化工反应工程答案 第六章..

合集下载

第六章 化工过程放大1

第六章 化工过程放大1

(1)操作周期 开车 停车
(2)放大系数 放大系数=放大后的实验(或生产)规模/ 放大前的规模
(3) 放大效应 过程规模变大所引起的指标不能重复的 现象称放大效应。 1) 装置形状 2) 装备的几何尺寸 3)操作模式 4)装置的结构 5)散热问题 6)边壁和终端效应
6.1.2
反应过程放大基本方法
(2)按反应器的结构型式分类
塔式反应器
固定床反应器 流化床反应器
间歇操作反应器 (3)按操作方式分类
连续操作反应器 半连续(半间歇) 反应器
6.3.2 反应器选型
6.3.2.1 化学反应器选型原则 (1)工业生产对化学反应器的要求 • 有较高的生产强度 • 有利于反应选择性的提高 • 有利于反应温度的控制 • 有利于节能降耗 • 有较大的操作弹性
问题的提出: (1)存在放大效应; (2)不但包括有化学反应,还伴随有各种物理过程; 相似放大法在化学反应器放大方面则无能为力,主 要原因是无法同时保持物理和化学相似。 目前使用的化学反应器放大法有: 逐级经验放大法(主要靠经验); 数学模型法 可以提高放大倍数,缩短半经验放 大法。
6.1.2.1 逐级经验放大
需全流程中试: 1 综合研究整个工艺过程; 2 提供一定批量的样品进行应用试验; 3 物料循环对生产的影响不可预测,而且对生产的影响大。
(4)运行周期 (5)测试深度 (6)中试装置的运行可靠性和安全性
冷模试验优点:
1)直观、经济; 2)试验条件容易满足,并容易控制; 3)可进行在真实条件下不便或不可能进行的类比实 验,减少实验的危险性。 6.2.2.1 冷模实验的理论基础 (1)相似现象 几何相似 时间相似 动力相似 热相似 化学相似
(2)相似理论 相似第一定律 A 相似现象属于同一类现象; B 各相同的量间有一定的相似倍数; C 相似倍数不是任意的; D 相似特征参数。 相似第二定律 两体系相似时,对应点上必须具有的数值相等的、 单值条件相似的并有一定物理意义的数组。

化学反应工程1_7章部分答案

化学反应工程1_7章部分答案

第一章绪论习题1.1 解题思路:(1)可直接由式(1.7)求得其反应的选择性(2)设进入反应器的原料量为100 ,并利用进入原料气比例,求出反应器的进料组成(甲醇、空气、水),如下表:组分摩尔分率摩尔数根据式(1.3)和式(1.5)可得反应器出口甲醇、甲醛和二氧化碳的摩尔数、和。

并根据反应的化学计量式求出水、氧及氮的摩尔数,即可计算出反应器出口气体的组成。

习题答案:(1) 反应选择性(2) 反应器出口气体组成:第二章反应动力学基础习题2.1 解题思路:利用反应时间与组分的浓度变化数据,先作出的关系曲线,用镜面法求得反应时间下的切线,即为水解速率,切线的斜率α。

再由求得水解速率。

习题答案:水解速率习题2.3 解题思路利用式(2.10)及式(2.27)可求得问题的解。

注意题中所给比表面的单位应换算成。

利用下列各式即可求得反应速率常数值。

习题答案:(1)反应体积为基准(2)反应相界面积为基准(3)分压表示物系组成(4)摩尔浓度表示物系组成习题2.9 解题思路:是个平行反应,反应物A的消耗速率为两反应速率之和,即利用式(2.6)积分就可求出反应时间。

习题答案:反应时间习题2.11 解题思路:(1)恒容过程,将反应式简化为:用下式描述其反应速率方程:设为理想气体,首先求出反应物A的初始浓度,然后再计算反应物A的消耗速率亚硝酸乙酯的分解速率即是反应物A的消耗速率,利用化学计量式即可求得乙醇的生成速率。

(2)恒压过程,由于反应前后摩尔数有变化,是个变容过程,由式(2.49)可求得总摩尔数的变化。

这里反应物是纯A,故有:由式(2.52)可求得反应物A的瞬时浓度,进一步可求得反应物的消耗速率由化学计量关系求出乙醇的生成速率。

习题答案:(1)亚硝酸乙酯的分解速率乙醇的生成速率(2)乙醇的生成速率第三章釜式反应器习题3.1 解题思路:(1)首先要确定1级反应的速率方程式,然后利用式(3.8)即可求得反应时间。

(2)理解间歇反应器的反应时间取决于反应状态,即反应物初始浓度、反应温度和转化率,与反应器的体积大小无关习题答案:(1)反应时间t=169.6min.(2)因间歇反应器的反应时间与反应器的体积无关,故反应时间仍为169.6min.习题3.5 解题思路:(1)因为B过量,与速率常数k 合并成,故速率式变为对于恒容过程,反应物A和产物C的速率式可用式(2.6)的形式表示。

化学反应工程纸质作业答案

化学反应工程纸质作业答案

第一章(摩尔衡算)作业答案:P1-11A 在一个连续流动的反应器中反应:AB等温进行,计算当进料的摩尔流率为5mol/h, 假设反应速率-r A 为: (a ) -r A =k , k=0.05mol/h.L 时 (b ) -r A =kC A , k=0.0001s -1 时 (c ) -r A =kC A 2, k=3 L/mol.h 时消耗99%的组分A (即C A =0.01C A0)时,对CSTR 和PFR 反应器需要的反应器体积。

进料的体积流量为10L/h 。

[注意:F A =C A v 。

当体积流量恒定时,v=v 0, 因此,F A =C A v 0。

故C A0=F A0/v 0=(5 mol/h )/(10L/h)=0.5mol/L 。

] 解:(a )在CSTR 中,组分A 的摩尔平衡方程为:Ao AAF F V r -=- 00.0110/0.5/0.990.99990.05/.--⨯====⨯=Ao A Ao A Ao C v C v C v C v vC L h mol LV L k k k mol h L对PFR ,组分A的摩尔平衡方程为:A A dFr dV=摩尔流率与体积流率之间的关系:A A F C v = 由于体积流率v 恒定,故有:A A A dF dC v dCv dV dV dV== 对零级不可逆反应,反应速率可写为:A r k -= 将r A 代入方程得到:AA dC vr k dV==- 整理得:A vdC dV k-=反应器入口的条件:当V=0 时 C A =C A0对上式子积分:0AA C VA C v dC dV k -=⎰⎰给出方程:0()A A vV C C k=- 将C A0、C A 、v 和k 的数值代入方程,得:10/(10.01)0.5/990.05/=-⨯=⋅L hV mol L L mol h L(b )在CSTR 中,组分A 的摩尔平衡方程为:Ao AAF F V r -=- 0100.0110/999927500.010.00013600---====⨯=⨯⨯⨯Ao A Ao A A A C v C v C v C v v L hV L kC k C k h根据(a )中PFR 的求解方法,得出一级不可逆反应的V 的表达式:0ln A Av C V k C = 将C A0、C A 、v 和k 的数值代入方程,得到:110/1ln 127.90.000136000.01-==⨯L h V L h (c )在CSTR 中,组分A 的摩尔平衡方程为:Ao AAF F V r -=- 00022000.0110/9900990066000(0.01)3/0.5/--====⨯=⨯⋅⨯AA A A A A A C v C v C v C v v L hV L kC k C kC L mol h mol L 根据(a )中PFR 的求解方法,得出二级不可逆反应的V 的表达式:011()A A v V k C C =- 将C A0、C A 、v 和k 的数值代入方程,得到:10/11()6603/0.50.010.5=-=⋅⨯L h V L L mol h第二章(转化率和反应器尺寸)作业答案:在体积为2.5 m 3的理想BR 中进行液相反应:A B P +→,反应温度维持在75℃,实验测定反应速率方程为:A A B r k C C -=,32.7810/.-=⨯k l mol s ,004/==A B C C mol l ,0684/min =A F mol求:(1)反应器中A 的转化率达80%时所需的时间。

(完整版)反应工程课后答案完整版.

(完整版)反应工程课后答案完整版.

1 绪论1.1在银催化剂上进行甲醇氧化为甲醛的反应:进入反应器的原料气中,甲醇:空气:水蒸气=2:4:1.3(摩尔比),反应后甲醇的转化率达72%,甲醛的收率为69.2%。

试计算(1)(1)反应的选择性;(2)(2)反应器出口气体的组成。

解:(1)由(1.7)式得反应的选择性为:(2)进入反应器的原料气中,甲醇:空气:水蒸气=2:4:1.3(摩尔比),组分摩尔分率y i0 摩尔数n i0(mol)CH32/(2+4+1.3)=0.2740 27.40OH空气4/(2+4+1.3)=0.5479 54.79水 1.3/(2+4+1.3)=0.1781 17.81总计 1.000 100.0A P出口甲醇、甲醛和二氧化碳的摩尔数n A、n P和n c分别为:n A=n A0(1-X A)=7.672 moln P=n A0Y P=18.96 moln C=n A0(X A-Y P)=0.7672 mol结合上述反应的化学计量式,水(n W)、氧气(n O)和氮气(n N)的摩尔数分别为:n W=n W0+n P+2n C=38.30 moln O=n O0-1/2n P-3/2n C=0.8788 moln N=n N0=43.28 mol组分摩尔数(mol)摩尔分率%7.672 6.983CH3OH18.96 17.26HCHOH2O 38.3 34.87CO2 0.7672 0.6983O2 0.8788 0.7999N2 43.28 39.392 反应动力学基础2.4在等温下进行液相反应A+B→C+D,在该条件下的反应速率方程为:若将A和B的初始浓度均为3mol/l的原料混合进行反应,求反应4min时A的转化率。

解:由题中条件知是个等容反应过程,且A和B的初始浓度均相等,即为1.5mol/l,故可把反应速率式简化,得由(2.6)式可知代入速率方程式化简整理得积分得解得X A=82.76%。

2.6下面是两个反应的T-X图,图中AB是平衡曲线,NP是最佳温度曲线,AM是等温线,HB是等转化率线。

化学反应工程第六章非均相反应器(上)

化学反应工程第六章非均相反应器(上)
图6-5 氨合成塔催化床层结构示意图
6.1.2 固定床反应器的类型
自热式反应器在开车时需要外 部热源,而且由于大量换热管 的存在,减少了催化剂的装载 量,影响到反应器的生产能力, 因此近年来的大型装置采用中 间冷激的多段绝热床,其结构 与气体的流向,如图6-6所示。
图6-6 多段冷激式大型 合成氨反应器一例
6.1.1 固定床反应器的特点
固定床反应器无论塔式还是 管式均垂直设置,气体由顶 部进入,流动方向与重力方 向一致,这样可以防止气体 冲动床层、造成催化剂分布 不均匀和催化剂的磨损带出, 同时有利于反应器中可能形 成的液态物质的排除。
图6-1 固定床反应器
6.1.2 固定床反应器的类型
6.1.2.1绝热式固定床反 应器 (1) 单段绝热式反应器 单段绝热式反应器是在一 个中空圆筒的底部放置搁 板(支承板),在搁板上堆 积固体催化剂。
6.1.2 固定床反应器的类型
6.1.2.2 换热式固定床反应器 (1)对外换热式固定床反应器 以各种载热体为换热介质的对 外换热式反应器多为列管式结 构,如图6-4所示,类似于列管 式换热器。
图6-4 列管式固定床反应器
6.1.2 固定床反应器的类型
(2) 自热式固定床反应器 以原料气为换热介质,利用 反应后的高温气体预热原料,使其达到反应温度,本身 得到冷却,这种反应器称为自热式固定床催化反应器, 有的氨合成塔和甲醇合成塔属于这种类型。
6.1.4.1 固定床中的传质 内扩散控制过程发生的场合是,颗粒大,因而内扩散阻力 大,内扩散速度小;温度高因而化学反应速度快;气速高
图6-2 绝热式固定床反应器 1-矿渣棉 2-瓷环 3-催化剂
6.1.2 固定床反应器的类型
(2)多段绝热式反应器 多段绝热床中,反应气体通过第一段绝热床反应至一定 的温度和转化率而离可逆放热单一反应平衡温度曲线不 太远时,将反应气体冷却至远离平衡温度曲线的状态再 进行下一段的绝热反应。

化学反应工程-19-第六章-气固相催化反应固定床反应器

化学反应工程-19-第六章-气固相催化反应固定床反应器

2、二维模型中 hW 的计算: 、 的计算: 模型认为温度沿着径向形成了一个分布,故 t m没有意义。 这时床层向壁的传热速率:
dS =
6VS SS
西勒模数就是以d 为定型尺寸的。 西勒模数就是以 S为定型尺寸的。 形状系数的概念, 表示: 形状系数的概念,以 ϕ S 表示:
ϕS =
SV SS
2 SV = πd V (和粒子具有相同体积的球形颗粒的外表面积)
d ϕS = V d a

2
2、粒子群 、 对于大小不等的混合颗粒,平均直径为:
空隙率分布的影响: 空隙率分布的影响:直接影响流体流速的分布,进而使流体与颗 粒、床层与反应器壁之间的传热、传质行为不同,流体的停留时 间也不同,最终会影响到化学反应的结果。
为减少壁效应,要求床层直径(dt)至少为粒径(dP)的八倍以上。
二、颗粒的定型尺寸 颗粒的定型尺寸常用粒径来表示: 1、单个粒子 、 粒径d 粒径 P: 对球形催化剂,应用一个参数dP即可完整描述颗粒的全部几何 性质,即自由度为1; 对规则形催化剂,如圆柱形,用两个参数如h、d即可; 对不规则颗粒,也是用两个参数来描述颗粒的几何性能:一是 当量直径;另一是形状参数。
d S u0 ρ g
6.1.2固定床内的传热 固定床内的传热 床层尺度上的传热过程包括四个方面: 床层尺度上的传热过程包括四个方面: ①颗粒内部的传热 (λ P ) ;
( ②颗粒与流体之间的传热α g ) ;
③床层整体有效导热系数 (λe ) ; ④床层和反应器壁之间的传热 (h0、hW ) 。 对于①中λP,见第十七讲《非等温反应宏观动力学方程》。它的大 小往往由固体颗粒自身的性质粒内孔隙情况决定的,颗粒内的传热主要 是以热传导形式进行的。 对于②中的αg第十七讲中已经讨论过。 现重点讨论③和④ ! 现重点讨论③

反应工程 第六章 多项系统中的化学反应与传递现象

反应工程    第六章 多项系统中的化学反应与传递现象

2013-8-6
版权所有, By 刘海, 北方民族大学化工学院
17
பைடு நூலகம்一级不可逆连串反应:
假设A,B,D的传质系数相同, B为目标产物, 稳态下有
联立求出
C AS C AG /(1 Da1) C BS Da1C AG C BG (1 Da1)(1 Da 2) (1 Da 2)
由于表面浓度低于主体浓度, 故有 当反应级数为正时, x 1 当反应级数为负时, x 1 (1) 对单一反应, 在忽略传热阻力和内扩散阻力时 对一级不可逆反应, kW C AS C AS
x k
W C AG
C AG
稳态过程传质速率应等于反应速率
2013-8-6
kG am (C AG C AS ) kW C AS
2013-8-6 版权所有, By 刘海, 北方民族大学化工学院 8
6.1.2 气固相催化的过程步骤 以气相催化不可逆反应为例 A( gas) B( gas)
(1) 反应物A由气相主体扩散到颗粒外表面 (2) 反应物A由外表面向孔内扩散, 到达可进行吸附/ 反 应的活性中心 (3) 反应物A被活性中心吸附 (4) 反应物A在表面上反应生成产物B (5) 产物B从活性中心上脱附下来 (6) 产物B由内表面扩散到颗粒外表面 (7) 产物B由颗粒外表面扩散到气相主体 (3,4,5)总称为表面反应过程, 即催化反应的本征动力学
结论: 正级数反应, Da增加, 外扩散阻力增大,
2013-8-6 版权所有, By 刘海, 北方民族大学化工学院
降低
16
(2) 复合反应 同样, 忽略内扩散和相间传热影响进行讨论. 平行反应: A B r k C n1

反应工程第二版 第六章气固相催化固定床反应器

反应工程第二版 第六章气固相催化固定床反应器

dxA RA B
dl
u0cA0
:催化剂堆密度
B
dxA
RA B
dl u0cA0
L 0
dl u0
cA0
xA出 0
dxA
RA B


对照平推流反应器模型 二者相同
VR V0
cA0
dx xA出
A
0 rA
23
• 热量衡算:(仍然是那块体积)
输入热量-输出热量+反应热效应
=与外界的热交换+积累
x1in,T1in x1out, T2in x2out T3in x3out T4in x4out
35
x
在T-x图上看:
0
二氧化硫氧化反应T-x图示意
T
斜线为段内操作线,斜率为1/λ。 水平线表示段间为间接冷却,只是温度降低,转化率不变。
36
• 调用最优化程序,就可以求得W最小值?
• 可以,但很困难。
输入:G cp T G质量流量, cp恒压热容
输出:G cp(T+dT)
反应热效应:(-RA)(1-εB)(-ΔH)Aidl
热交换:U(T-Tr)πdidl
di反应器直径
积累:0
U:气流与冷却介质之间的换热系数
Tr:环境温度
24
• 将各式代入,得
dT
RA 1 B H U
4 di
T
Tr
dl
ucp g
粒径 ds/mm 质量分率 w
3.40 0.60
4.60 0.25
6.90 0.15
• 催化剂为球体,空隙率εB=0.44。在反应 条 件 下 气 体 的 密 度 ρg=2.46kg.m-3 , 粘 度 μg=2.3×10-5kg.m-1s-1 , 气 体 的 质 量 流 速 G=6.2kg.m-2s-1。求床层的压降。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.多相系统中的化学反应与传递现象6.1、在半径为R 的球形催化剂上,等温进行气相反应⇔A B 。

试以产物B 的浓度C B 为纵座标,径向距离r 为横座标,针对下列三种情况分别绘出产物B 的浓度分布示意图。

(1) (1) 化学动力学控制 (2) (2) 外扩散控制(3) (3) 内、外扩散的影响均不能忽略图中要示出C BG ,C BS 及C Be 的相对位置,它们分别为气相主体、催化剂外表面、催化剂颗粒中心处B 的浓度,C Be 是B 的平衡浓度。

如以产物A 的浓度CA 为纵座标,情况又是如何?解(1)以产物B 的浓度为纵座标(2)以产物A 的浓度为纵座标6.2 已知催化剂颗粒外表面的气膜传热系数为117w/m 2K,气体的密度和热容分别为0.8kg/m 3和2.4J/kgK,试估算气膜的传质系数. 解:-=====⨯⨯=⨯=2/3321/(/)(/Pr),/Pr 1/117/0.8 2.410 6.09410/219.4/D H G p s c c G s p J J k C h S S k h C m s m hρρ又6.3 某催化剂,其真密度为3.60g/cm3,颗粒密度为1.65g/cm3,比表面积为100m2/g.试求该催化剂的孔容,孔隙率和平均孔半径. 解:=-=<>=<>====3(1),0.5422/,65.6/0.542/1.650.328/p t p p a p r p a g p p r S r AV cm g ρρεεερερ由得由得由催化剂6.4 已知铁催化剂的堆密度为 2.7g/cm 3, 颗粒密度为 3.8 g/cm 3,比表面积为16m 2/g,试求每毫升颗粒和每毫升床层的催化剂表面积. 解:==2260.8/43.2/p g g S m ml S m mlρρb 每毫升颗粒的表面积=每毫升床层的表面积=6.5 试推导二级反应和半级反应的扩散有效因子表达式(6.23)和(6.24). 解:(1)二级反应,()()(()=-=-==-±=⎡⎤=-±⎣⎦=-2222222,,/2/1/21,/A w AS G m AG AS w ASG m w w AS w AGG m w AG w AG G mR k C k a C C k C k a k k C k C k a k C k C k a αηA S x 由上解得:C 按定义此即(6.23)式式中D a=(2)半级反应()(=-=-==-±==-+⎛=-+=+- ⎝1/21/21/21/21/21/21/221/2,(),/2/(2122A w AS G m AG AS w AS AS w G m w AS w AGw G m AGR k C k a C C k C C k k a k C k C k k a C Da Da αηx 由上解得:按定义:-⎡+⎢=-⎢⎢⎣⎡⎤⎛+⎢⎥ =-⎢⎥ ⎢⎥⎝⎣⎦=1/221/221/222212(6.24),:/w AG G mDa Da Da k C k a 此即式式中6.6 在充填ZnO-Fe2O3催化剂的固床反应器中,进行乙炔水合反应:+→++2223322232C H H O CH COCH CO H已知床层某处的压力和温度分别为0.10Mpa,400℃,气相中C 2H 2含量为3%(mol),该反应速率方程为r=kC A ,式中C A 为C 2H 2的浓度,速率常数k=7.06×107exp(-61570/RT),h -1,试求该处的外扩散有效因子.数据:催化剂颗粒直径0.5cm,颗粒密度1.6g/cm 3,C 2H 2扩散系数7.3×10-5m 2/s,气体粘度2.35×10-5Pa ﹒s,床层中气体的质量流速0.2kg/m 2s. 解:由已知条件可得()()---=⋅=⨯⨯=⨯+⨯=+===⨯⨯⨯===-=⨯⨯2530.359552/370.24/Re 0.0050.24/2.351051.06260.03180.972730.3303/22.44002730.357/(Re )0.24852.3510/(0.33037.310)0.97460.1837/()615707.0610exp 8.314673D b c G D c G kg m skg m j S Gk j m s S k ρερ()-⎡⎤= = ⎢⎥⎣⎦==⨯ ⋅⎡⎤=⨯=⎢⎥⎣⎦332221174.6/0.3263//0.203910/10.005/(0.005)16000.756w p m l h l s k k m kg sa m ρππ====+/0.0014810.99851w G m Da k k a Daπη6.7实验室管式反应器的内径2.1cm,长80cm ,内装直径6.35mm 的银催化剂进行乙烯氧化反应,原料气为含乙烯 2.25%(mol)的空气,在反应器内某处测得P=1.06×105Pa,T G =470K,乙烯转化率35.7%,环氧乙烷收率23.2%,已知+→ =-⨯ +→+ =-⨯ 42422412462422222419.6110/232 1.2510/C H O C H O H J molC H C H O CO H O H J molC H ∆∆颗粒外表面对气相主体的传热系数为58.3w/m 2K,颗粒密度为1.89g/cm 3.设乙烯氧化的反应速率为 1.02×10-2kmol/kg ﹒h,试求该处催化剂外表面与气流主体间的温度差. 解:()-= ⋅⎛⎫-=-+--=⨯ ⎪⎝⎭= ⋅=⨯⋅⋅=== -=--= 512252223()10.2/23.223.2()()1 5.00110/35.735.758.3/ 2.09910/0.50/16()()/48.59A r s ppm p pp p g G A r s m R mol kg h H H H J mol h w m k J m K h S d a m kgV d T T R H h a Kπρπρ∆∆∆∆6.8 一级连串反应:−−→−−→12A B C在0.1Mpa 及360℃下进行,已知k 1=4.368 s -1,k 2=0.417 s -1,催化剂颗粒密度为1.3g/cm 3,(k G a m )A 和(k G a m )B 均为20cm 3/g ﹒s.试求当C BG /C AG =0.4时目的产物B 的瞬时选择性和外扩散不发生影响时的瞬时选择性.解:外扩散无影响时,由(6.35)式得:⨯'=-=0.41730.410.96184.368S外扩散有影响时,由(6.34)式得:⨯=-=+10.41730.4(1.168)0.940310.01605 4.368(1.01605)S上式中所用的====1122/0.168/0.01605a G ma G mk D k a k D k a ρρ6.9 在Pt/Al 2O 3催化剂上于200℃用空气进行微量一氧化碳反应,已知催化剂的孔容为0.3cm 3/g,比表面积为200m 2/g,颗粒密度为1.2g/cm 3,曲节因子为3.7.CO-空气二元系统中CO 的正常扩散系数为0.192cm 2/s.试求CO 在该催化剂颗粒中的有效扩散系数.(----=== ===≥=⨯⨯=⨯ ==⨯ 53822322/30,10,0.36/216.610,,:9.7103010 1.19610// 1.16410/g gp g p a k k p V S A cm V r D cm sDe D cm sλερλετa 解:r 为努森扩散故有6.10 试推导球形催化剂的内扩散有效因子表达式(6.60). 解:==-=-+2222223,:1122A A A C u dC du udr r dr rd C d u du udr r dr r dr r 令可得用以上各式对教材中(6.55)式进行变量置换得:= =2222p d u b u drb k De式中 (A)(A) (A) 式为二阶常系数齐次微分方程,边界条件:r=0 du/dr=0; r=R p u=C AS R p (B) 结合边界条件(B)式解(A)得:= sinh()()sinh()p A ASp R br C C C r bR有内扩散影响时的反应速率为:()=-= 24()p AA pr R dC R De R D dr π ()=⎛⎫-=-⎪⎝⎭(),():114tanh p A r R A p s AS s s dCC D drR R C De πφφφ由式求出代入式得按内扩散有效因子的定义:⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭3411311()3tanh tanh 4p s AS s s s s s p p ASR C De E R k C πφηφφφφφπ==s p bR R φ式中==⎛⎫=- ⎪⎝⎭/3():111()tanh(3)3s E F φφηφφφ若令则式可改写为(F)即为教材(6.60)式,(E)式是(6.60)的又一形式.6.11 在球形催化剂上进行气体A 的分解反应,该反应为一级不可逆放热反应.已知颗粒直径为0.3cm,气体在颗粒 中有效扩散系数为 4.5×10-5m 2/h,颗粒外表面气膜传热系数为44.72w/m 2﹒K,气膜传质系数为310m/h,反应热效应为-162kJ/mol,气相主体A 的浓度为0.20mol/l,实验测得A 的表观反应速率为1.67mol/minl, 试估算:(1) (1) 外扩散阻力对反应速率的影响; (2) (2) 内扩散阻力对反应速率的影响; (3) (3) 外表面与气相主体间的温度差. 解:--=⋅=⨯⋅⨯⨯==⨯<*53331.67/min 1.00210/(1)31.671060.8081100.150.2(310/60),.AAG G R mol l mol m h L C k *A 判别外扩散阻力的影响用(6.79)式:R 故仅从传质考虑外扩散影响可不计==*2(2)(6.82),:2.783s A s AGR L DeC φφ判别内扩散阻力的影响用式先求出====2, 2.783,(6.60) 3.1,0.288,s s φηφφφη因有从可借助式估算出由此可知内扩散阻力影响严重.(3)计算外表面与气相主体间温度差⊿Tm : =-=⋅⋅⋅*)/m G s A s T T T R h ∆∆r 颗粒体积(H 颗粒外表面积=50.4K6.12 在固体催化剂上进行一级不可逆反应→ ()A B A已知反应速率常数k,催化剂外表面积对气相的传质系数为k G a m ,内扩散有效因子η.C AG 为气相主体中组分A 的浓度. (1)试推导:()()-=+11AG A G mC R B k k a η(2)若反应式(A)改为一级可逆反应则相应的(B)式如何?解:(1)一级不可逆反应A B:()()()()-=-==+==+/1A G AG AS m G m AG G m AG G m R k C C a k k a C k k a C k k a kηηηηA S A S A A S C 由上可解得:C 解得:-RC(2)一级可逆反应:AB()()()()()()()()-=-=+-+=+--=+-=++:11A G m AG AS AS Ae G m AG AeG m AG AS A AS Ae G mR k a C C k k C C k a C kC k a kC C R k k C C k a k k ηηηηηA S 由解得:C 则有6.13 在150℃,用半径100μm 的镍催化剂进行气相苯加氢反应,由于原料中氢大量过剩,可将该反应按一级(对苯)反应处理,在内,外扩散影响已消除的情况下,测得反应速率常数k p =5min -1, 苯在催化剂颗粒中有效扩散系数为0.2cm 2/s,试问:(1) (1) 在0.1Mpa 下,要使η=0.8,催化剂颗粒的最大直径是多少?(2) (2) 改在2.02Mpa 下操作,并假定苯的有效扩散系数与压力成反比,重复上问的计算.(3) (3) 改为液相苯加氢反应,液态苯在催化剂颗粒中的有效扩散系数10-5cm 2/s.而反应速率常数保持不变,要使η=0.8,求催化剂颗粒的最大直径. 解:()==⎛⎫- ⎪ ⎪⎝⎭(1)0.107611tanh 33pd φηφφφ1由(6.60)式=用试差法从上二式可解得当η=0.8时,需d p <6.36cm(2)2.02Mpa 时,De ≈0.2×0.101/2.02=0.01 cm 2/s,与此相对应:==0.418pd φ同上法可求得当η=0.8时,需d p <1.42cm(3)液相反应时,De=1×10-6cm 2/s,与此相应的φ为21.51dp,同上法可求得当η=0.8时,需d p <0.0142cm.6.14 一级不可逆反应A B,在装有球形催化剂的微分固定床反应器中进行温度为400℃等温,测得反应物浓度为0.05kmol/m 3时的反应速率为 2.5 kmol/m 3床层﹒min ,该温度下以单位体积床层计的本征速率常数为k v =50s -1 ,床层孔隙率为0.3,A 的有效扩散系数为0.03cm 2/s,假定外扩散阻力可不计,试求:(1) (1) 反应条件下催化剂的内扩散有效因子 (2) (2) 反应器中所装催化剂颗粒的半径()===== --==-==⨯⨯ ⋅3171.43/18.13500.05/p v B B B vv v p B pA v AS V k V V V k k k l s V V V d R k C kmol s m εεφηηp p 解:k k 床层实验测得(-R A )=0.0417 kmol/s ﹒m 3床层,解上二式得η=0.0167,可见内扩散影响严重.由η=1/φ=1/8.13dp=0.0167,可解出dp=7.38cm,即反应器所装催化剂的颗粒 半径为3.69cm.6.15 在0.10Mpa,530℃进行丁烷脱氢反应,采用直径5mm 的球形铬铝催化剂,此催化剂的物理性质为:比表面积120m 2/g,孔容0.35cm 3/g,颗粒密度1.2g/cm 3,曲节因子 3.4.在上述反应条件下该反应可按一级不可逆反应处理,本征反应速率常数为0.94cm 3/gs,外扩散阻力可忽略,试求内扩散有效因子.解:丁烷分子量为58,λ=10-5cm,<ra>=2Vg/Sg=58.3×10-8cm, λ/2<ra>=8.576,此值与10接近,故可近似扩散是以奴森扩散为主:--=⨯⨯=⨯22970058.310 2.10410/k D cm s-==⨯==32/ 2.610/1.736k p m De D cm s ετφ由(6.60)式算得η=0.465.6.16 在固定床反应器中等温进行一级不可逆反应,床内填充直径为6mm 的球形催化剂,反应组分在其中的扩散系数为0.02cm 2/s,在操作温度下,反应式速率常数等于0.01min -1,有人建议改有3mm 的球形催化剂以提高产量,你认为采用此建议能否增产?增产幅度有多大?假定催化剂的物理性质及化学性质均不随颗粒大小而改变,并且改换粒度后仍保持同一温度操作.解:=======0.6,0.02887,0.9995,0.3,0.01444,0.9998p p d cm d cm φηφη故采用此建议产量的增加是很有限的.6.17 在V 2O 5/SiO 2催化剂上进行萘氧化制苯酐的反应,反应在 1.013×105Pa 和350℃下进行,萘-空气混合气体中萘的含量为0.10%(mol),反应速率式为:⎛⎫=⨯-⋅ ⎪⎝⎭50.381353603.82110exp ,/A A r p kmol kg hRT式中PA 为萘的分压,Pa.已知催化剂颗粒密度为1.3g/cm 3,颗粒直径为0.5cm,试计算萘氧化率为80%时萘的转化速率(假定外扩散阻力可忽略),有效扩散系数等于3×10-3cm 2/s.解:因外扩散阻力可不计,故C AS ≈C AG , ()-= ⋅0.38/A p AGR k C kmol kg h η式中η由教材(6.66)式计算,为此先计算以下数据:--==⨯⎛⎫=⨯-⋅ ⎪⎝⎭⎛⎫ =⨯-⋅ ⎪⎝⎭13250.3850.383/12,310/,1353603.8210exp /1353603.8210exp /p p p AGp AG a V cm De cm s k p kmol kg h RT p kmol m h RT ρA 的值由:r 颗粒将此P AG =C AG RT,ρp =1300kg/m 3颗粒,T=(350+273)K 代入上式,并将小时换为秒计则得:-=⨯⋅40.3832.19610/A AG r C kmol m s 颗粒由上式得 k p =2.196×10-4又:C AS =C AG =P AG /RT=105×0.1%(1-0.8)/(8314×623)=3.861×10-6 kmol/m 3 将有关数值代入(6.66)式得:()()()()--=====⨯==⨯⎰⎰⎰1/20.3831/20.381/24] 1.12:8.76910[][] 1.566310ASACASACAS C A A C C AS AG AGA A C C A A a f C dC f C f C C f C dC C dC η式中最后得萘氧化率为80%时的萘的转化速率为: ()--==⨯⋅0.38632.15710/A p AGR k C kmol m s η颗粒6.18 乙苯脱氢反应在直径为0.4cm 的球形催化剂上进行,反应条件是0.10Mpa,600℃,原料气为乙苯和水蒸汽的混合物,二者摩尔比为1:9,假定该反应可按拟一级反应处理.⎛⎫''= =-⋅⋅ ⎪⎝⎭913000.1244exp ,/w EB w r k p k kmol kg h PaRT 苯乙烯(1)当催化剂的孔径足够大,孔内扩散属于正常扩散,扩散系数D’=1.5×10-5m 2/s, 试计算内扩散有效因子.(2)当催化剂的平均孔径为100Å时,重新计算内扩散有效因子. 已知:催化剂颗粒密度为1.45g/cm 3,孔率为0.35,曲节因子为3.0. 解:为计算内扩散有效因子,先求取K p := ⋅= ⋅3//EB p EB r kp kmol kg h k p kmol m hρ由颗粒将 P EB =RTC EB ,T=(600+273)代入上式得: =⨯ ⋅= ⋅3334.50810/ 1.252/BE EB r C kmol m h C kmol m s 颗粒颗粒 由此得K p =1.252 s -1(1) (1) 孔径足够大,属正常扩散时,-==⨯ 62/ 1.7510/p m De D m sετ由此求得Φ=0.564,由(6.60)式算得η=0.85(2) (2) 孔半径为100Å时:λ/2<ra>=10-5/200×10-8=5,属于过渡区扩散,由教材(6.36)式可算得乙苯的Dk=2.784×10-2cm 2/s.--==⨯+⨯22212.34810/112.784100.15D cm s--==⨯=⨯32722.73910/ 2.73910/pmD De cm s m sετ由上数据可算得φ=1.425,由教材(6.60)式算得η=0.5286.19 苯(B)在钒催化剂上部分氧化成顺酐(MA),反应为:这三个反应均为一级反应.实验测得反应器内某处气相中苯和顺酐的浓度分别为 1.27%和0.55%(均为mol%),催化剂外表面温度为623K,此温度下,k1=0.0196 s -1,k2=0.0158 s -1,k3=1.98×10-3 s -1,苯与顺酐的k G a m 均为 1.0×10-4m 3/skg.催化剂的颗粒密度为1500kg/m 3,试计算反应的瞬间选择性并与外扩散无影响时的瞬时选择性相比较.解:()()---==⨯=⨯=⨯⋅====-=+ 55512332312/ 1.30710, 1.05310,0.13210/./0.1307,0.1053,0.0132),w p w w w w G m a a m BG BS w w BS k k k k k m kg s Da k k a D D A a C C k k C ρa12G 由可算出单位均为由可算得D 为简化起见以表示顺酐,C 表示(C O +C O 由教材(6.18)式可写出:k ()()(A)-= - (B)-= - (1223)m AS AG w BS w AS m CS CG w AS w BS a C C k C k C a C C k C k C C G G k k=++=+++++1221121(1)/(1)(2)/(1)/[(1)(1)]BS BG a a As AG a a BG a a a C C D D C C D D C D D D 由得由得 有外扩散影响时的瞬时选择性: ()()()()()=-+⎡⎤⎡⎤++=-+⎢⎥⎢⎥++++++⎣⎦⎣⎦⎡⎤++=-+⎢⎥++++⎣⎦=1213121131313213212131131322/1111(1)110.4742w BS w AS w w BSw w AG a BG a a w w w w a a a a BG w w a a AG a w w w w a BG a S k C k C k k C k k C D C D D k k k k D D D D C k k D D C D k k k k D C D 无外扩散影响时的瞬时选择性:'=-=++1213130.5726w w CG w w w w BG k k C S k k k k C6.20 原题见教材,今补充如下:实验测得A 的气相浓度为1.68×10-5mol/cm 3时的反应速率为1.04×10-5(mol/cm 3床层﹒s).解:已知 ()---=⨯-=⨯ ⋅*5531.0410/(10.4) 1.73310/A R mol cm s颗粒若不计外扩散阻力,则C AS =C AG =1.68×10-5mol/cm 3 由教材312页: ()=-*2/s AAG R L DeC φL=dp/6=0.04cm,可算得s φ=0.1375,由(6.82)式=2s φφη,将此式与(6.60)式用试差法联立求解可得:φ=0.387 η=0.92。

相关文档
最新文档