2020高考数学二轮复习 专题二 立体几何教学案
2020高考数学复习专题 立体几何教案

第1讲空间几何体空间几何体与三视图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.由三视图还原几何体的步骤一般先由俯视图确定底面,再利用正视图与侧视图确定几何体.[典例分析](1)下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线(2)一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( )【解析】(1)A.如图(1)所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥,故A错误;B.如图(2)(3)所示,若△ABC不是直角三角形,或是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥,故B错误;C.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由过中心和顶点的截面知,若以正六边形为底面,侧棱长必然要大于底面边长,故C错误;D.根据圆锥母线的定义知,故D正确.故选D.(2)因为一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是以正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为A.【答案】(1)D (2)A(1)判断与几何体结构特征有关问题的技巧把握几何体的结构特征,熟悉空间几何体性质,能够根据条件构建几何模型,从而判断命题的真假,有时也可通过反例对结构特征进行辨析.(2)已知几何体识别三视图的技巧已知几何体画三视图时,可先找出各个顶点在投影面上的投影,然后再确定线在投影面的实虚.[针对练习]1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是( )A.2 B.3 C.4 D.5解析:选C.由三视图知,该几何体是如图所示的四棱锥PABCD,易知四棱锥PABCD的四个侧面都是直角三角形,即此几何体各面中直角三角形的个数是4.2.图①是棱长为1的正方体ABCDA1B1C1D1截去三棱锥A1AB1D1后得到的几何体,将其绕着棱DD1所在的直线逆时针旋转45°,得到如图②所示的几何体,该几何体的正视图为( )解析:选B.由题意可知,该几何体的正视图是长方形,底面对角线DB 在正视图中的长为2,棱CC 1在正视图中为虚线,D 1A ,B 1A 在正视图中为实线,故该几何体的正视图为B.空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S 柱侧=ch (c 为底面周长,h 为高);(2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高); (3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高). 2.柱体、锥体、台体的体积公式(1)V 柱体=Sh (S 为底面面积,h 为高);(2)V 锥体=13Sh (S 为底面面积,h 为高); (3)V 台=13(S +SS ′+S ′)h (S ,S ′分别为上下底面面积,h 为高)(不要求记忆). [典例分析](1)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324(2)如图(1),把棱长为1的正方体沿平面AB 1D 1和平面A 1BC 1截去部分后,得到如图(2)所示几何体,则该几何体的体积为( )A.34B.1724C.23D.12(3)如图为某几何体的三视图,则该几何体的体积为________cm 3,表面积为________cm 2.【解析】 (1)由三视图可知,该几何体是一个直五棱柱,所以其体积V =12×(4×3+2×3+6×6)×6=162.故选B .(2)把棱长为1的正方体沿平面AB 1D 1和平面A 1BC 1截去部分后,得到几何体的体积:V =VABCD A 1B 1C 1D 1-VA A 1B 1D 1-VB A 1B 1C 1+VN A 1B 1M=1×1×1-13×⎝ ⎛⎭⎪⎫12×1×1×1-13×⎝ ⎛⎭⎪⎫12×1×1×1+13×⎝ ⎛⎭⎪⎫12×22×22×12=1724.(3)由已知三视图得到几何体是一个底面直角边分别为3,4的直角三角形,高为5的三棱柱,割去一个底面与三棱柱底面相同,高为3的三棱锥,所以该几何体的体积为:12×3×4×5-13×12×3×4×3=24 cm 3; 表面积为:12×(2+5)×4+12×(2+5)×3+12×3×4+5×5+34×52=1112+2543 cm 2. 【答案】 (1)B (2)B (3)241112+2534(1)求解几何体的表面积及体积的技巧①求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.②求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.(2)根据几何体的三视图求其表面积与体积的三个步骤第一步:根据给出的三视图判断该几何体的形状.第二步:由三视图中的大小标示确定该几何体的各个度量.第三步:套用相应的面积公式与体积公式计算求解.[针对练习]1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1D.3π2+3 解析:选A.由几何体的三视图可得,该几何体是由半个圆锥和一个三棱锥组成的,故该几何体的体积V =13×12π×3+13×12×2×1×3=π2+1,故选A. 2.某几何体的三视图如图所示,且该几何体的体积是 3 cm 3,则正视图中的x 的值是________cm ,该几何体的表面积是________cm 2.解析:由三视图可知,该几何体是底面为直角梯形的四棱锥,其直观图如图所示,由棱锥的体积公式得,13×12×(1+2)×3x =3⇒x =2,侧面ADS ,CDS ,ABS 为直角三角形,侧面BCS 是以BC 为底的等腰三角形,所以该几何体的表面积为S =12[(1+2)×3+2×2+3×2+1×7+2×7]=53+37+42. 答案:2 53+37+42多面体与球的切接问题与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.[典例分析](1)已知一个棱长为4的正方体,过正方体中两条互为异面直线的棱的中点作直线,则该直线被正方体的外接球球面截在球内的线段长是( )A .211B .210C .6D .4 2(2)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.【解析】 (1)如图所示,球的半径为23,球心(2,2,2),M (4,0,2),N (0,2,4),MN 的中点(2,1,3),球心到MN 的距离为2,所以该直线被正方体的外接球球面截在球内的线段长是212-2=210,故选B.(2)设球O 的半径为R ,因为SC 为球O 的直径,所以点O 为SC 的中点,连接AO ,OB ,因为SA =AC ,SB =BC ,所以AO ⊥SC ,BO ⊥SC ,因为平面SCA ⊥平面SCB ,平面SCA ∩平面SCB=SC ,所以AO ⊥平面SCB ,所以V S ABC =V A SBC =13×S △SBC ×AO =13×(12×SC ×OB )×AO ,即9=13×(12×2R ×R )×R ,解得R =3,所以球O 的表面积为S =4πR 2=4π×32=36π. 【答案】 (1)B (2)36π多面体与球接、切问题的求解策略(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内接、外切的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,则4R 2=a 2+b 2+c 2求解.[针对练习]1.如图,这是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为( )A.20π3 B .8πC .9πD.19π3 解析:选D.如图,该几何体为三棱锥A BCD ,设三棱锥外接球的球心为O ,O 1,O 2分别为△BCD ,△ABD 的外心,依题意得,OO 1=36AB =33,O 1D =12CD =52,所以球的半径R =OO 21+O 1D 2= 1912,所以该几何体外接球的表面积S =4πR 2=19π3.2.在正三棱锥S ABC 中,M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S ABC 的体积为________,其外接球的表面积为________.解析:取AC 中点D ,则SD ⊥AC ,DB ⊥AC ,又因为SD ∩BD =D ,所以AC ⊥平面SDB ,因为SB ⊂平面SBD ,所以AC ⊥SB ,又因为AM ⊥SB ,AM ∩AC =A ,所以SB ⊥平面SAC ,所以SA ⊥SB ,SC ⊥SB ,根据对称性可知SA ⊥SC ,从而可知SA ,SB ,SC 两两垂直,将其补为立方体,其棱长为2,所以V S ABC =S C ASB =13×12×2×2×2=43,其外接球即为立方体的外接球,半径r =32×2=3,表面积S =4π×3=12π. 答案:4312π 专题强化训练1.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA 1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA 1为底面矩形的一边,则这样的阳马的个数是( )A .4B .8C .12D .16解析:选D.如图,以AA 1为底面矩形一边的四边形有AA 1C 1C 、AA 1B 1B 、AA 1D 1D 、AA 1E 1E 这4个,每一个面都有4个顶点,所以阳马的个数为16个.故选D.2.正方体ABCD A 1B 1C 1D 1中,E 为棱BB 1的中点(如图),用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的正视图为( )解析:选C.过点A ,E ,C 1的平面与棱DD 1相交于点F ,且F 是棱DD 1的中点,截去正方体的上半部分,剩余几何体的直观图如图所示,则其正视图应为选项C.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C .323 cm 3D .403 cm 3 解析:选C.由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm的正四棱锥,体积V 2=13×2×2×2=83(cm 3),所以该几何体的体积V =V 1+V 2=323(cm 3). 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱长等于( )A .34B .41C .5 2D .215解析:选C.由正视图、侧视图、俯视图的形状,可判断该几何体为三棱锥,形状如图,其中SC ⊥平面ABC ,AC ⊥AB ,所以最长的棱长为SB =5 2.5.某几何体的三视图如图所示,则该几何体的体积是( )A .15π2B .8π C.17π2D .9π 解析:选B.依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接恰好形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,选B.6.如图,圆柱内有一个直三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形.如果三棱柱的体积为123,圆柱的底面直径与母线长相等,则圆柱的侧面积为( )A .12πB .14πC .16πD .18π解析:选C.设圆柱的底面半径为R ,则三棱柱的底面边长为3R ,由34(3R )2·2R =123,得R =2,S 圆柱侧=2πR ·2R =16π.故选C.7.某几何体的三视图如图所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )A .48B .54C .64D .60解析:选D.根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.8.在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A.4πB.9π2C.6πD.32π3解析:选B.由题意可得若V 最大,则球与直三棱柱的部分面相切,若与三个侧面都相切,可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底面相切,此时球的半径R =32,该球的体积最大,V max =43πR 3=4π3×278=9π2.9.某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为( )A.12B.24C.22 D.32解析:选C.依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-(a2a)2=22,选C. 10.已知圆柱OO 1的底面半径为1,高为π,ABCD 是圆柱的一个轴截面.动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.现将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则y =f (θ)的图象大致为( )解析:选A.将圆柱的侧面沿轴截面ABCD 展平,则曲线Γ是展开图形(即矩形)的对角线,根据题意,将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则f (θ)应当是一次函数的一段,故选A.11.某空间几何体的三视图如图所示,则该几何体的体积是________;表面积是________.解析:根据三视图可得,该几何体是长方体中的四棱锥C BB 1D 1D ,由三视图可得:AB =2,BC =2,BB 1=4,VC BB 1D 1D =23×12×2×2×4=163,SC BB 1D 1D =12×2×2+22×4+12×2×4+12×2×4+12×22×18=16+8 2.答案:16316+8 212.某几何体的三视图如图所示(单位:cm),则该几何体的体积为________ cm 3,表面积为________cm 2.解析:由三视图可知:该几何体是由一个半球去掉14后得到的几何体.所以该几何体的体积=34×12×43×π×13=π2cm 3.表面积=34×12×4π×12+12×π×12+34×π×12=11π4cm2.答案:π211π413.已知球O的表面积为25π,长方体的八个顶点都在球O的球面上,则这个长方体的表面积的最大值等于________.解析:设球的半径为R,则4πR2=25π,所以R=52,所以球的直径为2R=5,设长方体的长、宽、高分别为a、b、c,则长方体的表面积S=2ab+2ac+2bc≤a2+b2+a2+c2+b2+c2=2(a2+b2+c2)=50.答案:5014.某几何体的三视图如图所示,当xy取得最大值时,该几何体的体积是____________.解析:分析题意可知,该几何体为如图所示的四棱锥PABCD,CD=y2,AB=y,AC=5,CP=7,BP=x,所以BP2=BC2+CP2,即x2=25-y2+7,x2+y2=32≥2xy,则xy≤16,当且仅当x=y=4时,等号成立.此时该几何体的体积V=13×2+42×3×7=37.答案:3715.在正方体ABCDA1B1C1D1中,E是AA1的中点,则异面直线BE与B1D1所成角的余弦值等于________,若正方体棱长为1,则四面体BEB1D1的体积为________.解析:取CC1中点F,连接D1F,B1F,则BE綊D1F,所以∠B1D1F为异面直线BE与B1D1所成的角.设正方体棱长为1,则B1D1=2,B1F=D1F=1+14=52.所以cos∠B1D1F=12B1D1D1F=2252=105.VBEB1D1=VD1BB1E=13S△BB1E·A1D1=13×12×1×1×1=16.答案:105 1616.已知棱长均为a 的正三棱柱ABC A 1B 1C 1的六个顶点都在半径为216的球面上,则a 的值为________.解析:设O 是球心,D 是等边三角形A 1B 1C 1的中心,则OA 1=216,因为正三棱柱ABC A 1B 1C 1的所有棱长均为a ,所以A 1D =32a ×23=33a ,OD =a 2,故A 1D 2+OD 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫a 22=⎝ ⎛⎭⎪⎫2162,得712a 2=2136,即a 2=1,得a =1.答案:117.已知底面为正三角形的三棱柱内接于半径为1的球,则此三棱柱的体积的最大值为________.解析:如图,设球心为O ,三棱柱的上、下底面的中心分别为O 1,O 2,底面正三角形的边长为a ,则AO 1=23×32a =33a .由已知得O 1O 2⊥底面, 在Rt △OAO 1中,由勾股定理得OO 1=12-⎝ ⎛⎭⎪⎫33a 2=3·3-a 23,所以V 三棱柱=34a 2×2×3·3-a 23=3a 4-a62,令f (a )=3a 4-a 6(0<a <2), 则f ′(a )=12a 3-6a 5=-6a 3(a 2-2),令f ′(a )=0,解得a = 2.因为当a ∈(0,2)时,f ′(a )>0;当a ∈(2,2)时,f ′(a )<0,所以函数f (a )在(0,2)上单调递增,在(2,2)上单调递减.所以f (a )在a = 2 处取得极大值.因为函数f (a )在区间(0,2)上有唯一的极值点,所以a = 2 也是最大值点.所以(V 三棱柱)max=3×4-82=1. 答案:118.如图,四棱锥P ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.解:(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面PAD .(2)取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN , 则PN ⊥CD ,所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3. 所以四棱锥P ABCD 的体积V =13×2×(2+4)2×23=4 3.19.如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D .现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′PBCD 的体积最大时,求PA 的长;(2)若P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE . 解:(1)设PA =x ,则PA ′=x , 所以V A ′PBCD =13PA ′·S 底面PBCD =13x ⎝ ⎛⎭⎪⎫2-x 22.令f (x )=13x ⎝ ⎛⎭⎪⎫2-x 22=2x 3-x36(0<x <2),则f ′(x )=23-x22.当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎪⎫0,233233 ⎝ ⎛⎭⎪⎫233,2 f ′(x )f (x ) 单调递增 极大值单调递减由上表易知,当PA =x =233时,V A ′PBCD 取最大值.(2)证明:取A ′B 的中点F ,连接EF ,FP . 由已知,得EF 綊12BC 綊PD .所以四边形EFPD 是平行四边形, 所以ED ∥FP .因为△A ′PB 为等腰直角三角形, 所以A ′B ⊥PF .所以A ′B ⊥DE .第2讲空间点、线、面的位置关系空间线面位置关系的判断空间线面位置关系判断的常用方法(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.[典例分析](1)已知四边形ABCD为梯形,AB∥CD,l为空间一直线,则“l垂直于两腰AD,BC”是“l垂直于两底AB,CD”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)【解析】(1)四边形ABCD为梯形,AB∥CD,l为空间一直线,则“l垂直于两腰AD,BC”,又AD与BC相交,所以l⊥平面ABCD⇒l垂直于两底AB,CD,反之不一定成立.所以“l垂直于两腰AD,BC”是“l垂直于两底AB,CD”的充分不必要条件.故选A.(2)对于命题①,可运用长方体举反例证明其错误:如图,不妨设AA′为直线m,CD为直线n,ABCD所在的平面为α,ABC′D′所在的平面为β,显然这些直线和平面满足题目条件,但α⊥β不成立.命题②正确,证明如下:设过直线n的某平面与平面α相交于直线l,则l∥n,由m⊥α知m⊥l,从而m⊥n,结论正确.由平面与平面平行的定义知命题③正确.由平行的传递性及线面角的定义知命题④正确.【答案】(1)A (2)②③④判断与空间位置关系有关的命题真假的方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.(2)借助于反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断.(3)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.[针对练习]1.已知直线m、n与平面α,β,下列命题正确的是( )A.m∥α,n∥β且α∥β,则m∥nB.m⊥α,n∥β且α⊥β,则m⊥nC.α∩β=m,m⊥n且α⊥β,则n⊥αD.m⊥α,n⊥β且α⊥β,则m⊥n解析:选D.选项A中,直线m与n还有互为异面的可能;选项B中,直线m与n还有相互平行的可能;选项C中,还有n⊂α的可能;选项D正确,故选D.2.如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A、D分别是BF、CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1).将四边形ADEF沿AD折起,连接AC、CF、BE、BF、CE(如图2),在折起的过程中,下列说法错误的是( )A.AC∥平面BEFB.B、C、E、F四点不可能共面C.若EF⊥CF,则平面ADEF⊥平面ABCDD.平面BCE与平面BEF可能垂直解析:选D.法一:A选项,连接BD,交AC于点O,取BE的中点M,连接OM,FM,易证四边形AOMF是平行四边形,所以AO∥FM,因为FM⊂平面BEF,AC⊄平面BEF,所以AC∥平面BEF;B选项,若B、C、E、F四点共面,因为BC ∥AD ,所以BC ∥平面ADEF ,可推出BC ∥EF ,又BC ∥AD ,所以AD ∥EF ,矛盾;C 选项,连接FD ,在平面ADEF 内,易得EF ⊥FD ,又EF ⊥CF ,FD ∩CF =F ,所以EF ⊥平面CDF ,所以EF ⊥CD ,又CD ⊥AD ,EF 与AD 相交,所以CD ⊥平面ADEF ,所以平面ADEF ⊥平面ABCD ;D 选项,延长AF 至G ,使AF =FG ,连接BG 、EG ,易得平面BCE ⊥平面ABF ,过F 作FN ⊥BG 于N ,则FN ⊥平面BCE ,若平面BCE ⊥平面BEF ,则过F 作直线与平面BCE 垂直,其垂足在BE 上,矛盾.综上,选D.法二:构造正方体如图,结合正方体的性质知平面BCE 与平面BEF 不可能垂直.空间平行、垂直关系的证明及求空间角1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α. (2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b . (3)面面平行的判定定理:a ⊂β,b ⊂β,a ∩b =P ,a ∥α,b ∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b . 2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m ⊂α,n ⊂α,m ∩n =P ,l ⊥m ,l ⊥n ⇒l ⊥α. (2)线面垂直的性质定理:a ⊥α,b ⊥α⇒a ∥b . (3)面面垂直的判定定理:a ⊂β,a ⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒ a ⊥β. 3.空间角(1)异面直线所成的角,范围α∈⎝⎛⎦⎥⎤0,π2.(2)直线与平面所成的角:如图l ∩α=A ,P ∈l ,过点P 作PO ⊥α交α于O ,连接AO ,则∠PAO 为直线l 与平面α所成的角,范围θ∈⎣⎢⎡⎦⎥⎤0,π2. (3)二面角如图,过二面角αl β的棱l 上一点O 在两个半平面内分别作BO ⊥l ,AO ⊥l ,则∠AOB 就叫做二面角αl β的平面角,范围θ∈[0,π].当θ=π2时,二面角叫做直二面角.[典例分析](1)设三棱锥VABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角PACB 的平面角为γ,则( )A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β(2)如图,已知三棱柱ABCA1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.①证明:EF⊥BC;②求直线EF与平面A1BC所成角的余弦值.【解】(1)选B.由题意,不妨设该三棱锥的侧棱长与底面边长相等,因为点P是棱VA 上的点(不含端点),所以直线PB与平面ABC所成的角β小于直线VB与平面ABC所成的角,而直线VB与平面ABC所成的角小于二面角PACB的平面角γ,所以β<γ;因为AC⊂平面ABC,所以直线PB与直线AC所成的角α大于直线PB与平面ABC所成的角β,即α>β.故选B.(2)法一:①证明:如图,连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.所以BC⊥平面A1EF.因此EF⊥BC.②取BC的中点G,连接EG,GF,则EGFA1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGFA1为矩形.连接A1G交EF于O,由①得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1,所以EF在平面A1BC上的射影在直线A1G上.则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC=4,则在Rt△A1EG中,A1E=23,EG= 3.由于O 为A 1G 的中点,故EO =OG =A 1G2=152, 所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.法二:①连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点, 所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E xyz .不妨设AC =4,则A 1(0,0,23),B (3,1,0), B 1(3,3,23),F (32,32,23), C (0,2,0).因此,EF →=⎝ ⎛⎭⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC →=0得EF ⊥BC .②设直线EF 与平面A 1BC 所成角为θ.由①可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧BC →·n =0,A 1C →·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1,3,1),故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →|·|n |=45.因此,直线EF 与平面A 1BC 所成角的余弦值为35.(1)平行关系及垂直关系的转化空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.(2)求空间角的三个步骤①一作:根据定义作平行线或垂线,用作图法作出要求的角. ②二证:证明所作的角就是要求的角.③三求:把空间角问题转化为(三角形)平面问题,解三角形,求出该角,注意角的范围,判断所求角是此角还是它的补角.[针对练习]1.如图,AB =BE =BC =2AD =2,且AB ⊥BE ,∠DAB =60°,AD ∥BC ,BE ⊥AD ,(1)求证:平面ADE ⊥平面BDE ;(2)求直线AD 与平面DCE 所成角的正弦值. 解:(1)证明:因为AB =2AD ,∠DAB =60°, 所以AD ⊥DB ,又BE ⊥AD ,且BD ∩BE =B ,所以AD ⊥平面BDE ,又AD ⊂平面ADE , 所以平面ADE ⊥平面BDE .(2)因为BE ⊥AD ,AB ⊥BE ,所以BE ⊥平面ABCD , 所以点E 到平面ABCD 的距离就是线段BE 的长为2, 设AD 与平面DCE 所成角为θ,点A 到平面DCE 的距离为d ,由V A DCE =V E ADC 得:13×d ×S △CDE =13×|BE |×S △ACD ,可解得d =3010,而AD =1,则sin θ=dAD =3010, 故直线AD 与平面DCE 所成角的正弦值为3010. 2.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°.(1)求证:AD⊥BC;(2)求异面直线BC与MD所成角的余弦值.解:(1)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,AD⊂平面ABD,可得AD⊥平面ABC,故AD⊥BC.(2)如图,取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM=AD2+AM2=13.因为AD⊥平面ABC,故AD⊥AC.在Rt △DAN中,AN=1,故DN=AD2+AN2=13.在等腰三角形DMN中,MN=1,可得cos∠DMN=12MNDM=1326.所以异面直线BC与MD所成角的余弦值为1326.空间几何中的“ 翻折”问题[核心提炼]由平面图形“翻折”为空间图形,要求解(证明)该空间图形中的某些元素所对应的量或对应的位置关系,首先看翻折前后线面位置关系的变化,根据翻折的过程理清翻折前后位置关系中没有变化的量是哪些,发生变化的量是哪些,这些不变的量和变化的量反映了翻折后的空间图形的结构特征,求解问题时要综合考虑翻折前后的图形.[典例分析](1)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=5,∠ADC=90°.沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是__________.(2)如图,在矩形ABCD中,AB=1,BC=2,E为BC的中点,F为线段AD上的一点,且AF=32.现将四边形ABEF沿直线EF翻折,使翻折后的二面角A′EFC的余弦值为23.①求证:A′C⊥EF;②求直线A′D与平面ECDF所成角的大小.【解】(1)作BE∥AC,BE=AC,连接D′E,则∠D′BE为所求的角或其补角,作D′N⊥AC 于点N,设M为AC的中点,连接BM,则BM⊥AC,作NF∥BM交BE于F,连接D′F,设∠D′NF =θ,因为D′N=56=306,BM=FN=152=302,所以D′F2=253-5cos θ,因为AC⊥D′N,AC⊥FN,所以D′F⊥AC,所以D′F⊥BE,又BF=MN=63,所以在Rt△D′FB 中,D′B2=9-5cos θ,所以cos ∠D′BE=BFD′B=639-5cos θ≤66,当且仅当θ=0°时取“=”.故填66.(2)①证明:连接AC交EF于M点,由平面几何知识可得AC=5,EF=52,以及AMMC=FMME=32,则有AM=355,MC=255,MF=3510,故有AM2+MF2=AF2,则AC⊥EF,于是,A′M⊥EF,CM⊥EF,而A′M∩CM=M,故EF⊥平面A′MC,而A′C⊂平面A′MC,故A′C⊥EF.②由①知,二面角A′EFC的平面角就是∠A′MC,即cos ∠A ′MC =23,根据余弦定理,可求得A ′C =1, 因为A ′C 2+MC 2=A ′M 2,所以A ′C ⊥MC , 而A ′C ⊥EF ,可知A ′C ⊥平面ECDF ,因此,∠A ′DC 就是直线A ′D 与平面ECDF 所成的角. 由于A ′C =CD =1,故直线A ′D 与平面ECDF 所成的角为π4.解决与翻折有关的问题的两个关键(1)要明确翻折前后的变化量和不变量.一般情况下,线段的长度是不变量,而位置关系往往会发生变化.(2)在解决问题时,要比较翻折前后的图形,既要分析翻折后的图形,也要分析翻折前的图形.[针对练习]1.如图,四边形ABCD 是矩形,沿直线BD 将△ABD 翻折成△A ′BD ,异面直线CD 与A ′B 所成的角为α,则( )A .α<∠A ′CAB .α>∠A ′CAC .α<∠A ′CDD .α>∠A ′CD解析:选B.因为AB ∥CD ,所以∠A ′BA 为异面直线CD 与A ′B 所成的角.假设AB =BC =1,平面A ′BD ⊥平面ABCD . 连接AC 交BD 于点O ,连接A ′A ,A ′C ,A ′O , 则A ′O ⊥平面ABCD ,A ′O =AO =BO =CO =DO =12AC =22, 所以A ′A =A ′C =A ′B =A ′D =1, 所以△A ′BA ,△A ′CD 是等边三角形, △A ′CA 是等腰直角三角形,。
2020版高考数学二轮复习第2部分专题4立体几何第2讲空间向量与立体几何教案理

第2讲 空间向量与立体几何[做小题——激活思维]1.在正方体A 1B 1C 1D 1ABCD 中,AC 与B 1D 所成角的大小为( ) A.π6 B.π4 C.π3D.π2D [如图,连接BD ,易证AC ⊥平面BB 1D , ∴AC ⊥B 1D ,∴AC 与B 1D 所成角的大小为π2.] 2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135°D .90°C [∵m =(0,1,0),n =(0,1,1), ∴|m |=1,|n |=2,m ·n =1,∴cos〈m ,n 〉=m ·n |m ||n |=12=22,设两平面所成的二面角为α,则 |cos α|=22,∴α=45°或135°,故选C.] 3.用a ,b ,c 表示空间中三条不同的直线,γ表示平面,给出下列命题: ①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ∥b ,a ∥c ,则b ∥c ; ③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b . 其中真命题的序号是( ) A .①② B .②③ C .①④D .②④D [对于①,正方体从同一顶点引出的三条直线a ,b ,c ,满足a ⊥b ,b ⊥c ,但是a ⊥c ,所以①错误;对于②,若a ∥b ,a ∥c ,则b ∥c ,满足平行线公理,所以②正确;对于③,平行于同一平面的两条直线的位置关系可能是平行、相交或者异面,所以③错误;对于④,由垂直于同一平面的两条直线平行,知④正确.故选D.]4.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.π6[设l 与α所成的角为θ,则 sin θ=|cos 〈m ,n 〉|=12,又θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=π6.][扣要点——查缺补漏]1.证明线线平行和线线垂直的常用方法(1)证明线线平行:①利用平行公理;②利用平行四边形进行平行转换;③利用三角形的中位线定理;④利用线面平行、面面平行的性质定理进行平行转换.如T 3.(2)证明线线垂直:①利用等腰三角形底边上的中线即高线的性质;②勾股定理;③线面垂直的性质.2.证明线面平行和线面垂直的常用方法(1)证明线面平行:①利用线面平行的判定定理;②利用面面平行的性质定理. (2)证明线面垂直:①利用线面垂直的判定定理;②利用面面垂直的性质定理. 3.异面直线所成的角求法 (1)平移法:解三角形.(2)向量法:注意角的范围.如T 1. 4.二面角的求法cos θ=cos 〈m ,n 〉=m ·n|m ||n |,如T 2.5.线面角的求法sin θ=|cos 〈m ,n 〉|,如T 4.利用空间向量求空间角(5年15考)[高考解读] 主要考查通过建立空间直角坐标系,解决空间图形中的线线角、线面角和面面角的求解,考查学生的空间想象能力、运算能力、三种角的定义及求法等.(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C 为30°,求PC 与平面PAM 所成角的正弦值.切入点:(1)借助勾股定理,证明PO ⊥OB ;(2)建立空间直角坐标系,利用二面角M PA C 为30°求出点M 的坐标,进而求出PC 与平面PAM 所成角的正弦值.[解](1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面ABC . (2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面PAC 的一个法向量OB →=(2,0,0).设M (a,2-a,0)(0≤a ≤2),则AM →=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +-a y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23a -2a -2+3a 2+a2.由已知可得|cos 〈OB →,n 〉|=32,所以23|a -4|2a -2+3a 2+a2=32, 解得a =-4(舍去),a =43,所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. [教师备选题]1.(2015·全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.[解](1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 因为EG平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G xyz .由(1)可得A (0,-3,0),E (1,0,2),F -1,0,22,C (0,3,0), 所以A E →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈A E →,CF →〉=A E →·CF →|A E →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 2.(2019·全国卷Ⅰ)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A MA 1N 的正弦值.[解](1)连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1DC ,可得B 1C A 1D ,故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥D A.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0.所以⎩⎨⎧-x +3y -2z =0,-4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0.所以⎩⎨⎧-3q =0,-p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m·n |m||n|=232×5=155,所以二面角A MA 1N 的正弦值为105.1.利用向量法求线面角的两种方法(1)法一:分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)法二:通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.2.利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.提醒:判断二面角的平面角是锐角还是钝角,可结合图形进行.1.[一题多解](以圆柱为载体)如图,圆柱的轴截面ABCD 为正方形,E 为弧BC 的中点,则异面直线AE 与BC 所成角的余弦值为 ( )A.33 B.55 C.306D.66D [法一:(平移法)取BC 的中点H ,连接EH ,AH ,∠EHA =90°,设AB =2,则BH =HE =1,AH =5,所以AE =6,连接ED ,ED =6,因为BC ∥AD ,所以异面直线AE 与BC 所成角即为∠EAD ,在△EAD 中cos∠EAD =6+4-62×2×6=66,故选D.法二:(向量法)取圆柱底面的圆心O 为原点,建立空间直角坐标系O xyz ,设AB =2,则A (1,0,0),B (1,0,2),C (-1,0,2),E (0,1,2),∴A E →=(-1,1,2),BC →=(-2,0,0)∴cos〈A E →,BC →〉=26×2=66,故选D.] 2.(以棱柱为载体)在三棱柱ABC A1B 1C 1中, AB ⊥平面BCC 1B 1,∠BCC 1=π3, AB =BC =2, BB 1=4,点D 在棱CC 1上,且CD =λCC 1(0<λ≤1).建立如图所示的空间直角坐标系.(1)当λ=12时,求异面直线AB 1与A 1D 的夹角的余弦值;(2)若二面角A B 1D A 1的平面角为π3,求λ的值.[解](1)易知A ()0,0,2, B 1()0,4,0, A 1()0,4,2. 当λ=12时, 因为BC =CD =2, ∠BCC 1=π3,所以C ()3,-1,0,D ()3,1,0.所以AB 1→=()0,4,-2, A 1D →=()3,-3,-2. 所以cos 〈AB 1→,A 1D →〉=AB 1→·A 1D→||AB 1→||A 1D →=0×3+4×()-3+()-2×()-242+()-22·()32+()-32+()-22=-55. 故异面直线AB 1与A 1D 的夹角的余弦值为55. (2)由CD =λCC 1可知, D ()3,4λ-1,0, 所以DB 1→=()-3,5-4λ,0, 由(1)知, AB 1→=()0,4,-2.设平面AB 1D 的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧AB 1→·m =0,DB 1→·m =0,即⎩⎨⎧4y -2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =2,所以平面AB 1D 的一个法向量为m =⎝ ⎛⎭⎪⎫5-4λ3,1,2.设平面A 1B 1D 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧B 1A 1→·n =0,DB 1→·n =0,即⎩⎨⎧2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =0,所以平面A 1B 1D 的一个法向量为n =⎝ ⎛⎭⎪⎫5-4λ3,1,0.因为二面角A B 1D A 1的平面角为π3,所以||cos 〈m ,n 〉=|m·n |||m ||n=⎪⎪⎪⎪⎪⎪5-4λ3×5-4λ3+1×1+2×0⎝ ⎛⎭⎪⎫5-4λ32+12+22·⎝ ⎛⎭⎪⎫5-4λ32+12=12, 即()5-4λ2=1,解得λ=32(舍)或λ=1,故λ的值为1.3.(以棱台为载体)如图,在三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.[解](1)证明:在三棱台DEF ABC 中, 由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形, 可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD平面ABED ,所以BD ∥平面FGH .(2)设AB =2,则CF =1.在三棱台DEF ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC . 又FC ⊥平面ABC , 所以DG ⊥平面ABC .连接GB ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 的中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G xyz .所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝⎛⎭⎪⎫22,22,0,F (0,2,1). 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的法向量,则 由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0), 所以cos 〈GB →,n 〉=GB →·n |GB →|·|n |=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°. 4.(以五面体为载体)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D AF E 与二面角C BE F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E BC A 的余弦值.[解](1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,DF ∩EF =F , 所以AF ⊥平面EFDC .又AF 平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF . 以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G xyz .由(1)知∠DEF 为二面角D AF E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得,AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C BE F 的平面角,∠CEF =60°.从而可得C (-2,0,3).连接AC ,所以E C →=(1,0,3),E B →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·E C →=0,n ·E B →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E BC A 的余弦值为-21919.利用空间向量解决折叠性问题(5年3考)[高考解读] 以平面图形的翻折为载体,考查空间想象能力,在线面位置关系的证明中考查逻辑推理能力,在空间角的求解中,考查转化化归及数学运算的核心素养.1.(2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 切入点:(1)对照折叠前后的线面关系给予证明; (2)建立空间直角坐标系通过向量法求解. [解](1)由已知可得,BF ⊥PF ,BF ⊥EF ,又PF 平面PEF ,EF平面PEF ,且PF ∩EF =F ,所以BF ⊥平面PEF .又BF平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD . 以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,PF 2+PE 2=EF 2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. [教师备选题](2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B D ′A C 的正弦值. [解](1)证明:由已知得AC ⊥BD ,AD =CD .又由AE =CF 得A EAD =CFCD,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC ,得OH DO =A E AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧ m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧ 3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m·n |m||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B D ′A C 的正弦值是29525.平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变和不变,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(以梯形为载体)如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 中点,以AE 为折痕把△ADE 折起,使点D 到达点P 的位置(P 平面ABCE ).(1)证明:AE ⊥PB ;(2)若直线PB 与平面ABCE 所成的角为π4,求二面角A PE C 的余弦值.[解](1)证明:连接BD ,设AE 的中点为O , ∵AB ∥CE ,AB =CE =12CD ,∴四边形ABCE 为平行四边形,∴AE =BC =AD =DE , ∴△ADE ,△ABE 为等边三角形, ∴OD ⊥AE ,OB ⊥AE , 又OP ∩OB =O , ∴AE ⊥平面POB ,又PB 平面POB ,∴AE ⊥PB .(2)在平面POB 内作PQ ⊥平面ABCE ,垂足为Q ,则Q 在直线OB 上, ∴直线PB 与平面ABCE 夹角为∠PBO =π4,又OP =OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即PO ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系, 则P ⎝ ⎛⎭⎪⎫0,0,32,E ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫1,32,0,∴P E →=⎝ ⎛⎭⎪⎫12,0,-32,E C →=⎝ ⎛⎭⎪⎫12,32,0,设平面PCE 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·P E →=0,n 1·E C →=0,即⎩⎪⎨⎪⎧12x -32z =0,12x +32y =0,令x =3得n 1=(3,-1,1), 又OB ⊥平面PAE ,∴n 2=(0,1,0)为平面PAE 的一个法向量,设二面角A EP C 为α,则|cos α|=cos 〈n 1,n 2〉=|n 1·n 2||n 1||n 2|=15=55,易知二面角A EP C 为钝角,所以cos α=-55.立体几何的综合问题(5年3考)[高考解读] 将圆的几何性质、空间线面的位置关系、空间几何体的体积等知识融于一体,综合考查学生的逻辑推理能力.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 切入点:(1)借助圆的几何性质得出DM ⊥CM ,进而借助面面垂直的判定求解. (2)借助体积公式先探寻M 点的位置,建系借助坐标法求解. [解](1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz . 当三棱锥M ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2).DA →是平面MCD 的法向量,因为cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.存在性问题的求解策略(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“是否有解”“是否有规定范围内的解”等.(2)对于位置探究型问题,通常是借助向量,引入参数,综合条件和结论列方程,解出参数,从而确定位置.(3)在棱上是否存在一点时,要充分利用共线向量定理.(探索位置型)如图所示,四棱锥P ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°,且AB =AP .(1)若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;(2)在线段AD 上是否存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由. [解] (1)以A 为坐标原点,建立空间直角坐标系A xyz ,如图1所示.图1在平面ABCD 内,作CE ∥AB ,交AD 于点E ,则CE ⊥AD . 在Rt△CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 设AB =AP =t (t >0),则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,∴E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), ∴CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥CD →,n ⊥PD →得⎩⎪⎨⎪⎧-x +y =0,-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). cos 60°=|n ·PB →||n |·|PB →|,即|2t 2-4t |t 2+t 2+-t 2·2t 2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),∴AB =45.(2)法一:(向量法)假设在线段AD 上存在一点G (如图2所示),使得点G 到点P ,B ,C ,D 的距离都相等.设G (0,m,0)(其中0≤m ≤4-t ),则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →(0,-m ,t ).图2由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m . ①由|GD →|=|GP →|,得(4-m -t )2=m 2+t 2. ② 由①,②消去t ,化简得m 2-3m +4=0. ③由于方程③没有实数根,所以在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等. 法二:(几何法)假设在线段AD 上存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等.图3由GC =GD 得∠GCD =∠GDC =45°, ∴∠CGD =90°,即CG ⊥AD , ∴GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 如图3所示,在Rt△ABG 中,GB =AB 2+AG 2=λ2+-λ2=2⎝⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.∴在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等.。
高中数学高考二轮复习高考中的立体几何教案

第二讲高考中的立体几何(解答题型)对应学生用书P052[必记定理]1.线面平行与垂直的判定定理、性质定理(1)异面直线所成的角:设a,b分别为异面直线a,b的方向向量,则两异面直线所成的角满足cosθ=|a·b| |a||b|.(2)线面角设l 是斜线l 的方向向量,n 是平面α的法向量,则斜线l 与平面α所成的角满足sin θ=|l ·n ||l ||n |.(3)二面角①如图(ⅰ),AB ,CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.②如图(ⅱ)(ⅲ),n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.[重要转化]1.三种平行关系的转化2.三种垂直关系的转化线线垂直 判定定理性质定理线面垂直 判定定理性质定理面面垂直[重要结论]设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a3,b3,c3),v=(a4,b4,c4).1.线线平行l∥m⇔a∥b⇔a=k b⇔a1=ka2,b1=kb2,c1=kc2.2.线线垂直l⊥m⇔a⊥b⇔a·b=0⇔a1a2+b1b2+c1c2=0.3.线面平行l∥α⇔a⊥μ⇔a·μ=0⇔a1a3+b1b3+c1c3=0.4.线面垂直l⊥α⇔a∥μ⇔a=kμ⇔a1=ka3,b1=kb3,c1=kc3.5.面面平行α∥β⇔μ∥v⇔μ=k v⇔a3=ka4,b3=kb4,c3=kc4.6.面面垂直α⊥β⇔μ⊥v⇔μ·v=0⇔a3a4+b3b4+c3c4=0.[易错提醒]1.忽视线面平行判定定理的条件:证明线面平行时,忽视“直线在平面外”“直线在平面内”的条件.2.忽视线面垂直判定定理的条件:证明线面垂直时,忽视“平面内两条相交直线”这一条件.3.关注面面垂直的性质定理的条件:当题目涉及面面垂直的条件时,一般用此定理转化为线面垂直,应用时注意在面面垂直的前提下,过平面内一点,垂直于两平面交线的直线应在其中一个平面内.4.忽略异面直线的夹角与方向向量夹角的区别:两条异面直线所成的角是锐角或直角,与它们的方向向量的夹角不一定相等.5.不能区分二面角与两法向量的夹角:求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析.对应学生用书P053热点一空间位置关系的证明例1(1)[2015·陕西高三质检]如图,在正方体ABCD-A1B1C1D1中,AA1=2,E为棱CC1的中点.①求证:B1D1⊥AE;②求证:AC∥平面B1DE.[证明]①连接BD,则BD∥B1D1.∵四边形ABCD是正方形,。
高中数学高考二轮复习立体几何教案

高中数学高考二轮复习立体几何教案高考点拨:立体几何专题是高考中的热点,主要考查三视图、空间几何体的体积和空间位置关系、空间角,以及空间位置关系的证明和空间角、距离的探求。
本专题主要从“空间几何体表面积或体积的求解”、“空间中的平行与垂直关系”、“立体几何中的向量方法”三个角度进行典例剖析,引领考生明确考情并提升解题技能。
突破点1:空间几何体表面积或体积的求解要点1:对于规则几何体,可以直接利用公式计算。
要点2:对于不规则几何体,可以采用割补法求解;对于某些三棱锥,有时可以采用等体积转换法求解。
要点3:求解旋转体的表面积和体积时,需要注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形。
突破点2:球与几何体的外接与内切要点1:正四面体与球:设正四面体的棱长为a,由正四面体本身的对称性,可知其内切球和外接球的球心相同,则内切球的半径r=a/3,外接球的半径R=a/√6.要点2:正方体与球:设正方体ABCD-A1B1C1D1的棱长为a,O为其对称中心,E,F,H,G分别为AD,BC,B1C1,A1D1的中点,J为HF的中点。
正方体的内切球的半径为OJ=a/2,棱切球的半径为OG=a/√2,外接球的半径为OA1=√3a/2.回访1:几何体的表面积或体积题目:如图10-2是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()解析:由三视图可知圆柱的底面直径为4,母线长(高)为4,所以圆柱的侧面积为2π×2×4=16π,底面积为π×2²=4π;圆锥的底面直径为4,高为2/3,所以圆锥的母线长为√(4²+(2/3)²)=4/3,所以圆锥的侧面积为π×2×4/3=8π。
所以该几何体的表面积为S=16π+4π+8π=28π。
2.一个正方体被一个平面截去一部分后,剩余部分的三视图如图10-3.求截去部分体积与剩余部分体积的比值。
高三数学高考二轮复习教案、考案(3)立体几何(精品)

立体几何初步【专题要点】1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.【考纲要求】(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系(2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)(3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理(4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。
最新整理高三数学20 高考数学立体几何复习教案.docx

最新整理高三数学20 高考数学立体几何复习教案立体几何总复习一、基本符号表示.1.点A在线m上:A m;2.点A在面上:A ;3.直线m在面内:m ;4. 直线m与面交于点A:m =A;5.面与面相交于直线m: =m;二、点A到面的距离.(第一步:作面的垂线)①作法:过点A作AO 于O,连结线段AO,即所求。
②求法:(一)直接法;(二)等体法(等积法包括:等体积法和等面积法);(三)换点法。
(例1)如图,三棱锥中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M为PC的中点。
(II)求点A到平面PBC的距离.(例2)四棱锥P—ABCD中,PA⊥底面ABCD,AB//CD,AD=CD=1,∠BAD=120°,PA= ,∠ACB=90°。
(III)求点B到平面PCD的距离。
(例3)如图,直三棱柱中,,AC⊥CB,D是棱的中点。
(I)求点B到平面的距离.三、两条异面直线m与n所成角.①作法:平移,让它们相交.(若m n,则可证出m n所在的平面)②求法:常用到余弦定理.③两条异面直线所成角的范围:;任意两条异面直线所成角的范围: .(例1)如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.(II)当为的中点时,求异面直线与所成角的大小;四、线m与面所成角.(第一步:作面的垂线)①作法:在线m上任取一点P(异于A),作PO 于O,连结AO,则AO为斜线PA在面内的摄影, m与面所成的角。
②求法:一般根据直角三角形来解。
③线面角的范围: .(例1)已知正四棱柱中,AB=2,。
(II)求直线与侧面所成的角的正切值.(例2)如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.(III)求与平面所成角的最大值.五、二面角(注:若所求的二面角为直二面角,一般转化为求它的补角—锐角).(一)定义法:①作法:在棱c上取一“好”点P,在两个半平面内分别作c的垂线(射线)m、n,则角即二面角—c—的平面角。
高三二轮复习立体几何

高三二轮复习教学案——立体几何(1)班级 学号 姓名一、考试内容及要求:二、典型题型1.已知直线a ,b 都在平面M 外,a ,b 在平面M 内的射影分别是直线a 1,b 1,给出下列四个命题: ①b a b a ⊥⇒⊥11②11b a b a ⊥⇒⊥③a 1与b 1相交⇒a ,b 相交④a 1与b 1平行⇒a ,b 平行其中不正确的命题有________个2.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点.给出下面三个结论: ①BC ∥平面PDF ; ②DF ⊥平面PAE ; ③平面PAE ⊥平面ABC . 其中正确的结论是________.3.已知正方体ABCD —A 1B 1C 1D 1中,点M ,N 分别是AB 1,BC 1的中点.那么①AA 1⊥MN ; ②A 1C 1∥MN ; ③MN ∥平面A 1B 1C 1D 1; ④MN 与A 1C 1异面. 以上4个结论中,不正确的结论个数有________个·4.将边长为2正方形ABCD 沿对角线BD 折成直二面角,则折后A 、B 、C 、D 四点所在的球的体积为___________.5.已知直线a ,b ,平面α,β,γ,则下列条件中能推出α∥β的是___________. ①a ∥α,b ∥β,a ∥b ②a ⊥γ,b ⊥γ,α⊂a ,b ⊂β③a ⊥α,b ⊥β,a ∥b ④a ⊂α,b ⊂β,a ∥α,b ∥β6.设四棱锥P —ABCD 的底面是边长为2的正方形,△PAB 为正三角形,且与底面垂直,E 是PD 的中点,面BCE 与PA 交于F(如图)· (1)求证:EF ∥AD ;(2)设M ,N 分别为AB ,BC 的中点,求证:面PMD ⊥面PAN .7.如图.在直三棱柱ABC—A1B1C1中.E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C求证:(1)EF∥平面ABC(2)平面A1FD⊥平面BB1C1C8.如图,已知在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC=BC,M,N,P,Q分别是AA1,BB1,AB,B1C1的中点.(1)求证:面PCC1⊥面MNQ;(2)求证:PC1∥面MNQ.9.在四面体ABCD中,CB=CD,A D⊥BD,点E,F分别是AB,BD的中点,求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD高三二轮复习教学案——立体几何(2)班级学号姓名1.给出下面四个命题:①如果两个平面有三个不共线的公共点,那么这两个平面重合;②如果两条直线都与第三条直线平行,那么这两条直线平行;③如果两条直线都与第三条直线垂直,那么这两条直线垂直;④如果两个平行平面同时与第三个平面相交,那么它们的交线平行.其中正确命题的序号是_____________.2.给出下列命题:①若平面α内的直线l垂直于平面β内的任意直线,则α⊥β;②若平面α内的任一直线都平行于平面β,则α∥β;③若平面α垂直于平面β,直线l在平面α内,则l⊥β;④若平面α平行于平面β,直线l在平面α内,则l∥β.其中正确命题的个数是________________.3.已知直线m,n和平面α,β满足:α∥β,m⊥α,m⊥n,则n与β之间的位置关系是__________________。
2020届高三数学第二轮复习教案解析几何

查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都
有涉及.高考解析几何试题一样共有 4 题(2 个选择题 , 1 个填空题 , 1 个解答题 ),共计 30 分
左右,考查的知识点约为 20 个左右。 其命题一样紧扣课本,突出重点,全面考查。选择题
和填空题考查直线、 圆、圆锥曲线、 参数方程和极坐标系中的基础知识。解答题重点考查圆
专门地,当圆心在原点〔 0, 0〕,半径为 r 时,圆的方程为 x 2 y 2 r 2 .
坐标和半径,把握圆的一样方程: x 2 y 2 Dx Ey F 0 ,明白该方程表示圆的充要
条件并正确地进行一样方程和标准方程的互化,能依照条件,用待定系数法求出圆的方程, 把握直线与圆的位置关系的判定方法 .
5.正确明白得椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能依照椭圆、 双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程; 能依照条件,求出椭圆、 双曲线和抛物线的标准方程;把握椭圆、 双曲线和抛物线的几何性 质:范畴、对称性、顶点、离心率、准线〔双曲线的渐近线〕等,从而能迅速、正确地画出 椭圆、双曲线和抛物线;把握 a、b、c、p、e 之间的关系及相应的几何意义;利用椭圆、双 曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单咨询题;明 白得椭圆、 双曲线和抛物线的参数方程, 并把握它的应用;把握直线与椭圆、双曲线和抛物 线位置关系的判定方法 .
.
⑵ 凸多边形的顶点个数是有限的 .
⑶ 关于不是求最优整数解的线性规划咨询题,最优解一定在凸多边形的顶点中找到
.
3. 线性规划咨询题一样用图解法 .
( 四 ) 圆的有关咨询题
1. 圆的标准方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二 立体几何[江苏卷5年考情分析]小题考情分析大题考情分析常考点 空间几何体的表面积与体积(5年4考)本专题在高考大题中的考查非常稳定,主要是线线、线面、面面的平行与垂直的证明,一般第(1)问是线面平行的证明,第(2)问是线线垂直或面面垂直的证明,考查形式单一,难度一般.偶考点简单几何体与球的切接问题 第一讲 | 小题考法——立体几何中的计算考点(一)空间几何体的表面积与体积主要考查柱体、锥体以及简单组合体的表面积与体积.1.(2019·江苏高考)如图,长方体ABCD A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E BCD 的体积是________.解析:设长方体中BC =a ,CD =b ,CC 1=c ,则abc =120, ∴ V E BCD =13×12ab ×12c =112abc =112×120=10.答案:102.(2018·苏锡常镇二模)已知直四棱柱底面是边长为2的菱形,侧面对角线的长为23,则该直四棱柱的侧面积为________.解析:由题意得,直四棱柱的侧棱长为(23)2-22=22,所以该直四棱柱的侧面积为S =cl =4×2×22=16 2.答案:16 23.(2018·江苏高考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.解析:由题意知所给的几何体是棱长均为2的八面体,它是由两个有公共底面的正四棱锥组合而成的,正四棱锥的高为1,所以这个八面体的体积为2V 正四棱锥=2×13×(2)2×1=43.答案:434.(2018·南通、泰州一调)如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的几何体.已知正六棱柱的底面边长、高都为4 cm ,圆柱的底面积为9 3 cm 2.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱的底面边长为________cm(不计损耗).解析:由题意知,熔化前后的体积相等,熔化前的体积为6×34×42×4-93×4=60 3 (cm 3),设所求正三棱柱的底面边长为x cm ,则有34x 2·6=603,解得x =210,所以所求边长为210 cm.答案:2105.(2019·苏北三市一模)已知正四棱锥的底面边长为23,高为1,则该正四棱锥的侧面积为________.解析:易知正四棱锥的斜高为12+(3)2=2,所以该正四棱锥的侧面积为4×12×23×2=8 3.答案:8 3[方法技巧]求几何体的表面积及体积的解题技巧(1)求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在.求三棱锥的体积时,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.考点(二)简单几何体与球的切接问题主要考查简单几何体与球切接时的表面积、体积的计算问题,以及将空间几何体的问题转化为平面几何图形的关系的能力.1.(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR3=32.答案:322.(2019·南通等七市二模)设P ,A ,B ,C 为球O 表面上的四个点,PA ,PB ,PC 两两垂直,且PA =2 m ,PB =3 m ,PC =4 m ,则球O 的表面积为________m 2.解析:根据题意,可知三棱锥P ABC 是长方体的一个角,该长方体的外接球就是经过P ,A ,B ,C 四点的球,∵PA =2,PB =3,PC =4, ∴长方体的对角线的长为PA 2+PB 2+PC 2=29,即外接球的直径2R =29,可得R =292, 因此,外接球的表面积为S =4πR 2=4π⎝ ⎛⎭⎪⎫2922=29π.答案:29π3.(2019·无锡期初测试)已知正四面体ABCD 的所有棱长都等于6,则以A 为顶点,△BCD 的内切圆为底面的圆锥的体积V =________.解析:设正△BCD 内切圆的圆心为O ,连接OB ,OA ,则圆O 的半径r =36BC =22,OB =33BC = 2.易知OA ⊥平面BCD ,所以OA ⊥OB ,所以圆锥的高h =OA =AB 2-OB 2=6-2=2,所以圆锥的体积V =13πr 2h =13π×⎝ ⎛⎭⎪⎫222×2=π3.答案:π34.(2018·全国卷Ⅲ改编)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为________.解析:由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D ABC 高的最大值为2+4=6,所以三棱锥D ABC体积的最大值为13×93×6=18 3.答案:18 3[方法技巧]简单几何体与球切接问题的解题技巧方法解读适合题型截面法解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作 球内切多面体或旋转体构造 直角 三角 形法首先确定球心位置,借助外接的性质——球心到多面体的顶点的距离等于球的半径,寻求球心到底面中心的距离、半径、顶点到底面中心的距离构造成直角三角形,利用勾股定理求半径正棱锥、正棱柱的外接球 补形法因正方体、长方体的外接球半径易求得,故将一些特殊的几何体补形为正方体或长方体,便可借助外接球为同一个的特点求解三条侧棱两两垂直的三棱锥,从正方体或长方体的八个顶点中选取点作为顶点组成的三棱锥、四棱锥等考点(三)平面图形的翻折与空间图形的展开问题主要考查空间图形与平面图形之间的转化,面积、体积以及最值 问题的求解.[典例感悟][典例] (1)如图,正△ABC 的边长为2,CD 是AB 边上的高,E ,F 分别为边AC 与BC 的中点,现将△ABC 沿CD 翻折,使平面ADC ⊥平面DCB ,则三棱锥E DFC 的体积为________.(2)如图,直三棱柱ABC A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段BB 1上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.[解析] (1)S △DFC =14S △ABC =14×⎝ ⎛⎭⎪⎫34×22=34,E 到平面DFC 的距离h 等于12AD =12,所以V E DFC =13×S △DFC ×h =324. (2)将侧面展开后可得:本题AM +MC 1最小可以等价为在矩形ACC 1A 1中求AM +MC 1的最小值.如图,当A ,M ,C 1三点共线时,AM +MC 1最小. 又AB ∶BC =1∶2,AB =1,BC =2,CC 1=3, 所以AM =2,MC 1=22,又AC 1=9+5=14,所以cos ∠AMC 1=AM 2+C 1M 2-AC 212AM ·C 1M =2+8-142×2×22=-12,所以sin ∠AMC 1=32, 故△AMC 1的面积为S △AMC 1=12×2×22×32= 3.[答案] (1)324(2) 3 [方法技巧]解决翻折问题需要把握的两个关键点(1)解决与翻折有关的问题的关键是搞清翻折前后的变化量和不变量.一般情况下,折线同一侧的线段的长度是不变量,位置关系可能会发生变化,抓住两个“不变性”.①与折线垂直的线段,翻折前后垂直关系不改变; ②与折线平行的线段,翻折前后平行关系不改变.(2)解决问题时,要综合考虑翻折前后的图形,既要分析翻折后的图形,也要分析翻折前的图形.[演练冲关]1.有一根长为6 cm ,底面半径为0.5 cm 的圆柱型铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的长度最少为________cm.解析:由题意作出图形如图所示,则铁丝的长度至少为62+(4π)2=36+16π2=29+4π2. 答案:29+4π22.(2018·南京、盐城、连云港二模)在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图①中阴影部分),折叠成底面边长为2的正四棱锥S EFGH (如图②),则正四棱锥S EFGH 的体积为________.解析:连结EG ,HF ,交点为O (图略),正方形EFGH 的对角线EG =2,EO =1,则点E 到线段AB 的距离为1,EB =12+22=5,SO =SE 2-OE 2=5-1=2,故正四棱锥S EFGH 的体积为13×(2)2×2=43.答案:433.如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为________.解析:如图,取BD 的中点E ,BC 的中点O ,连接AE ,OD ,EO ,AO .因为AB =AD ,所以AE ⊥BD .由于平面ABD ⊥平面BCD ,所以AE ⊥平面BCD . 因为AB =AD =CD =1,BD =2,所以AE =22,EO =12.所以OA =32. 在Rt △BDC 中,OB =OC =OD =12BC =32,所以四面体ABCD 的外接球的球心为O ,半径为32. 所以该球的体积V =43π⎝ ⎛⎭⎪⎫323=3π2.答案:3π2[必备知能·自主补缺](一) 主干知识要牢记1.空间几何体的侧面展开图及侧面积公式 几何体侧面展开图侧面积公式直棱柱S 直棱柱侧=chc 为底面周长h 为高 正棱锥S 正棱锥侧=12ch ′c 为底面周长 h ′为斜高即侧面等腰三角形的高正棱台S 正棱台侧=12(c +c ′)h ′c ′为上底面周长c 为下底面周长h ′为斜高,即侧面等腰梯形的高圆柱S 圆柱侧=2πrlr 为底面半径l 为侧面母线长 圆锥S 圆锥侧=πrlr 为底面半径l 为侧面母线长 圆台S 圆台侧=π(r 1+r 2)lr 1为上底面半径 r 2为下底面半径l 为侧面母线长(1)V 柱体=Sh (S 为底面面积,h 为高); (2)V 锥体=13Sh (S 为底面面积,h 为高);(3)V 台=13(S +SS ′+S ′)h (不要求记忆).3.球的表面积和体积公式 (1)S 球=4πR 2(R 为球的半径); (2)V 球=43πR 3(R 为球的半径).4.立体几何中相邻两个面之间的两点间距离路径最短问题,都可以转化为平面几何中两点距离最短.(二) 二级结论要用好1.长方体的对角线与其共点的三条棱之间的长度关系d 2=a 2+b 2+c 2;若长方体外接球半径为R ,则有(2R )2=a 2+b 2+c 2.[针对练1] 设三棱锥的三条侧棱两两互相垂直,且长度分别为2,23,4,则其外接球的表面积为________.解析:依题意,设题中的三棱锥外接球的半径为R ,可将题中的三棱锥补形成一个长方体,则R =1222+(23)2+42=22,所以该三棱锥外接球的表面积为S =4πR 2=32π.答案:32π2.棱长为a 的正四面体的内切球半径r =612a ,外接球的半径R =64a .又正四面体的高h =63a ,故r =14h ,R =34h . [针对练2] 正四面体ABCD 的外接球半径为2,过棱AB 作该球的截面,则截面面积的最小值为________.解析:由题意知,面积最小的截面是以AB 为直径的圆,设AB 的长为a , 因为正四面体外接球的半径为2, 所以64a =2,解得a =463, 故截面面积的最小值为π⎝ ⎛⎭⎪⎫2632=8π3.答案:8π33.认识球与正方体组合的3种特殊截面:一是球内切于正方体;二是球与正方体的十二条棱相切;三是球外接于正方体.它们的相应轴截面如图所示(正方体的棱长为a ,球的半径为R ).[课时达标训练]A 组——抓牢中档小题1. 若圆锥底面半径为1,高为2,则圆锥的侧面积为 ________.解析:由题意,得圆锥的母线长l =12+22=5,所以S 圆锥侧=πrl =π×1×5=5π.答案:5π2.已知正六棱柱的侧面积为72 cm 2,高为6 cm ,那么它的体积为________cm 3. 解析:设正六棱柱的底面边长为x cm ,由题意得6x ×6=72,所以x =2,于是其体积V =34×22×6×6=363(cm 3). 答案:36 33.(2019·扬州中学模拟)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.解析:如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r , ∴三棱锥S ABC 的体积 V =13×⎝ ⎛⎭⎪⎫12SC ·OB ·OA =r 33, 即r 33=9,∴r =3,∴S 球表=4πr 2=36π. 答案:36π4.(2019·南京四校联考)如图,在正三棱柱ABC A 1B 1C 1中,AB =2,AA 1=3,点E 是棱BB 1上一点(异于端点),则三棱锥A 1AEC 的体积为________.解析:由题意知,在正三角形ABC 中,AB =2,所以S △ABC =34×22= 3.连接BA 1,由等体积法知,VA 1AEC =VE AA 1C =VB A 1AC =VA 1ABC =13×AA 1×S△ABC= 3. 答案: 35.(2018·扬州期末)若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为________.解析:设圆锥的底面半径为r ,高为h ,母线为l ,则由12·2π3·l 2=3π,得l =3,又由2π3·l =2πr ,得r =1,从而有h =l 2-r 2=22,所以V =13·πr 2·h =223π. 答案:223π6. 一块边长为10 cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P 为顶点,加工成一个如图所示的正四棱锥形容器.当x =6 cm 时,该容器的容积为________cm 3.解析:由题意知,这个正四棱锥形容器的底面是以6 cm 为边长的正方形,侧面高为5 cm ,则正四棱锥的高为52-⎝ ⎛⎭⎪⎫622=4(cm),所以所求容积V =13×62×4=48(cm 3).答案:487.(2019·苏锡常镇四市一模)已知圆柱的轴截面的对角线长为2,则这个圆柱的侧面积的最大值为________.解析:设圆柱的底面半径为r ,高为h ,则由圆柱的轴截面的对角线长为2知,4r 2+h2=4.圆柱的侧面积S =2πrh ≤π×4r 2+h22=2π,当且仅当2r =h 时取等号,所以这个圆柱的侧面积的最大值为2π.答案:2π8.设棱长为a 的正方体的体积和表面积分别为V 1,S 1,底面半径和高均为r 的圆锥的体积和侧面积分别为V 2,S 2,若V 1V 2=3π,则S 1S 2的值为________. 解析:由题意知,V 1=a 3,S 1=6a 2,V 2=13πr 3,S 2=2πr 2,由V 1V 2=3π,即a 313πr 3=3π,得a =r ,从而S 1S 2=6a 22πr 2=62π=32π. 答案:32π9.已知正方形ABCD 的边长为2,E ,F 分别为BC ,DC 的中点,沿AE ,EF ,AF 折成一个四面体,使B ,C ,D 三点重合,则这个四面体的体积为________.解析:设B ,C ,D 三点重合于点P ,得到如图所示的四面体P AEF .因为AP ⊥PE ,AP ⊥PF ,PE ∩PF =P ,所以AP ⊥平面PEF ,所以V 四面体P AEF =V 四面体A PEF =13·S △PEF ·AP =13×12×1×1×2=13.答案:1310.(2018·常州期末)已知圆锥的高为6,体积为8,用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为________.解析:设截得的小圆锥的高为h 1,底面半径为r 1,体积为V 1=13πr 21h 1;大圆锥的高为h=6,底面半径为r ,体积为V =13πr 2h =8.依题意有r 1r =h 1h ,V 1=1,V 1V =13πr 21h 113πr 2h =⎝ ⎛⎭⎪⎫h 1h 3=18,得h 1=12h =3,所以圆台的高为h -h 1=3.答案:311.如图,在直三棱柱ABC A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +PA 1的最小值是________.解析:连结A 1B ,沿BC 1将△CBC 1展开,与△A 1BC 1在同一个平面内,如图所示,连结A 1C ,则A 1C 的长度就是所求的最小值.因为A 1C 1=6,A 1B =210,BC 1=2,所以A 1C 21+BC 21=A 1B 2,所以∠A 1C 1B =90°. 又∠BC 1C =45°,所以∠A 1C 1C =135°,由余弦定理,得A 1C 2=A 1C 21+CC 21-2A 1C 1·CC 1·cos ∠A 1C 1C =36+2-2×6×2×⎝ ⎛⎭⎪⎫-22=50,所以A 1C =52,即CP +PA 1的最小值是5 2. 答案:5 212.(2019·南京三模)有一个体积为2的长方体,它的长、宽、高依次为a ,b ,1.现将它的长增加1,宽增加2,且体积不变,则所得新长方体高的最大值为________.解析:设所得新长方体的高为h ,根据题意,得⎩⎪⎨⎪⎧ab =2,(a +1)(b +2)h =2,所以h =2(a +1)(b +2)=2ab +2a +b +2=22a +b +4≤222ab +4=14,当且仅当2a =b ,即a =1,b=2时取等号,故所得新长方体高的最大值为14.答案:1413.已知圆锥的底面半径和高相等,侧面积为42π,过圆锥的两条母线作截面,截面为等边三角形,则圆锥底面中心到截面的距离为________.解析:如图,设底面半径为r ,由题意可得:母线长为2r .又侧面展开图面积为12×2r ×2πr =42π,所以r =2.又截面三角形ABD 为等边三角形,故BD =AB=2r ,又OB =OD =r ,故△BOD 为等腰直角三角形.设圆锥底面中心到截面的距离为d ,又V O ABD =V A BOD ,所以d ×S △ABD =AO ×S △OBD .又S △ABD =34AB 2=34×8=23,S △OBD =2,AO =r =2,故d =2×223=233.答案:23314. 底面半径为1 cm 的圆柱形容器里放有四个半径为12 cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水,使水面恰好浸没所有铁球,则需要注水________cm 3.解析:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,O 1O 2O 3O 4为正四面体,棱O 1O 2到棱O 3O 4的距离为22,所以注水高为1+22.故应注水体积为π⎝⎛⎭⎪⎫1+22-4×43π×⎝ ⎛⎭⎪⎫123=⎝ ⎛⎭⎪⎫13+22π(cm 3).答案:⎝ ⎛⎭⎪⎫13+22πB 组——力争难度小题1.(2019·全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD A 1B 1C 1D 1挖去四棱锥O EFGH 后所得的几何体.其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为________g.解析:由题知挖去的四棱锥的底面是一个菱形,对角线长分别为6 cm 和4 cm , 故V 挖去的四棱锥=13×12×4×6×3=12(cm 3).又V 长方体=6×6×4=144(cm 3), 所以模型的体积为V 长方体-V 挖去的四棱锥=144-12=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g). 答案:118.82.(2018·苏州期末)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________(容器壁的厚度忽略不计,结果保留π).解析:设球形容器的最小半径为R,则“十字立方体”的24个顶点均在半径为R的球面上,所以两根并排的四棱柱体组成的长方体的八个顶点在这个球面上.球的直径就是长方体的体对角线的长度,所以2R=12+22+52=30,得4R2=30.从而S球面=4πR2=30π.答案:30π3.(2019·启东中学模拟)把一个皮球放入如图所示的由8根长均为20 cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点(皮球不变形),则皮球的半径为________cm.解析:法一:如图,过点S作SM⊥平面ABCD,垂足为M,连接AM,由题意,可知SM=10 2 cm,AM=10 2 cm,易发现点M到每条棱的距离均为10 cm,所以点M即球心,球半径为10 cm.法二:在四棱锥SABCD中,所有棱长均为20 cm,连接AC,BD交于点O,连接SO,则SO=AO=BO=CO=DO=10 2 cm,易知点O到AB,BC,CD,AD的距离均为10 cm,在等腰三角形OAS中,AO=SO=10 2 cm,SA=20 cm,所以O到SA的距离d=10 cm,同理可证O到SB,SC,SD的距离也为10 cm,所以球心为四棱锥底面ABCD的中心O,所以皮球的半径r=10 cm.答案:104.(2019·河南模拟)如图,已知正方体ABCDA1B1C1D1的棱长为1,P为BC的中点,过点A,P,C1的平面截正方体所得的截面为M,则截面M的面积为________.解析:如图,取A1D1,AD的中点分别为F,G.连接AF,AP,PC1,C1F,PG,D1G,AC1,PF.∵F 为A 1D 1的中点,P 为BC 的中点,G 为AD 的中点, ∴AF =FC 1=AP =PC 1=52, PG ∥CD ,AF ∥D 1G .由题意易知CD ∥C 1D 1, ∴PG ∥C 1D 1,∴四边形C 1D 1GP 为平行四边形, ∴PC 1∥D 1G , ∴PC 1∥AF ,∴A ,P ,C 1,F 四点共面, ∴四边形APC 1F 为菱形. ∵AC 1=3,PF =2,∴截面M 的面积S =12AC 1·PF =123× 2=62.答案:625.如图所示,在直三棱柱中,AC ⊥BC ,AC =4,BC =CC 1=2,若用平行于三棱柱A 1B 1C 1ABC 的某一侧面的平面去截此三棱柱,使得到的两个几何体能够拼接成长方体,则长方体表面积的最小值为________.解析:用过AB ,AC 的中点且平行于平面BCC 1B 1的平面截此三棱柱,可以拼接成一个边长为2的正方体,其表面积为24;用过AB ,BC 的中点且平行于平面ACC 1A 1的平面截此三棱柱,可以拼接成一个长、宽、高分别为4,1,2的长方体,其表面积为28;用过AA 1,BB 1,CC 1的中点且平行于平面ABC 的平面截此三棱柱,可以拼接成一个长、宽、高分别为4,2,1的长方体,其表面积为28,因此所求的长方体表面积的最小值为24. 答案:246.如图,在棱长为4的正方体ABCD A 1B 1C 1D 1中,E ,F 分别为棱AA 1,D 1C 1上的动点,点G 为正方形B 1BCC 1的中心.则空间四边形AEFG 在该正方体各个面上的正投影所构成的图形中,面积的最大值为________.解析:四边形AEFG 在前、后面的正投影如图①,当E 与A 1重合,F 与B 1重合时,四边形AEFG 在前、后面的正投影的面积最大值为12;四边形AEFG 在左、右面的正投影如图②,当E 与A 1重合,四边形AEFG 在左、右面的正投影的面积最大值为8;四边形AEFG在上、下面的正投影如图③,当F与D重合时,四边形AEFG在上、下面的正投影的面积最大值为8.综上所述,所求面积的最大值为12.答案:12第二讲 | 大题考法——平行与垂直题型(一)线线、线面位置关系的证明平行、垂直关系的证明是高考的必考内容,主要考查线面平行、垂直的判定定理及性质定理的应用,以及平行与垂直关系的转化等.[典例感悟][例1] (2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.[证明] (1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,[方法技巧]立体几何证明问题的2个注意点(1)证明立体几何问题的主要方法是定理法,解题时必须按照定理成立的条件进行推理.如线面平行的判定定理中要求其中一条直线在平面内,另一条直线必须说明它在平面外;线面垂直的判定定理中要求平面内的两条直线必须是相交直线等,如果定理的条件不完整,则结论不一定正确.(2)证明立体几何问题,要紧密结合图形,有时要利用平面几何的相关知识,因此需要多画出一些图形辅助使用.[演练冲关]1.(2018·苏锡常镇调研)如图,在四棱锥PABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以BD⊥CO.因为PB=PD,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.(2)由E为PB中点,连结EO,则EO∥PD,又EO⊄平面PAD,PD⊂平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.2.(2019·江苏高考)如图,在直三棱柱ABCA 1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABCA1B1C1中,AB∥A1B1,又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABCA1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.题型(二)两平面之间位置关系的证明考查面面平行和面面垂直,都需要用判定定理,其本质是考查线面垂直和平行.[典例感悟][例2] (2019·南京盐城一模)如图,在直三棱柱ABCA1B1C1中,D,E分别是棱BC,CC1上的点(其中点D不同于点C),且AD⊥DE,F为棱B1C1上的点,且A1F⊥B1C1.求证:(1)平面ADE⊥平面BCC1B1;(2)A1F∥平面ADE.[证明] (1)在直三棱柱ABCA1B1C1中,CC1⊥平面ABC.因为AD⊂平面ABC,所以CC1⊥AD.又AD⊥DE,在平面BCC1B1中,CC1与DE相交,所以AD⊥平面BCC1B1.又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)在直三棱柱ABCA1B1C1中,BB1⊥平面A1B1C1,因为A1F⊂平面A1B1C1,所以BB1⊥A1F.又A1F⊥B1C1,BB1∩B1C1=B1,所以A1F⊥平面BCC1B1.在(1)中已证得AD⊥平面BCC1B1,所以A1F∥AD.又A1F⊄平面ADE,AD⊂平面ADE,所以A1F∥平面ADE.[方法技巧]证明两平面位置关系的求解思路(1)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.(2)证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中线、高线或添加辅助线解决.[演练冲关](2018·江苏高考)在平行六面体ABCDA1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.证明:(1)在平行六面体ABCDA1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCDA1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.题型(三)空间位置关系的综合问题主要考查空间线面、面面平行或垂直的位置关系的证明与翻折或存在性问题相结合的综合问题.[典例感悟][例3] 如图1,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1ABCE,其中平面D1AE⊥平面ABCE.(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AM AB的值;若不存在,请说明理由.[解] (1)证明:∵四边形ABCD 为矩形且AD =DE =EC =BC =2,∴AE =BE =2 2.又AB =4,∴AE 2+BE 2=AB 2,∴∠AEB =90°,即BE ⊥AE .又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE ,BE ⊂平面ABCE ,∴BE ⊥平面D 1AE .(2)AM AB =14,理由如下: 取D 1E 的中点L ,连接FL ,AL , ∴FL ∥EC ,FL =12EC =1.又EC ∥AB ,∴FL ∥AB ,且FL =14AB ,∴M ,F ,L ,A 四点共面.若MF ∥平面AD 1E ,则MF ∥AL .∴四边形AMFL 为平行四边形, ∴AM =FL =14AB ,即AM AB =14.[方法技巧]与平行、垂直有关的存在性问题的解题步骤[演练冲关](2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q ABP 的体积.解:(1)证明:由已知可得,∠BAC =90°,即BA ⊥AC . 又因为BA ⊥AD ,AC ∩AD =A , 所以AB ⊥平面ACD . 因为AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =DQ =23DA ,所以BP =2 2.如图,过点Q 作QE ⊥AC , 垂足为E ,则QE 綊13DC .由已知及(1)可得,DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ABP 的体积为V Q ABP =13×S △ABP ×QE =13×12×3×22sin 45°×1=1.[课时达标训练]A 组——大题保分练1.(2019·苏北三市期末)如图,在直三棱柱ABC A 1B 1C 1中,D ,E ,F 分别是B 1C 1,AB ,AA 1的中点.(1)求证:EF ∥平面A 1BD ;(2)若A 1B 1=A 1C 1,求证:平面A 1BD ⊥平面BB 1C 1C .证明:(1)因为E ,F 分别是AB ,AA 1的中点,所以EF ∥A 1B .因为EF ⊄平面A 1BD ,A 1B ⊂平面A 1BD ,所以EF ∥平面A 1BD .(2)在直三棱柱ABC A 1B 1C 1中,BB 1⊥平面A 1B 1C 1,因为A 1D ⊂平面A 1B 1C 1,所以BB 1⊥A 1D . 因为A 1B 1=A 1C 1,且D 是B 1C 1的中点, 所以A 1D ⊥B 1C 1.因为BB 1∩B 1C 1=B 1,B 1C 1,BB 1⊂平面BB 1C 1C , 所以A 1D ⊥平面BB 1C 1C . 因为A 1D ⊂平面A 1BD , 所以平面A 1BD ⊥平面BB 1C 1C .2.(2019·南京四校联考)如图,在四棱锥P ABCD 中,底面ABCD 是矩形,PD ⊥平面ABCD ,E 是BC 的中点,F 在棱PC 上,且PA ∥平面DEF .(1)求证:AD ⊥PC ; (2)求PF FC的值.解:(1)证明:因为底面ABCD 是矩形,所以AD ⊥DC . 因为PD ⊥平面ABCD ,AD ⊂平面ABCD ,所以PD ⊥AD . 又PD ,DC ⊂平面PCD ,PD ∩DC =D ,所以AD ⊥平面PCD . 又PC ⊂平面PCD ,所以AD ⊥PC .(2)如图,连接AC ,交DE 于G ,连接FG .因为PA ∥平面DEF ,PA ⊂平面PAC ,平面PAC ∩平面DEF =FG . 所以PA ∥FG , 所以PF FC =AGGC.因为底面ABCD 是矩形,E 是BC 的中点, 所以AD ∥BC ,AD =2EC . 所以易知AG GC =ADEC=2.所以PF FC=2.3.(2019·扬州期末)如图,在三棱柱ABC A 1B 1C 1中,四边形AA 1B 1B 为矩形,平面AA 1B 1B ⊥平面ABC ,E ,F 分别是四边形AA 1B 1B ,BB 1C 1C 对角线的交点.求证:(1)EF ∥平面ABC ;(2)BB1⊥AC.证明:(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形.∵E,F分别是四边形AA1B1B,BB1C1C对角线的交点,∴E,F分别是AB1,CB1的中点,∴EF∥AC.∵EF⊄平面ABC,AC⊂平面ABC,∴EF∥平面ABC.(2)∵四边形AA1B1B为矩形,∴BB1⊥AB,∵平面AA1B1B⊥平面ABC,BB1⊂平面ABB1A1,平面ABB1A1∩平面ABC=AB,∴BB1⊥平面ABC.∵AC⊂平面ABC,∴BB1⊥AC.4.(2019·南京三模)在四棱锥PABCD中,PA⊥平面ABCD,AD∥BC,AB=1,BC=2,∠ABC=60°.(1)求证:平面PAC⊥平面PAB;(2)设平面PBC∩平面PAD=l,求证:BC∥l.证明:(1)因为PA⊥平面ABCD,AC⊂平面ABCD,所以PA⊥AC.因为AB=1,BC=2,∠ABC=60°,所以由余弦定理,得AC=AB2+BC2-2AB·BC cos∠ABC=12+22-2×1×2cos 60°= 3.因为12+()32=22,即AB2+AC2=BC2,所以AC⊥AB.又AC⊥PA,PA∩AB=A,PA⊂平面PAB,AB⊂平面PAB,所以AC⊥平面PAB.又AC⊂平面PAC,所以平面PAC⊥平面PAB.(2)因为BC∥AD,AD⊂平面PAD,BC⊄平面PAD,所以BC∥平面PAD.又BC⊂平面PBC,且平面PBC∩平面PAD=l,所以BC∥l.B组——大题增分练1.(2018·盐城三模)在直四棱柱ABCDA1B1C1D1中,已知底面ABCD是菱形,M,N分别是棱A1D1,D1C1的中点.求证:(1)AC∥平面DMN;(2)平面DMN⊥平面BB1D1D.证明:(1)连结A1C1,在四棱柱ABCDA1B1C1D1中,因为AA1綊BB1,BB1綊CC1,所以AA1綊CC1,所以A1ACC1为平行四边形,所以A1C1∥AC.又。