操作系统内存管理
操作系统中的内存管理与文件系统原理

操作系统中的内存管理与文件系统原理操作系统是计算机系统中的关键组成部分,它负责管理计算机的资源,并提供给应用程序一个方便的运行环境。
其中,内存管理和文件系统原理是操作系统中的重要内容之一。
本文将就这两个方面进行探讨。
一、内存管理内存管理是操作系统中的核心任务之一,主要包括内存的分配、回收和保护。
下面将深入探讨内存管理的原理与实现。
1. 内存分配在操作系统中,内存分配主要分为静态分配和动态分配两种方式。
静态分配是指在程序加载时就确定了内存的分配情况,而动态分配则是动态地根据程序的运行需要进行内存的分配。
静态分配的优点是简单高效,但缺点是浪费内存资源。
动态分配虽然能够更高效地利用内存,但需要考虑内存碎片等问题。
常见的动态分配算法有首次适应算法、最佳适应算法和最坏适应算法等。
2. 内存回收内存回收是指在进程结束或释放内存时,将已经使用的内存空间释放给系统的过程。
在操作系统中,常见的内存回收机制有引用计数和垃圾回收等。
引用计数是一种简单且常用的内存回收机制,通过跟踪对象的引用数量来进行内存的回收。
当引用数量减为0时,表示该对象不再被使用,可以将其回收。
垃圾回收则是一种更复杂的内存回收机制,它通过扫描程序的堆内存,找出不再被使用的对象,并回收其占用的内存空间。
常见的垃圾回收算法有标记-清除算法、标记-整理算法和复制算法等。
3. 内存保护内存保护是指操作系统对内存空间的保护机制,以防止进程之间的干扰和非法访问。
在实现内存保护时,操作系统通常采用分段和分页的方式。
分段是将进程的地址空间划分为若干个段,每个段具有不同的权限,如只读、可写等。
这样可以有效地限制进程对内存空间的访问权限。
分页则是将进程的地址空间划分为固定大小的页,每个页都有相应的访问权限。
通过页表来映射进程的虚拟地址和物理地址,以实现内存的保护和地址转换。
二、文件系统原理文件系统是操作系统中用于管理文件和目录的机制。
文件系统的设计和实现涉及文件的组织、存储和管理等方面。
计算机操作系统存储管理

计算机操作系统存储管理计算机操作系统存储管理是指操作系统在运行过程中管理和控制计算机的存储资源的一种机制。
它负责分配和回收内存,以及保护和管理进程的内存访问权限。
存储管理是操作系统中的一个重要子系统,对系统的性能和稳定性具有重要影响。
本文将介绍计算机操作系统存储管理的基本原理、常见的存储管理技术以及其在实际应用中的作用。
一、存储管理的基本原理在计算机系统中,存储器扮演着重要的角色,它用于存储程序、数据和系统状态。
计算机操作系统存储管理的基本原理是将物理内存划分为多个逻辑区域,每个区域被分配给不同的程序或进程使用。
操作系统维护一个内存分配表,记录每个逻辑区域的使用情况,并根据请求进行内存分配与回收。
当进程创建时,操作系统将为其分配一定大小的内存,当进程终止时,操作系统会回收这些内存资源。
同时,存储管理还负责处理内存碎片问题,通过内存的动态分配与合并来最大化利用内存资源。
二、常见的存储管理技术1. 基于固定分区的存储管理技术基于固定分区的存储管理技术是最早的一种存储管理方法。
它将物理内存划分为若干固定大小的分区,每个分区只能分配给一个进程使用。
该方法简单直观,但由于分区的固定大小,会产生很多内存碎片,不利于内存的高效利用。
2. 基于可变分区的存储管理技术为了解决内存碎片问题,出现了基于可变分区的存储管理技术。
这种技术允许每个进程动态地申请和释放内存空间,分区的大小可以根据进程的需要进行调整。
它相对于固定分区的方法更加灵活,能够提高内存利用率,但也存在内存碎片问题。
3. 页式存储管理技术页式存储管理技术将物理内存和逻辑内存划分为固定大小的页块,进程的地址空间也被划分为相同大小的页。
通过将逻辑地址转换为物理地址,实现了逻辑内存与物理内存的映射。
该技术可以很好地解决内存碎片问题,并且方便创建和销毁进程,但需要额外的地址转换开销。
4. 段式存储管理技术段式存储管理技术将进程的逻辑地址空间划分为若干段,每个段具有不同的长度和属性。
计算机操作系统中的内存管理和虚拟化技术

计算机操作系统中的内存管理和虚拟化技术计算机操作系统是现代计算机体系结构中不可分割的组成部分。
内存管理和虚拟化技术是计算机操作系统的重要功能之一,它们在保证计算机系统性能和安全性方面发挥着重要作用。
一、内存管理技术内存管理技术是操作系统中实现内存资源的高效利用和保护的重要手段。
计算机系统中的内存被划分为多个逻辑单元,各个逻辑单元之间进行切换和管理,以实现多个进程或任务的并发执行。
1. 内存的划分内存划分是内存管理的第一步。
一般情况下,计算机系统将内存划分为操作系统区域和用户区域。
操作系统区域用于存放操作系统内核和相关数据结构,而用户区域用于存放用户程序和数据。
2. 内存映射内存映射是将逻辑地址转换为物理地址的过程。
操作系统通过地址映射表或页表,将逻辑地址映射到实际的物理地址,以实现程序的正确执行和内存的动态管理。
3. 内存分配与回收内存分配与回收是内存管理的核心功能。
操作系统通过内存分配算法,为进程分配内存空间。
而当进程终止或释放内存时,操作系统需要回收这些空间以供其他进程使用。
4. 内存保护内存保护是防止进程之间互相干扰的重要手段。
通过设定访问权限和限制资源的使用,操作系统可以确保每个进程仅能访问自己被分配到的内存空间,从而保护进程的安全性和稳定性。
二、虚拟化技术虚拟化技术是一种将物理资源抽象为逻辑资源,并为不同的用户或应用程序提供独立的逻辑环境的技术。
在计算机操作系统中,虚拟化技术主要包括虚拟内存和虚拟机技术。
1. 虚拟内存虚拟内存是一种将主存和辅助存储器组合使用的技术。
它通过将物理内存的一部分作为虚拟内存空间,将进程的一部分内容从内存转移到硬盘上,以提高内存的利用率和系统的吞吐量。
2. 虚拟机虚拟机技术是将一个物理计算机虚拟为多个逻辑计算机的技术。
通过虚拟化软件的支持,可以在一台物理机上同时运行多个操作系统和应用程序,实现资源的共享和隔离,提高计算机系统的利用率和灵活性。
虚拟化技术在云计算和服务器虚拟化中得到了广泛应用,它极大地提升了计算机系统的效率和灵活性,降低了资源的成本和能源消耗。
操作系统内存管理

操作系统内存管理操作系统内存管理是计算机操作系统中非常重要的一部分。
它负责管理计算机系统中的内存资源,确保内存的合理分配和使用,以提高系统的性能和效率。
本文将从内存管理的基本概念、内存分配算法、内存保护和虚拟内存等方面进行论述。
一、内存管理的基本概念内存管理是指操作系统对内存资源进行有效管理的过程。
它主要包括内存分配、内存回收和内存保护等方面。
内存分配是指在程序执行过程中,将需要的内存分配给相应的进程;内存回收是指在程序执行结束后,将释放出来的内存重新纳入到可用的内存资源中;内存保护则是通过权限设置和地址转换等机制,保护每个进程的内存空间不被其他进程非法访问。
二、内存分配算法1.连续分配算法连续分配算法是最简单且最常用的内存分配算法之一。
它将内存划分为若干大小相等的分区,并根据进程的需求进行分配。
常见的连续分配算法有首次适应算法、最佳适应算法和最坏适应算法。
2.非连续分配算法非连续分配算法采用分段或分页的方式对内存进行分配。
分段是将程序分为多个独立的段,每个段可以是代码段、数据段或堆栈段;分页则是将程序分为固定大小的页面,每个页面大小相等。
常见的非连续分配算法有段式管理和页面管理。
三、内存保护内存保护是指为了防止进程之间相互干扰,操作系统对每个进程的内存空间进行保护和隔离。
常见的内存保护机制有地址空间隔离和权限设置。
地址空间隔离是通过将每个进程的地址空间映射到不同的物理内存区域,使得每个进程拥有独立的内存空间;权限设置则是通过设置不同的权限位,限制每个进程对内存的访问权限。
四、虚拟内存虚拟内存是操作系统提供给程序的一种抽象概念,它将物理内存抽象成一个高效且无限大的内存空间,从而使得程序能够使用比实际可用内存更大的内存空间。
虚拟内存通过缺页中断和页面置换算法实现内存的动态分配和调度,能够有效地提高系统的内存利用率和性能。
总结:操作系统内存管理是确保计算机系统正常运行的重要组成部分。
通过合理的内存管理可以提高系统的性能和效率,确保每个进程的内存空间得到保护和隔离。
计算机操作系统内存管理了解内存分配和回收的原理

计算机操作系统内存管理了解内存分配和回收的原理计算机操作系统内存管理是操作系统中极为重要的一部分,它负责管理计算机主存(内存)的分配和回收。
内存分配和回收的原理对于了解计算机系统的运行机制至关重要。
本文将从内存管理的基本概念开始,介绍内存的分配和回收原理。
一、内存管理基本概念内存管理是操作系统中的一个重要功能,其主要任务是将有限的内存资源分配给各个进程,并及时回收不再使用的内存。
内存管理的核心是虚拟内存技术,它将计算机的内存空间划分为若干个固定大小的页或块,每个进程都认为自己拥有整个内存空间。
二、内存分配原理1. 连续分配在早期的操作系统中,内存分配采用的是连续分配原理。
系统将内存分为固定大小的分区,并为每个进程分配连续的内存空间。
这种分配方法简单高效,但会导致内存碎片问题,进而影响系统性能。
2. 非连续分配为解决内存碎片问题,后来的操作系统引入了非连续分配原理。
非连续分配可以分为分页式和分段式两种方式。
- 分页式:将物理内存划分为固定大小的页框,逻辑地址空间也被划分为相同大小的页。
通过页表实现逻辑地址到物理地址的映射。
- 分段式:将逻辑地址空间划分为若干个段,每个段的大小可以不同。
通过段表实现逻辑地址到物理地址的映射。
三、内存回收原理内存回收是指在进程不再使用某块内存时,及时将其释放,使其成为可供其他进程使用的空闲内存。
内存回收涉及到的主要原理有以下几种:1. 清除位图操作系统通过使用一张位图,来记录内存中的空闲块和已分配块的状态。
当一个进程释放内存时,系统会将相应的位图标记为空闲,以便后续进程可以使用。
2. 空闲链表操作系统通过维护一个空闲链表来管理空闲内存块。
当一个进程释放内存时,系统会将该内存块插入空闲链表,使其成为可供其他进程分配的空闲内存。
3. 垃圾回收垃圾回收是指当进程释放内存后,操作系统自动检测并回收无法访问到的对象所占用的内存。
垃圾回收可以通过引用计数和标记清除等算法实现。
四、内存管理策略为了提高内存利用率和系统性能,操作系统采用了一系列内存管理策略:1. 内存分配策略- 最先适应算法:从空闲链表中选择第一个足够大的内存块分配给进程。
操作系统的系统资源管理

操作系统的系统资源管理操作系统是一种管理计算机硬件和软件资源的核心软件,它起着至关重要的作用,可以有效地管理和分配系统资源,实现对计算机系统的优化和提高。
系统资源管理是操作系统的重要组成部分,它包括内存管理、进程管理、文件管理和设备管理等子系统。
本文将分别介绍这些系统资源管理的主要功能和方法。
一、内存管理内存管理是指操作系统对计算机内存进行分配和调度的过程。
它的主要功能是有效地利用内存资源,避免内存碎片和冲突,保证程序的正确运行和系统的高效运作。
内存管理的主要方法包括内存分区、虚拟内存和页式存储等。
1. 内存分区内存分区是将计算机的内存划分为若干个固定大小的区域,每个区域包含一个进程或作业。
它可以通过静态分配或动态分配的方式实现。
静态分配是指在进程运行之前分配好内存空间,动态分配则是在进程运行时动态地分配和回收内存空间。
2. 虚拟内存虚拟内存是一种扩展内存的技术,通过将部分暂时不使用或不常用的程序和数据存储在磁盘上,以释放出更多的内存空间。
当这些程序和数据需要时,操作系统会将其从磁盘读入内存。
虚拟内存管理可以充分利用磁盘的容量,提高系统的整体性能。
3. 页式存储页式存储是一种按页面(固定大小的存储单元)进行分割和管理内存的方法。
当需要将一个程序或数据存储在内存中时,操作系统会将其划分为若干个页面,并将这些页面映射到物理内存的页面框中。
通过页面置换算法,可以有效地管理内存,保证内存中总是有最相关的页面。
二、进程管理进程管理是指操作系统对进程进行调度和控制的过程。
进程是程序的一次执行过程,它具有独立的地址空间和运行状态。
操作系统通过进程管理可以有效地控制系统中的多个进程,实现进程的创建、撤销、调度和通信等功能。
1. 进程调度进程调度是指操作系统根据一定的调度算法,决定哪个进程可以运行和使用处理器。
调度算法的选择需要平衡各个进程的优先级、响应时间和资源占用等因素,以提高系统的响应能力和吞吐量。
2. 进程通信进程通信是指操作系统提供的一种机制,用于进程之间的信息传递和共享资源。
操作系统课程设计内存管理

操作系统课程设计内存管理一、课程目标知识目标:1. 理解内存管理的基本概念,掌握内存分配、回收的原理及方法;2. 掌握虚拟内存的原理,了解分页、分段等内存管理技术;3. 了解操作系统中内存保护、共享、碎片处理等相关问题。
技能目标:1. 能够运用所学知识,分析并设计简单的内存管理算法;2. 能够通过编程实践,实现基本的内存分配与回收功能;3. 能够运用虚拟内存技术,解决实际问题。
情感态度价值观目标:1. 培养学生对操作系统中内存管理知识的学习兴趣,激发学生主动探索精神;2. 培养学生的团队协作意识,学会与他人共同解决问题;3. 增强学生的信息安全意识,了解内存管理在操作系统安全中的重要性。
课程性质分析:本课程为操作系统课程设计的一部分,侧重于内存管理方面的知识。
内存管理是操作系统核心功能之一,对于提高系统性能、保障系统安全具有重要意义。
学生特点分析:学生为计算机科学与技术等相关专业的高年级本科生,具备一定的操作系统基础知识,具备一定的编程能力,但可能对内存管理的深入了解和应用尚有不足。
教学要求:1. 结合实际案例,深入浅出地讲解内存管理的基本原理和方法;2. 采用任务驱动法,引导学生通过实践,掌握内存管理技术;3. 注重培养学生的动手能力和创新能力,提高学生解决实际问题的能力。
二、教学内容1. 内存管理概述:介绍内存管理的基本概念、任务和目标;- 教材章节:第2章 内存管理概述- 内容:内存分配、回收原理,内存保护、共享机制。
2. 内存管理技术:讲解物理内存管理和虚拟内存管理技术;- 教材章节:第3章 内存管理技术- 内容:分页管理、分段管理、段页式管理,内存碎片处理。
3. 内存管理算法:分析常见的内存分配和回收算法;- 教材章节:第4章 内存管理算法- 内容:首次适应算法、最佳适应算法、最坏适应算法等。
4. 操作系统内存管理实例分析:结合具体操作系统,分析其内存管理实现;- 教材章节:第5章 操作系统内存管理实例- 内容:Linux内存管理、Windows内存管理。
操作系统的功能

操作系统的功能操作系统是计算机系统中的核心软件,它是计算机系统中的管理者,负责管理计算机的硬件资源,管理用户和应用程序的运行,以及提供用户与计算机系统之间的界面。
操作系统主要有以下功能:1.进程管理进程管理是操作系统的核心功能之一,它负责管理计算机中运行的进程。
进程是计算机中正在运行的程序的实例,操作系统需要为每个进程分配资源,并且监控它们的运行状态。
操作系统需要负责创建、调度、终止和通信进程,以确保它们能够正常运行并且不会相互干扰。
2.内存管理内存管理是另一个重要的功能,它负责管理计算机中的内存资源。
操作系统需要负责内存的分配和释放,以确保每个进程都能够获得足够的内存空间,并且能够正确地访问内存中的数据。
内存管理还需要处理内存的分段和分页,以便将物理内存映射到各个进程的虚拟地址空间中。
3.文件系统文件系统是操作系统中的另一个核心组成部分,它负责管理存储在计算机中的文件和目录。
操作系统需要提供文件的创建、打开、读写和关闭等操作,以便用户和应用程序能够方便地访问和管理文件。
文件系统还需要负责文件的存储和检索,以确保文件能够被正确地保存和检索。
4.设备管理设备管理是操作系统的另一个重要功能,它负责管理计算机中的各种设备资源,包括硬盘、网络、打印机、键盘、鼠标等。
操作系统需要负责设备的初始化、分配、释放和调度,以确保它们能够正确地被应用程序访问和使用。
5.用户界面用户界面是操作系统与用户交互的界面,它负责向用户提供操作系统的各种功能和服务。
用户界面可以分为图形用户界面和命令行界面,图形用户界面提供了图形化的操作界面,命令行界面则提供了命令行的操作方式。
操作系统需要提供丰富、友好的用户界面,以方便用户进行操作和管理计算机系统。
6.安全性管理安全性管理是操作系统的另一个重要功能,它负责保护计算机系统免受各种安全威胁的侵害。
操作系统需要提供用户身份认证、访问控制、加密解密等安全功能,以确保计算机系统的安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作系统内存管理1. 内存管理方法内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。
2. 连续分配存储管理方式连续分配是指为一个用户程序分配连续的内存空间。
连续分配有单一连续存储管理和分区式储管理两种方式。
2.1 单一连续存储管理在这种管理方式中,内存被分为两个区域:系统区和用户区。
应用程序装入到用户区,可使用用户区全部空间。
其特点是,最简单,适用于单用户、单任务的操作系统。
CP /M和DOS2.0以下就是采用此种方式。
这种方式的最大优点就是易于管理。
但也存在着一些问题和不足之处,例如对要求内存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。
2.2 分区式存储管理为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。
分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。
分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。
分区式存储管理引人了两个新的问题:内碎片和外碎片。
内碎片是占用分区内未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。
为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。
表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。
分区式存储管理常采用的一项技术就是内存紧缩(compaction)。
2.2.1 固定分区(nxedpartitioning)。
固定式分区的特点是把内存划分为若干个固定大小的连续分区。
分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。
分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。
根据程序的大小,分配当前空闲的、适当大小的分区。
优点:易于实现,开销小。
缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。
2.2.2动态分区(dynamic partitioning)。
动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。
与固定分区相比较其优点是:没有内碎片。
但它却引入了另一种碎片——外碎片。
动态分区的分区分配就是寻找某个空闲分区,其大小需大于或等于程序的要求。
若是大于要求,则将该分区分割成两个分区,其中一个分区为要求的大小并标记为“占用”,而另一个分区为余下部分并标记为“空闲”。
分区分配的先后次序通常是从内存低端到高端。
动态分区的分区释放过程中有一个要注意的问题是,将相邻的空闲分区合并成一个大的空闲分区。
下面列出了几种常用的分区分配算法:最先适配法(nrst-fit):按分区在内存的先后次序从头查找,找到符合要求的第一个分区进行分配。
该算法的分配和释放的时间性能较好,较大的空闲分区可以被保留在内存高端。
但随着低端分区不断划分会产生较多小分区,每次分配时查找时间开销便会增大。
下次适配法(循环首次适应算法next fit):按分区在内存的先后次序,从上次分配的分区起查找(到最后{区时再从头开始},找到符合要求的第一个分区进行分配。
该算法的分配和释放的时间性能较好,使空闲分区分布得更均匀,但较大空闲分区不易保留。
最佳适配法(best-fit):按分区在内存的先后次序从头查找,找到其大小与要求相差最小的空闲分区进行分配。
从个别来看,外碎片较小;但从整体来看,会形成较多外碎片优点是较大的空闲分区可以被保留。
最坏适配法(worst- fit):按分区在内存的先后次序从头查找,找到最大的空闲分区进行分配。
基本不留下小空闲分区,不易形成外碎片。
但由于较大的空闲分区不被保留,当对内存需求较大的进程需要运行时,其要求不易被满足。
2.3 伙伴系统固定分区和动态分区方式都有不足之处。
固定分区方式限制了活动进程的数目,当进程大小与空闲分区大小不匹配时,内存空间利用率很低。
动态分区方式算法复杂,回收空闲分区时需要进行分区合并等,系统开销较大。
伙伴系统方式是对以上两种内存方式的一种折衷方案。
伙伴系统规定,无论已分配分区或空闲分区,其大小均为 2 的k 次幂,k 为整数,l≤k≤m,其中:2^1 表示分配的最小分区的大小,2^m 表示分配的最大分区的大小,通常2^m是整个可分配内存的大小。
假设系统的可利用空间容量为2^m个字,则系统开始运行时,整个内存区是一个大小为2^m的空闲分区。
在系统运行过中,由于不断的划分,可能会形成若干个不连续的空闲分区,将这些空闲分区根据分区的大小进行分类,对于每一类具有相同大小的所有空闲分区,单独设立一个空闲分区双向链表。
这样,不同大小的空闲分区形成了k(0≤k≤m)个空闲分区链表。
分配步骤:当需要为进程分配一个长度为n 的存储空间时:首先计算一个i 值,使2^(i-1) <n ≤2^i,然后在空闲分区大小为2^i的空闲分区链表中查找。
若找到,即把该空闲分区分配给进程。
否则,表明长度为2^i的空闲分区已经耗尽,则在分区大小为2^(i+1)的空闲分区链表中寻找。
若存在2^(i+1)的一个空闲分区,则把该空闲分区分为相等的两个分区,这两个分区称为一对伙伴,其中的一个分区用于配,而把另一个加入分区大小为2^i的空闲分区链表中。
若大小为2^(i+1)的空闲分区也不存在,则需要查找大小为2^(i+2)的空闲分区,若找到则对其进行两次分割:第一次,将其分割为大小为2^(i+1)的两个分区,一个用于分配,一个加入到大小为2^(i+1)的空闲分区链表中;第二次,将第一次用于分配的空闲区分割为2^i的两个分区,一个用于分配,一个加入到大小为2^i的空闲分区链表中。
若仍然找不到,则继续查找大小为2^(i+3)的空闲分区,以此类推。
由此可见,在最坏的情况下,可能需要对2^k的空闲分区进行k 次分割才能得到所需分区。
与一次分配可能要进行多次分割一样,一次回收也可能要进行多次合并,如回收大小为2^i的空闲分区时,若事先已存在2^i的空闲分区时,则应将其与伙伴分区合并为大小为2^i+1的空闲分区,若事先已存在2^i+1的空闲分区时,又应继续与其伙伴分区合并为大小为2^i+2的空闲分区,依此类推。
在伙伴系统中,其分配和回收的时间性能取决于查找空闲分区的位置和分割、合并空闲分区所花费的时间。
与前面所述的多种方法相比较,由于该算法在回收空闲分区时,需要对空闲分区进行合并,所以其时间性能比前面所述的分类搜索算法差,但比顺序搜索算法好,而其空间性能则远优于前面所述的分类搜索法,比顺序搜索法略差。
需要指出的是,在当前的操作系统中,普遍采用的是下面将要讲述的基于分页和分段机制的虚拟内存机制,该机制较伙伴算法更为合理和高效,但在多处理机系统中,伙伴系统仍不失为一种有效的内存分配和释放的方法,得到了大量的应用。
2.4 内存紧缩内存紧缩:将各个占用分区向内存一端移动,然后将各个空闲分区合并成为一个空闲分区。
这种技术在提供了某种程度上的灵活性的同时,也存在着一些弊端,例如:对占用分区进行内存数据搬移占用CPU时间;如果对占用分区中的程序进行“浮动”,则其重定位需要硬件支持。
紧缩时机:每个分区释放后,或内存分配找不到满足条件的空闲分区时。
图8.12堆结构的存储管理的分配算法:在动态存储过程中,不管哪个时刻,可利用空间都是-一个地址连续的存储区,在编译程序中称之为"堆",每次分配都是从这个可利用空间中划出一块。
其实现办法是:设立一个指針,称之为堆指针,始终指向堆的最低(或锻联)地址。
当用户申请N个单位的存储块时,堆指针向高地址(或低地址)称动N个存储单位,而移动之前的堆指针的值就是分配给用户的占用块的初始地址。
例如,某个串处理系统中有A、B、C、D这4个串,其串值长度分别為12,6,10和8. 假设堆指针free的初值为零,则分配给这4个串值的存储空间的初始地址分别为0.12.18和28,如图8.12(a)和(b)所示,分配后的堆指针的值为36。
因此,这种堆结构的存储管理的分配算法非常简单,释放内存空间执行内存紧缩:回收用户释放的空闲块就比较麻烦.由于系统的可利用空间始终是一个绝址连续的存储块,因此回收时必须将所释放的空间块合并到整个堆上去才能重新使用,这就是"存储策缩"的任务.通常,有两种做法:一种是一旦有用户释放存储块即进行回收紧缩,例始,图8.12 (a)的堆,在c串释放存储块时即回收紧缩,例如图8.12 (c)的堆,同时修改串的存储映像成图8.12(d)的状态;另一种是在程序执行过程中不回收用户随时释放的存储块,直到可利用空同不够分配或堆指针指向最高地址时才进行存储紧缩。
此时紧缩的目的是将堆中所有的空间块连成一块,即将所有的占用块部集中到可利用空间的低地地区,而剩余的高地址区成为一整个地继连续的空闲块,如图8.13所示,其中(a)为紧缩前的状态,(b)为紧缩后的状态·图8.13 a 紧缩前b紧缩后和无用单元收集类似,为实现存储紫编,首先要对占用块进行“标志”,标志算法和无用单元收集类同(存储块的结构可能不同),其次需进行下列4步雄作:(1)计算占用块的新地址。
从最低地址开始巡査整个存储空间,对每一个占用块找到它在紧缩后的新地址。
为此,需设立两个指针随巡查向前移动,这两个指针分别指示占用块在紧缩之前和之后的原地址和新地址。
因此,在每个占用块的第-·个存储单位中,除了设立长度域(存储该占用换的大小)和标志域(存储区别该存储块是占用块或空闲块的标志)之外,还需设立一个新地址城,以存储占用块在紧缩后应有的新地址,即建立一张新,旧地址的对照表m(2)修改用户触初始变量表,以便在存储紧缩后用户程序能继续正常运行*。
(3)检查每个占用块中存储的数据,若有指向其他存储换的指针,则需作相应修改.(4)将所有占用块迁移到新地址走,这实质上是作传送数据的工作。
至此,完成了存储紧缩的操作,最后,将堆指针赋以新值(即紧缩后的空闲存储区的最低地址)。
可见,存储紧缩法比无用单元收集法更为复杂,前者不仅要传送数据(进行占用块迁移),而且还有需要修改所有占用块中的指针值。
因此,存储紧缩也是个系统操作,且非不得已就不用。
3. 覆盖和交换技术3.1 覆盖技术引入覆盖(overlay)技术的目标是在较小的可用内存中运行较大的程序。
这种技术常用于多道程序系统之中,与分区式存储管理配合使用。
覆盖技术的原理:一个程序的几个代码段或数据段,按照时间先后来占用公共的内存空间。
将程序必要部分(常用功能)的代码和数据常驻内存;可选部分(不常用功能)平时存放在外存(覆盖文件)中,在需要时才装入内存。