收,从进程表中删除进程,把释放出的空间插入到空闲分区链表中void recycle(LinkList &L,struct PCB *pList){int index,delPNo,delPSize,delPOccupy,delPStartAddr;LinkList s;srand(time(0));index=rand()%pLength;delPNo=pList[index].pNo;delPSize=pList[index].pSize;delPOccupy=pList[index].pOccupy;delPStartAddr=pList[index].pStartAddr;printf("________________________________________________________________________________");printf("回收内存进程P%d: 始址:%d K 占用:%dKB\n",delPNo,delPStartAddr,delPOccupy);printf("\n回收后>>>>\n");ListDelete(pList,index);//pListPrint(pList);s=(LinkList)malloc(sizeof(emptyNode));s->areaSize=delPOccupy;s->aStartAddr=delPStartAddr;ListInsert(L,s);amalgamate(L);pListPrint(pList);//输出内存中空间占用情况PrintList(L);}///////////////////////////////////////////Status InitList(LinkList &L) //1AAA/构造一个新的有头节点的空链表L {LinkList s;L=(LinkList)malloc(sizeof(emptyNode)); //生成新节点(头结点)if(!L) return ERROR; //申请内存失败s=(LinkList)malloc(sizeof(emptyNode));s->areaSize=900;s->aStartAddr=0;L->next=s; //头节点的指针域指向第一个结点s->next=NULL;return OK;}//InitListStatus ClearList(LinkList &L) //2AAA/将链表L重置为空表{LinkList p,r;p=L->next; r=p->next;while(p!=NULL){free(p);if(r==NULL){p=NULL;}else{p=r;r=p->next;}}L->next=NULL;return OK;}//ClearList//AAA/*****根据始址进行插入Status ListInsert(LinkList &L,LinkList s1){LinkList r=L,p=L->next,s;//指针s=(LinkList)malloc(sizeof(emptyNode));s->areaSize=s1->areaSize;s->aStartAddr=s1->aStartAddr;if(p==NULL){L->next=s;s->next=NULL;}else{while(p!=NULL){if(s1->aStartAddr < p->aStartAddr){s->next=r->next;r->next=s;break;}r=p;p=p->next; //后移}if(p==NULL){r->next=s;s->next=NULL;}}return OK;}//ListInsert2void DeleteElem(LinkList &L,int aStartAddr)//*****删除线性表中始址值为aStartAddr的结点{LinkList p=L,q;while(p->next!=NULL){q=p->next;if(q->aStartAddr==aStartAddr){p->next=q->next;free(q);}elsep=p->next;}}//DeleteElem////////////////////////////////////////////////void PrintList(LinkList L)//AAA/*****输出各结点的值{printf("\n空闲分区情况: 始址\t 大小\n");LinkList p=L->next;while(p!=NULL){printf(" %d K\t%d KB\n",p->aStartAddr,p->areaSize);p=p->next;}printf("\n");}//PrintListvoid creatP(struct PCB *p){ //AAA/初始化进程int size;srand(time(NULL));size=rand()%7+1;size*=10;p->pNo=ppNo++;p->pSize=size;p->pOccupy=0;p->pStartAddr=0;p->pState=0;}int search(LinkList &L,int pSize){ //检索分区表,返回合适分区的首址 LinkList p=L->next;while(p!=NULL){if(p->areaSize>=pSize){return p->aStartAddr;}p=p->next;}return -1;//没有足够大的}int add(LinkList &L){ //返回空闲分区总和LinkList p=L->next;int sum=0;while(p!=NULL){sum+=p->areaSize;p=p->next;}return sum;}void pListPrint(struct PCB *pList){//AAA/输出内存中空间占用情况printf("\n进程分配情况: 进程\t 始址\t占用\n");for(int i=0;i<pLength;i++){printf(" P%d\t %d K\t%d KB\n",pList[i].pNo,pList[i].pStartAddr,pList[i].pOccupy);}}void distribute(LinkList &L,struct PCB *process){LinkList p=L->next;while(p!=NULL){if(p->areaSize>=process->pSize)break;p=p->next;}printf("%d KB < %d KB",process->pSize,p->areaSize);if(p->areaSize-process->pSize<=SIZE){//不用分割全部分配(直接删除此空闲分区结点)process->pStartAddr=p->aStartAddr; //进程始址变化process->pState=1; //进程状态process->pOccupy=p->areaSize; //进程实际占用内存为改空闲分区的大小pList[pLength++]= *process; //把进程加入进程列表printf(" 且%d KB - %d KB = %d KB < %d KB 则整区分配\n",p->areaSize,process->pSize,p->areaSize-process->pSize,SIZE);pSort(pList);printf("\n分配后>>>>\n");pListPrint(pList);//输出内存中空间占用情况DeleteElem(L,p->aStartAddr);}else{//分割分配process->pStartAddr=p->aStartAddr; //进程始址变化process->pState=1; //进程状态process->pOccupy=process->pSize; //进程实际占用内存为该进程的大小pList[pLength++]= *process; //把进程加入进程列表printf(" 且%d KB - %d KB = %d KB > %d KB 则划分分配\n",p->areaSize,process->pSize,p->areaSize-process->pSize,SIZE);pSort(pList); //进程排序printf("\n分配后>>>>\n");pListPrint(pList);//输出内存中空间占用情况//compact(L,pList);p->aStartAddr+=process->pSize; //空闲分区始址变化p->areaSize-=process->pOccupy; //空闲分区大小变化}}int main(){//0、创建一个进程,参数随机数方式产生struct PCB p;int i,num,dele,k,stAddr,flag;LinkList s,L;printf("********************************可重定位分区分配********************************");if(!InitList(L)) //初始化空闲分区表printf("创建表失败\n");while(1){srand(time(0));flag=rand()%100+1;if(flag%2==0){creatP(&p);//初始化进程printf("________________________________________________________________________________");printf("待装入作业:%d Size = %d KB\n",p.pNo,p.pSize);//1、请求分配size//2、检索空闲分区表(首次适应FF)PrintList(L);stAddr=search(L,p.pSize);//得到足够大的分区的始址,没有则返回-1if(stAddr==-1){//没有足够大的分区if(add(L)>=p.pSize){//空闲区总和足够大printf("没有足够大的空闲分区但空闲总和足够大\n");//紧凑compact(L,pList);//按动态分区方式分配distribute(L,&p);//compact(L,pList); //紧凑}else{ //空闲区总和不足printf("分配失败\n\n");}}else{//有足够大的distribute(L,&p);PrintList(L);//compact(L,pList); //紧凑}}else{//回收if(pLength>0){recycle(L,pList);//compact(L,pList); //紧凑}else{printf("无可回收内存!");}}system("pause");} //whilereturn 0;}4.结果及其相关分析图4.1分析:作业1大小为20KB。

相关文档
最新文档