分子生物学技术新进展
分子生物学的新进展与新应用

分子生物学的新进展与新应用随着时代的发展和先进技术的不断涌现,分子生物学这门学科也在不断进步和繁荣。
分子生物学是研究生物分子结构、功能和相互作用的学科,涉及到DNA、RNA、蛋白质、酶、代谢途径等多个领域,是现代生命科学中的重要分支之一。
分子生物学的研究对于生物学、医学、农业科技等领域都有着广泛的应用价值。
近年来,分子生物学的新进展和新应用也在不断涌现,这里我们来看一下其中的几个方面。
一、基因编辑技术基因编辑技术是一种基于CRISPR-Cas9系统的新型分子生物学工具,它可以在原有基因组的基础上编辑或修改DNA序列,从而实现对特定基因的删除、插入、替换等操作。
基因编辑技术的出现,打破了传统基因工程技术的局限性,大大提高了基因改良的效率和精度,为人类解决一系列遗传疾病、植物、动物的遗传改良等领域提供了有力工具。
二、单细胞基因组学单细胞基因组学是一种基于高通量DNA测序技术的新型方法,它可以在单个细胞水平上对DNA序列进行大规模测序。
相较于传统的基因组学方法,单细胞基因组学可以更加精细和全面地研究细胞的变异、发育和分化等过程,对解决一系列生物学问题有着重要意义。
例如将单细胞基因组学方法应用于肿瘤研究,可以更加深入地了解肿瘤细胞的异质性和进化过程,为精准治疗提供帮助。
三、结构生物学结构生物学是一种研究生物分子结构和功能的方法,通过用X射线晶体学、核磁共振技术等手段对蛋白质、核酸等超大分子进行结构分析,探究其生物学功能及相互作用。
结构生物学不仅可以提供高分辨率的分子图像,而且可以为药物发现与设计提供理论依据。
因此,结构生物学在药物研发、生物材料等多个领域有着广泛的应用。
四、细胞信号转导研究细胞信号转导是指细胞内外物质在相互作用下引起一系列生物学反应,从而实现不同细胞状态和功能的变化。
细胞信号转导的异常会导致多种疾病的发生,如肿瘤、慢性炎症等。
分子生物学的技术手段对于细胞信号转导的研究提供了必要工具,例如转录组学、蛋白质组学和结构生物学等方法,能够更加深入地了解细胞信号转导的分子机制。
分子生物学的新研究进展

分子生物学的新研究进展分子生物学是一门研究生命体的分子结构、组成和功能的学科,是现代生物学的一个重要分支。
近年来,随着人们对分子生物学的认识和技术的不断发展,我国分子生物学的研究水平也得到了大幅提高,取得了一系列重要的新成果,本文将就此展开讨论。
一、基因编辑技术的突破基因编辑技术是近年来分子生物学领域一项重要的进展,其研究旨在通过改变、加强、削弱、甚至“修补”人类或其它生物体的基因,来治疗某些遗传性疾病。
而在2018年,浙江大学研究团队发现了一种依赖于CRISPR-Cas9系统的新型基因编辑技术,该技术可以快速、高效地改变细胞的DNA序列,并且相对于其他基因编辑技术来说,这种新型技术具有更为准确的编辑能力,可以避免出现意外效应。
二、RNA研究引发新的学术争议RNA是一种重要的生物分子,最初主要被认为是DNA的“过渡产物”,但是随着技术的发展和研究的深入,我们发现RNA在生命体内的调控、转录和翻译过程中发挥着重要的作用,甚至可能掌握着某些疾病的发生机制。
然而,近年来,一项名为“CelI-Seq”的研究却对RNA在基因转录中所扮演的角色提出了质疑,并且引发了学术争议。
该研究员发现,许多RNA并不是由基因转录而来,而是通过RNA后转录和RNA碎片的剪切修建而成,这意味着RNA的生物学功能并不一定与DNA密切相关。
这一结论也颠覆了许多分子生物学家之前的认知,引起了一场有关RNA研究的深度讨论。
三、新型药物研发开辟新的疗法2019年,复旦大学的研究团队成功开发出一种基于指求和RNAi技术的抗肿瘤药物,该药物可以兼备杀死肿瘤细胞的效果,同时又不会令正常细胞受到影响,具有较大的潜力用于未来的临床治疗。
相比于其他抗肿瘤药物,该药物更为安全、有效,而且可以根据患者的基因特征进行个性化调整和治疗。
总之,随着科学技术的发展和研究的深入,分子生物学领域的新进展不断涌现,这些进展必将推动医学疗法的发展以及人类的生存环境改善。
分子生物学的新进展与应用

分子生物学的新进展与应用随着生物科技的发展和创新,分子生物学领域也取得了巨大的突破和进展。
分子生物学是一门研究生物分子结构、功能和相互关系的学科,已经成为生命科学的核心领域之一。
本文将从几个方面介绍分子生物学的新进展和应用,包括DNA测序技术、基因编辑技术、分子诊断和药物研发等方面。
I. DNA测序技术DNA测序是分子生物学最重要的技术之一,它能够帮助科学家们了解生命的本质和进化。
近年来,随着高通量测序技术的兴起,测序速度和准确性得到了显著提高。
这种技术的最大优点是它可以很快地、准确地测定DNA序列,大大减少了研究过程中的时间和成本。
DNA测序技术的应用范围非常广泛,从基因突变分析、遗传修饰到基因表达等都可以得到非常准确的结果。
DNA测序技术被广泛应用于基因组重构和修饰,从而帮助人类治疗各种疾病。
II. 基因编辑技术基因编辑技术是分子生物学领域的一项革命性技术,它已经成为开展生物医学研究的重要手段之一,并在治疗传染病和癌症等疾病方面展现了无限的潜力。
通过基因编辑技术,科学家们可以准确地修改DNA序列,从而更好地理解基因的功能和调节机制。
同时,基因编辑技术也能够实现基因加减和突变等操作,从而用于修复或治疗患者的基因缺陷或疾病。
III. 分子诊断分子诊断技术就是利用分子生物学方法对病原体及其相关的分子进行特异性检测,从而在临床疾病诊断和治疗中起到重要作用。
相比传统的方法,分子诊断技术具有高灵敏性、高特异性和高速度等优点,能大大提高疾病诊断效率和准确性,避免了对患者的影响。
分子诊断技术的应用范围非常广泛,涉及到传染病、肿瘤以及遗传性疾病等方面。
IV. 药物研发分子生物学的发展不仅对生命科学领域产生巨大的影响,还已经成为药物研发领域的重要手段。
分子生物学的研究和成果使科学家们对很多疾病的分子机制有了更好的理解,从而设计出更加准确、高效的药物,这也为新药的开发和制备提供了一系列的技术支持。
一些新型分子靶向治疗药物已经在药物研究和临床治疗中得到成功应用,帮助人们更好地治疗疾病,提高生活质量。
分子生物学的最新研究进展

分子生物学的最新研究进展分子生物学作为生命科学领域的重要分支,一直以来都在不断探索生命的奥秘。
近年来,随着技术的飞速发展,分子生物学取得了一系列令人瞩目的研究成果,为人类理解生命现象、治疗疾病以及推动生物技术的发展提供了强大的支持。
在基因编辑技术方面,CRISPRCas9 系统的出现无疑是一项重大突破。
它使得科学家能够更加精确、高效地对基因组进行编辑。
通过这种技术,研究人员可以修复致病基因的突变,为治疗遗传性疾病带来了新的希望。
例如,在镰状细胞贫血和地中海贫血等疾病的治疗研究中,CRISPRCas9 技术展现出了巨大的潜力。
它不仅能够纠正患者造血干细胞中的基因突变,而且经过改造后的细胞在重新输回患者体内后,能够正常分化并发挥功能,从而有效改善患者的症状。
单细胞测序技术的发展也为分子生物学研究带来了新的视角。
传统的测序方法通常是对大量细胞的混合样本进行分析,这会掩盖细胞之间的异质性。
而单细胞测序技术能够对单个细胞的基因表达进行精确测定,帮助我们更好地理解细胞的发育、分化以及疾病发生过程中的细胞变化。
例如,在肿瘤研究中,通过单细胞测序可以发现肿瘤组织中不同类型的细胞以及它们的基因表达特征,这对于揭示肿瘤的发生机制、寻找新的治疗靶点以及评估治疗效果都具有重要意义。
在表观遗传学领域,研究人员对 DNA 甲基化、组蛋白修饰以及非编码 RNA 等的作用机制有了更深入的认识。
DNA 甲基化作为一种重要的表观遗传修饰,能够在不改变基因序列的情况下影响基因的表达。
研究发现,DNA 甲基化模式的异常与多种疾病的发生密切相关,如癌症、心血管疾病和神经系统疾病等。
组蛋白修饰则通过改变染色质的结构来调节基因的转录,其异常也会导致基因表达的紊乱。
非编码RNA 虽然不编码蛋白质,但它们在基因表达调控中发挥着至关重要的作用。
例如,微小 RNA(miRNA)能够与信使 RNA(mRNA)结合,抑制其翻译或促使其降解,从而调控基因的表达。
分子生物学的新发现与进展

分子生物学的新发现与进展近年来,分子生物学领域得到了前所未有的发展和进步。
从DNA双螺旋结构的发现到CRISPR-Cas9的革命性应用,这些科技性的进展已经开启了人类对于生命本质的深入探索。
一、基因组编辑的突破近年来,基因组编辑的技术突飞猛进。
CRISPR-Cas9是一种革命性的基因组编辑工具,它能够精确地进行DNA序列切割和编辑,使得研究人员们可以精确地研究各种生物遗传变异带来的生物学效应。
通过CRISPR-Cas9的技术突破,科学家们已经能够实现复杂遗传疾病模型的建立和基因治疗的发展。
二、群体基因测序的广泛应用随着群体基因测序技术的不断完善,科学家们已经可以对人类基因组进行更加全面和深入的研究。
这种技术的广泛应用已经使得人类对于遗传疾病和生命起源的研究更加深入。
此外,人们已经能够利用群体基因测序技术来制定个性化医疗方案,并且可以更好地了解人类的遗传多样性。
三、表观基因组学的兴起表观基因组学是研究基因组中表观遗传变异及其对基因表达和表型的影响的学科。
表观遗传变异是指不影响DNA序列,但可塑性高、可逆、受内外因素影响的生物学遗传转化。
通过表观基因组学的研究,人们已经能够更好地了解基因表达调控机制的内在原理,从而对于人类健康和疾病的分子机制进行更加精准的研究。
四、合成生物学的发展合成生物学是研究人工设计、合成和操作的基因、代谢途径和信号传导系统,以及它们的组合,以构建全新的生物系统的学科。
此技术的发展为生物学领域带来了前所未有的机会,使得人们能够以更加自由和灵活的方式改造和重新设计生物系统。
总之,分子生物学的新发现和技术进步将促进未来科学实现生命科学领域的更好未来。
通过对未来的精准预测和科学挑战的规划和认识,可以更好地明确我们的职责和目标,实现生命科学领域的更好发展。
细胞分子生物学的新进展

细胞分子生物学的新进展细胞分子生物学是一门研究细胞和分子之间相互作用的学科。
随着科技的飞快发展,细胞分子生物学的研究也在不断地深入。
本文将从多个角度探讨细胞分子生物学的新进展。
一、通过基因测序技术来研究细胞随着基因测序技术的不断进步,DNA测序成为了研究细胞的一种有力工具。
研究人员可以通过对细胞的基因组进行测序,来了解细胞在生理和病理上的变化过程。
例如,通过对肿瘤细胞的基因组测序,可以了解到肿瘤细胞的突变情况,从而制定更加精准的治疗方案。
二、细胞信号通路的研究细胞信号通路是细胞内的一种信息传递系统,它通过化学反应将某些信号分子转换成可激活或抑制特定分子的信号。
近年来,研究人员在细胞信号通路的研究方面取得了巨大的进展。
例如,一项研究发现,一个名为“cyclic GMP-AMP synthase”(cGAS)的酶可以感应细胞内外的DNA,并激活STING信号通路,从而刺激免疫反应,这项研究为免疫治疗研究提供了新的思路。
三、CRISPR-Cas9技术的广泛应用CRISPR-Cas9(Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9)技术是一种新兴的基因编辑技术。
它利用CRISPR-Cas9系统对基因进行定点切割和修改,实现精准的基因编辑。
该技术被广泛应用于生物医学和生物工程领域,例如防止基因突变、改进农业物种、修复遗传性疾病等。
四、细胞内基因组结构的研究近年来,科学家们通过一系列高分辨率技术的研究和发现,揭示了细胞内基因组的三维结构。
例如,一个名为Cryo-electron tomography的技术可以使用冷冻电子显微镜图像来建立高分辨率的三维模型,从而更好地理解基因组结构和功能。
五、单细胞测序技术的迅速发展传统的基因组测序技术是使用大量细胞,从中提取DNA进行测序,来了解细胞组成的平均状况。
分子生物学的新进展

分子生物学的新进展分子生物学是生物学的一个重要分支,它研究生命体系中的分子结构、函数以及相互作用关系。
自DNA的发现以来,分子生物学一直处于快速发展的状态,并且取得了众多重要的成果。
本文将介绍分子生物学的新进展,包括新的分子工具、新的分子机制以及新的分子应用,以期让读者了解分子生物学的最新研究动态。
一、新的分子工具近年来,分子生物学研究所用到的分子工具也在不断更新。
例如,CRISPR-Cas9系统是当前最流行的基因编辑工具,它可以精准快速地剪切DNA,并且可以用于遗传学研究、疾病治疗等方面。
除此之外,单细胞测序技术是一种新兴的分子工具,它可以在单个细胞水平对基因组、转录组和表观基因组等进行高通量测序,并且可以应用于癌症、遗传疾病、免疫系统研究等方面。
二、新的分子机制分子生物学的研究手段不断更新,从而也揭示出了许多新的分子机制。
例如,一些分子机制可以解释染色体如何在细胞分裂过程中正确地分配给新生的细胞,这些机制包括微管、蛋白激酶、蛋白酶等。
此外,许多基因调控机制的研究也取得了很大进展,这些机制包括DNA甲基化、组蛋白修饰、非编码RNA等。
三、新的分子应用分子生物学的研究成果也被广泛地应用于医学、生物技术等领域。
例如,分子生物学的研究成果可以应用于基因组学、转录组学以及表观基因组学等方面,从而加强现代医学的生物学基础。
此外,分子生物学的研究成果还可以应用于生产新型药物、植物育种以及环境污染治理等方面。
结语:总之,分子生物学是一个非常重要的生物学分支,它不断地取得新的进展和突破。
在未来的发展中,我们可以期待分子生物学为生物学、医学、生物技术、农业等领域带来更多的发展和创新。
分子生物学中的新进展

分子生物学中的新进展分子生物学是研究生物分子结构、功能、组织与生命活动之间的关系的一门学科。
近年来,随着科技的不断进步,分子生物学领域也取得了许多新的进展。
一、基因编辑技术的突破基因编辑技术是一种通过修改DNA序列来改变生物遗传信息的技术,主要包括CRISPR/Cas9技术和TALEN技术。
这项技术突破了传统基因组编辑技术的种种限制,可以精准地修改特定的DNA序列,因此在基因疾病的治疗方面具有广泛的应用前景。
近年来,基因编辑技术在植物、动物、微生物等各个领域中呈现出广泛的应用,深入研究该技术的基础性和应用性将是分子生物学未来长远的发展方向。
二、脑功能连接图的绘制神经元的结构和功能是分子生物学中非常重要的一部分,但是神经元之间的连接方式一直以来都是未知的。
近年来,研究人员利用新颖的技术,例如全脑钙成像技术和脑中介素诱导表达技术等,成功地绘制了大规模的脑功能连接图,揭示了不同脑区之间的详细联系,这对于研究神经网络的功能和调控机理、脑部疾病的诊断和治疗等都具有重要的意义。
三、功能性基因组学的发展功能性基因组学是研究基因组中具有功能的元件及其相互作用网络的学科,可以帮助人们解读生物基因组并从中发掘出潜在的新靶点。
近年来,功能性基因组学的发展正在迅速推动着这一学科的进一步繁荣。
例如利用单细胞RNA测序技术探索细胞类型复杂性、发现遗传变异对某些基因的影响以及揭示转录后修饰对基因表达的调控机制等,这些都是在功能性基因组学领域所取得的新进展。
四、高通量技术的推广高通量技术是分子生物学中高效、快速的数据获取手段,包括高通量测序、高通量微阵列等。
这些技术的出现极大地推动了分子生物学的进步,让我们能够更深入、更全面地理解生物学以及人类健康与疾病的本质。
其中最具代表性的就是高通量测序技术,它打破了传统的DNA测序方案,大幅提高了基因组学研究的效率和分辨率。
结语:总的来说,分子生物学在过去几十年中已经取得了巨大的进展,如今仍然在不断向前发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
技术和手段
基本原理与过程:
1、分离纯化目的基因 2、目的基因 + vector =重组DNA分子 3、重组DNA分子导入受体细胞,并在其内增殖。 4、筛选含有重组DNA的细胞——细胞克隆(cell clone),将转化的细胞置于琼脂表面,以刺激细胞 克隆生长,这些细胞是由单个细胞形成的遗传相同 的细胞群体,故称细胞克隆。再将每个克隆移至液 体培养基中进行扩增。 5、分离重组DNA克隆:即收获扩增的培养细胞, 并选择分离重组DNA。
中核酸进行杂交,再以放射自显影的方法显示 结果。现在多用生物素酶免疫方法进行检测,
可检出待测DNA或RNA是否在该组织或细胞中
存在。
目前原位PCR发展最快的是荧光素标记的原位
DNA杂交技术,即荧光原位杂交技术(fluorescence in situ hybridization, 简称FISH技术),是利用与荧 光素分子偶联的单克隆抗体与抗原标记的探针分子 特异性的结合来检测DNA序列在染色体上的位置。
• 基因疫苗
纳米技术能使DNA通过主动靶向作用定位于 缺陷的细胞。如果将质粒DNA缩小到50~200nm, 带上负电荷进入到细胞核,插入到细胞核DNA的
确切部位,就能起到对症治疗的效果,使临床诊
断和治疗过程效率得以提高。
由于现代纳米技术的发展,无机纳米颗粒体积
很小,可在血管中随血液循环,透过血管壁进入各 个脏器的细胞中,作为新型非病毒型基因载体能有 效介导DNA的转导,并使其在细胞内高水平的表达, 从而为基因表达、功能研究及基因治疗提供了新的
•Mg 2+
延伸 72˚C
退火 Tm-5˚C
聚合酶链反应(Polymerase Chain Reaction)
Template DNA
5 5
5
Primer 1 5 Primer 2
Cycle 1
5 5 5 5
Cycle 2
5
5
5 5
5 5
5 5
Cycle 3
5
5 5 5 5 5
1865年 G.J.Mendel的豌豆杂交试验 1944年 O.T.Avery的肺炎球菌转化实验
1973年 美国斯坦福大学的科学家构建第一个重组DNA分子
1977年 美国南旧金山由博耶和斯旺森建立世界上第一家遗传
工程公司,专门应用重组DNA技术制造医学上重要的药物。
1980年 开始建造第一家应用重组DNA技术生产胰岛素的工厂 1997年 英国罗林研究所成功的克隆了多莉
此技术在病理学诊断上有广泛的实用性,包括病毒
感染的检测,特异性染色体的鉴别和肿瘤基因的检 查等。
(三)实时定量PCR (real-time PCR)技术
是指在PCR反应体系中加入荧光基团,利用
荧光信号积累实时监测整个PCR进程,最后通过
标准曲线对未知模板进行定量分析的方法。
分子杂交与印迹技术
Molecular Hybridization and Blotting Technique 核酸分子杂交 (nucleic acid hybridization)原理
生物芯片技术 Biological Chip Technique
基因芯片(gene chip)
是集成化的核酸分子杂交技术,将许多特定的DNA
片段有规律地紧密排列固定于单位面积的支持物上,
然后与待测的荧光标记样品进行杂交,再用荧光检 测系统对芯片进行扫描,通过计算机系统对每一位 点的荧光信号做出检测、比较和分析。该技术亦被 称作DNA微阵列(DNA microarray)。
DNA和RNA微量分析的最好方法。
(四)DNA序列测定
将PCR技术引入DNA序列测定,使测序工作
大为简化,也提高了测序的速度;
(五)基因突变分析 PCR与其他技术的结合可以大大提高基因突变检 测的敏感性 。
三、几种重要的PCR衍生技术
(一)逆转录PCR技术
逆转录PCR(reverse transcription PCR,RT-PCR)是将
以 质 粒 为 载 体 的 DNA 克 隆 过 程
重组DNA技术的目的
• 上述细胞的克隆系统可直接导入的目基 因扩增,获得足够量的目的基因来进行 结构与功能的研究。 • 重组DNA技术的另一目的是获得基因 重组后的产物——RNA,蛋白质。 • 将目的基因与表达载体重组,导入宿主 细胞进而表达出相应的基因产物(蛋 白)。如胰岛素,干扰素;生产疫苗的 抗原和特异的抗体等。
分子生物技术概述
分子生物技术也称之为生物工程,是现代生 物技术的主要标志,其内容包括基因工程技术、 细胞工程技术、DNA测序技术、DNA芯片技术、 酶工程技术等。重组DNA技术是现代分子生物
技术发展中最重要的成就之一,也是基因工程
(Gene Engineering)的核心技术。
重组DNA技术的发展史
RNA的逆转录反应和PCR反应联合应用的一种技术,
是目前从组织或细胞中获得目的基因以及对已知序 列的RNA进行定性及半定量分析的最有效方法。
(二)原位PCR技术
原位PCR(in situ PCR)是在组织切片或细胞涂片
上的单个细胞内进行的PCR反应,然后用特定
标记的已知顺序核酸为探针与细胞或组织切片
5 5
5 5
5 5 5 5
5 5
25~30 次循环后,模板DNA的含量 可以扩大100万倍以上。
二、PCR技术的主要用途
(一)目的基因的克隆
(二)基因突变
利用PCR技术可以随意设计引物在体外对目的基因片 段进行嵌和、缺失、点突变等改造。
(三)DNA和RNA的微量分析
PCR技术高度敏感,对模板DNA的量要求很低,是
测等领域中,其成果大大促进了现代医学
的进步和发展 。
印迹技术( Blotting Technique )原理 利用各种物理方法使电泳胶中的生物大分子 转移到NC等各种膜上,使之成为固相化分子。 这一技术类似于用吸墨纸吸收纸张上的墨迹,
因此称之为“blotting”,译为印迹技术。
(一)DNA印迹 (Southern Blotting)
缺失或插入等突变。
1.DNA序列分析
用于基因突变类型已经明确的遗传病的诊断及产
前诊断 ,例如血友病、囊性纤维变性、杭延顿氏 舞蹈症、抗胰酶缺乏症等均可检测。
2.PCR技术 • 快速检出样品中的痕量病原微生物,例如乙 型病毒性肝炎、丙型病毒性肝炎,爱滋病等。
• 微量DNA 样品中的基因及基因变异分析。
用于基因组DNA、重组质粒和噬菌体的分析。
(二)RNA印迹 (Northern Blotting)
用于RNA的定性定量分析。
(三)蛋白质的印迹 (Western Blotting)
用于蛋白质定性定量及相互作用研究。
其他: 斑点印迹 (dot blotting) 原位杂交 (in situ hybridization) DNA点阵 (DNA array) DNA芯片技术 (DNA chip)
在DNA复性过程中,如果把不同DNA单链分
子放在同一溶液中,或把DNA与RNA放在一
起,只要在DNA或RNA的单链分子之间有一 定的碱基配对关系,就可以在不同的分子之
间形成杂化双链(heteroduplex) 。
复性
RNA
DNA
目前已用于多种遗传性疾病的基因诊断, 恶性肿瘤的基因分析,传染病病原体的检
重组DNA和分子克隆的几种方法: (依目的基因的来源)
1、从基因组中分离目的基因在细胞中克隆
2、由特定mRNA逆转录合成cDNA后再进行
克隆
3、化学合成目的基因进行克隆 4、PCR体外扩增目的片段进行克隆
ห้องสมุดไป่ตู้
PCR体系基本组成成分和步骤
变性 95˚C
•模板DNA
•特异性引物
•耐热DNA聚合酶
•dNTPs
的敏感性。
• 分析个体的疾病易感状态,如肿瘤、自身免疫病 发生的预警。
二、基因治疗(Gene Therapy)
基本原理:向有功能缺陷的细胞补充相应功能的基 因,以纠正或补偿其基因的缺陷,从而 达到治疗的目的。 基因治疗的基本策略 基因矫正 • 缺陷基因精确的原位修复及基因增补 基因置换 • 基因失活
重组DNA技术(Recombinant DNA Technique)
是人类根据需要选择目的基因(DNA片段)在体 外与基因运载体接合成具有自我复制能力的DNA 分子——复制子(replicon),继而通过转化或转染 入另一细胞或生物体内,然后筛选出含有目的基 因的细胞,再进行扩增提取,获得大量重新组合 的DNA分子,也称基因克隆或 DNA克隆。 (常用的载体有:质粒,λ噬菌体,粘粒,BAC, YAC,PI等)。
分子生物学技术新进展
二十一世纪医学发展的主要特点之一是对生命现象和
疾病本质的认识逐渐向分子水平深入。最近十年,分子生 物技术已成为医学领域极其有力的研究工具,基因工程技 术、人类基因组计划与核酸序列测定技术、基因诊断与基 因体外扩增技术、生物芯片技术、分子纳米技术在医学研 究中和药物研制与开发中得到广泛应用,使得分子生物医 学技术取得了突破性进展,也给医学带来了崭新的局面, 分子生物技术已经成为现代医学的前沿和热点。
• 用于个体识别、亲缘关系鉴定、器官移植术
前组织配型、基因连锁分析等等。
• 应用PCR 技术检测孕妇血液判别胎儿性别获 得成功的报道。
3.基因芯片(gene chip)
• 样品中痕量病原微生物的迅速检出、分类及分型。 • 同时分析样品中可能存在的多种不同基因变异方 式。 • 分析样品中耐药菌株的存在和个体对药物或毒物
蛋白质芯片(protein chip)
是将高度密集排列的蛋白分子作为探针点阵
固定在固相支持物上,当与待测蛋白样品反应时,