光场成像原理

合集下载

光的反射与折射的成像实验设计与分析

光的反射与折射的成像实验设计与分析
光的反射与折射的成像实验设计 与分析
汇报人:XX 2024-01-21
• 实验目的与原理 • 实验器材与准备 • 实验步骤与操作 • 实验结果与分析 • 实验误差与改进 • 实验应用与拓展
01
实验目的与原理
实验目的
探究光的反射和折射 现象
分析反射和折射在成 像中的应用
掌握反射和折射的基 本规律
用于研究光的全反射现象。
成像屏幕与记录设备
白色屏幕
测角仪
用于接收和显示光斑,要求平整、无 明显瑕疵。
用于测量入射角、反射角和折射角等 关键参数。
数码相机
用于记录实验现象和数据,要求具备 高分辨率和准确的色彩还原能力。
03
实验步骤与操作
搭建实验装置
1 2
准备实验器材
包括光源、屏幕、反射镜、折射镜、支架等。
02
实验器材与准备
光源选择
激光笔
提供单色、方向性好的光源,便于观察和测量。
白炽灯
提供连续光谱的光源,用于模拟自然光。
LED灯
提供不同波长的单色光源,用于研究光的色散现 象。
反射与折射装置
平面镜
用于光的反射实验,要求表面平整、反射效果好。
三棱镜
用于光的折射实验,可将入射光分解为不同波长的光。
半圆形玻璃砖
好角度以便于观察成像现象。
确保光源与屏幕平行
03
通过调整支架高度和角度,确保光源发出的光线与屏幕平行,
以获得清晰的成像效果。
观察并记录成像现象
打开光源
观察反射现象
打开光源,让光线照射到反射镜和折射镜 上。
观察光线在反射镜上的反射现象,并记录 反射光线的路径和成像特点。
观察折射现象

光场成像原理

光场成像原理

光场成像理论目录1. 光场概念 (1)1.1 七维全光函数 (1)1.2 全光函数的降维 (1)2. 光场采集设备的发展与典型结构 (2)2.1 多相机光场采集 (3)2.2 单相机光场采集 (6)3. 微透镜阵列的光场采集 (11)3.1 基于针孔阵列的光场采集 (11)3.2 基于微透镜阵列的光场采集 (13)1. 光场概念1.1 七维全光函数光场(Light field)的概念最早于1936年由A.Gershun 提出,用以描述光在三维空间中的辐射传输特性。

1991年,E.adelson 和J.Bergen 根据人眼对外部光线的视觉感知,提出全光函数(Plenoptic function),利用七维函数表征场景中物体表面发出(或反射)的光线。

在全光函数可以表示为:7(,,,,,,)P P x y z t θϕλ=其中,,,x y z —表征光纤中任意一点的三维坐标;,θϕ—表征光纤传输方向λ—表征光线波长t —表示时间此时,全光函数7(,,,,,,)P P x y z t θϕλ=表示了波长为λ的光线t 时刻经过三维空间中坐标为(,,)x y z 的点,且传播方向为(,)θϕ的一条光线。

与只包含位置信息的光场不同,全光函数的七维表示增加了光线的色彩信息及动态变化。

1.2 全光函数的降维根据全光函数7(,,,,,,)P P x y z t θϕλ=的意义,当光线在自由空间中传播时,其频率(即波长λ)不发生变化,对于静态场,此时全光函数可由七维降至五维,即5(,,,,)P P x y z θϕ=由于观察者往往受限于目标的成像范围,此时五维光场出现一位冗余,当给定光线在自由空间的辐射不发生变化,因此在限光器的空间范围内,五维光场可以表示为四维光场。

四维光场的参数化表征可有一下三种方式:1) 方向-点参数化表政法。

利用光线与平面的交点(,)x y 和光线方向(,)θϕ作为四维参数来描述光场中的光线。

光场成像原理

光场成像原理

光场成像原理————————————————————————————————作者:————————————————————————————————日期:ﻩ光场成像理论目录1. 光场概念 (3)1.1 七维全光函数 (3)1.2 全光函数的降维 (3)2. 光场采集设备的发展与典型结构 (4)2.1 多相机光场采集 (5)2.2 单相机光场采集 (8)3. 微透镜阵列的光场采集 (13)3.1 基于针孔阵列的光场采集 (13)3.2 基于微透镜阵列的光场采集 (15)1. 光场概念1.1 七维全光函数光场(Ligh t field)的概念最早于1936年由A.Gershun 提出,用以描述光在三维空间中的辐射传输特性。

1991年,E .adels on和J.Bergen 根据人眼对外部光线的视觉感知,提出全光函数(Ple no pti c functio n),利用七维函数表征场景中物体表面发出(或反射)的光线。

在全光函数可以表示为:7(,,,,,,)P P x y z t θϕλ=其中,,,x y z —表征光纤中任意一点的三维坐标;,θϕ—表征光纤传输方向λ—表征光线波长t —表示时间此时,全光函数7(,,,,,,)P P x y z t θϕλ=表示了波长为λ的光线t 时刻经过三维空间中坐标为(,,)x y z 的点,且传播方向为(,)θϕ的一条光线。

与只包含位置信息的光场不同,全光函数的七维表示增加了光线的色彩信息及动态变化。

1.2 全光函数的降维根据全光函数7(,,,,,,)P P x y z t θϕλ=的意义,当光线在自由空间中传播时,其频率(即波长λ)不发生变化,对于静态场,此时全光函数可由七维降至五维,即5(,,,,)P P x y z θϕ=由于观察者往往受限于目标的成像范围,此时五维光场出现一位冗余,当给定光线在自由空间的辐射不发生变化,因此在限光器的空间范围内,五维光场可以表示为四维光场。

光场成像技术

光场成像技术

南京理工大学课程考核论文课程名称:图像传感与测量论文题目:光场成像技术姓名:陈静学号: 314101002268 成绩:任课教师评语:签名:年月日光场成像技术一、引言光作为一种在分布在空间中的电磁场,具有振幅、相位、波长等多种属性,帮助人类感知物体的明暗、位置和色彩。

然而,传统的光学成像只能捕获到光辐射在二维平面上的投影强度,而丢失了其他维度的光学信息。

光场成像作为一种计算成像的方法,利用现代信息处理技术的优势,不仅克服了传统成像在原理上的某些局限性,同时也降低了成像能力对于物理器件性能的依赖性[1]。

光场成像指的是光场的采集以及将光场处理为图像的过程。

国外对光场成像技术的研究相对较早[2],早在1903年Ives便发明了运用真空成像技术的双目视差显示系统,它通过在主透镜的像面处放置针孔面阵列,从而使原像面处的光辐射按角度进行重分布后记录在光探测器上,避免了角度信息的丢失。

1908年,Lippman发明的集成照相术被后世广泛运用于三维全息成像,通过用微透镜阵列代替针孔面阵列,在底片上接收到有微小差别的一系列基元图像,消除了Ives 装置中的弥散斑。

Gershun在1936年提出光场的概念,将其定义为光辐射在空间各个位置向各个方向的传播。

他提出了到达空间不同点处的光辐射量连续变化,能够通过几何分析进而积分的方法来计算像面上每点的光辐射量的观点。

但由于计算量庞大的缺点和能够进行高次运算的计算机尚未出现的局限性,当时未能对其理论进行验证。

1948 年,Gabor利用2束相干光干涉记录下物体衍射未聚焦的波前,获得第一张全息图。

如果把这张全息图看作是包含方向和位置信息的光辐射函数,那么这其实也是一张特殊的光场图像,而非传统只记录强度信息的二维图像。

二十世纪六七十年代,Okoshi、Dudnikov、Dudley、Montebello等学者对IP技术进行了不断的改进,微透镜阵列在成像方面的作用也得以凸显。

随着计算机技术的不断发展和微透镜制作精度的提高,Adelson于1992年将光场理论成功运用到计算机视觉,并提出全光场理论。

光场成像技术

光场成像技术

1992年,Edward H.Adelson和Y.A.Wang设计了记录物体在各 个可能角度通过镜头光圈的所有信息的全光相机。
全光相机结构原理图

2005年,Ren Ng等人在全光相机的结构上做了一些简化,并 在传统相机的基础上制成了光场相机。
光场相机结构原理图
2.4 基于微透镜阵列的光场成像原理
光场成像技术
孙玉祥 314113002432
1 传统成像
组成结构:光学透镜元件 本质:光辐射在二维平面上的投影积分 局限性: ①景深受限于孔径大小 ②实际光学系统非理想 ③“所见即所得”的探测形式

2.1 光场

概念:同时包含位置和方向信息的四维光辐 射场的参数化表示
Levoy光场渲染理论
2.4.1 基于微透镜阵列的光场采样
2.4.2 光场处理



数字对焦——改变光场投影平面
聚焦在不同平面时的图像显示
数字对焦时的光场重采样
ቤተ መጻሕፍቲ ባይዱ

数字变焦——改变光线通过镜头时传播方向
变焦后的图像
数字变焦时的光场重采样
3 光场成像分辨率优化

微透镜数量
空间分辨率 方向分辨率

每个宏像素包含像素个数
光场获取
以方向分辨率换取空间分辨率
改进
算法改进
谢谢!
2.2 光场成像特点
本质:将光场处理为图像 优势: ①无需机械对焦 ②能够消除几何相差 ③实时图像信息处理

2.3 光场采集
相机阵列
单相机
掩膜及其他
2.3.1 多相机光场采集
移动机械臂装置
基于计算机的X-Y移动平台
用于高分辨率成像的相机阵列

光场成像优秀课件

光场成像优秀课件
因为孔径是有限旳,所以每个 微透镜都有一定旳视场,不同 微透镜之间有一定旳视差
视差就是从有一定距离旳两个点上 观察同一种目旳所产生旳方向差别
计算成像公式
经典旳辐射理论表面,在像平面上旳一点旳辐射来 自于镜头上全部辐射旳权重积分
EF
x,
y
1 F2
LF
x,
y,u, vcos4 dudv
LF x, y,u,v是距离目旳平面外F距离旳光场参数 cosΘ是因为光学渐晕效应旳衰减因子
• 动态场景 • 照明变化 • 光与物质旳相互作用
➢ 难于编辑 ➢ 改善
–全光照明函数[Wong02] –反射场[Debevec00]
光场旳参数化
• 光场(Light field)旳概念最早由A. Gershun 于1936年提出,用以描述光在三维空间中 旳福射传输特征。
• 光场是表示光辐射分布旳函数,反映了光 波动强度与光波分布位置和传播方向之间 旳映射关系。
光场成像
背景知识-艾里斑
❖背景知识 ❖全光函数 ❖光场 ❖光场采样 ❖光场旳获取
背景知识-艾里斑
瑞利判据:当一种艾里斑旳边沿恰好与另一种艾 里斑中心重叠时,这两个艾里斑刚好能被区别开。
F1 D d 0 1.22
d为像素尺寸 D为光圈直径
f number F d
D 1.22
假如此圆形足够小,肉眼依然可被视为 点旳成像。这个能够被接受旳最大直径 被称为允许弥散圆直径δ
假如换成微透镜,微透镜尺寸是20微米, 每个下面有十个像素,那么空间辨别率 是1800×1200,方向辨别率是10×10
空间辨别率和方向辨别率
A图微透镜在主镜头焦平 面上,传感器与微透镜间 距为微透镜焦距 最大旳方向辨别率

光场相机原理应用领域

光场相机原理应用领域

光场相机原理应用领域1. 引言1.1 光场相机概述光场相机是一种利用光场技术拍摄图像的相机。

相比传统相机,光场相机能够捕捉场景中每个点的光线方向和强度信息,而不仅仅是颜色和亮度。

这种先进的成像技术为摄影师提供了更多的创作可能性,并在多个领域展现出了巨大的应用潜力。

光场相机能够通过在单个镜头上安装微透镜阵列来捕捉光线的方向和强度信息。

这些微透镜能够将光线分散成多个像素,从而实现对场景中每个点的光线信息进行采集。

通过将不同像素的信息综合起来,光场相机能够实现对焦点的调整、景深的增强以及三维重建等功能。

光场相机在摄影领域中的应用已经逐渐被认可。

摄影师可以利用光场相机拍摄出更加生动、逼真的图像,同时还可以在后期处理中实现更多的创作效果。

光场相机在医学影像学、虚拟现实技术和安防监控领域也有着广泛的应用。

光场相机的未来展望令人期待,它将持续推动影像技术的创新,为我们带来更加丰富多彩的视觉体验。

2. 正文2.1 光场相机工作原理光场相机是一种新型的摄影技术,它利用光场传感器来捕捉光线传播的完整信息,从而实现对焦距离和景深的后期调整。

光场相机的工作原理主要包括以下几个步骤:光线通过透镜进入相机,并在光场传感器上形成光场。

光场传感器是一种特殊的传感器,可以记录每个像素点上光线的入射方向和光强,这样就可以获得完整的光场信息。

接下来,软件对光场数据进行处理,可以根据需要对焦距离和景深进行后期调整,从而实现在后期编辑中模拟出不同的焦点和景深效果。

光场相机的工作原理虽然较为复杂,但其应用领域却十分广泛。

通过利用光场相机的特点,可以在摄影领域、医学影像学、虚拟现实技术和安防监控领域等方面实现更加灵活和精确的拍摄和监控效果。

在未来,随着光场相机技术的不断发展和成熟,相信其在各个领域的应用将会越来越广泛,并为我们带来更多的惊喜和便利。

2.2 光场相机应用于摄影领域光场相机在摄影领域的应用越来越受到人们的关注和喜爱。

光场相机通过捕捉光线的方向和强度,能够在拍摄时提供更多的焦深度信息,从而实现后期对焦的功能。

光场成像技术的研究与应用

光场成像技术的研究与应用

光场成像技术的研究与应用第一章介绍光学成像技术已经成为科学、医疗、工业等众多领域的基础工具。

近年来,随着计算机科学和数字信号处理技术的不断发展,出现了新兴的光场成像技术。

光场成像技术不仅可以记录物体的各个方向上的光学信息,还可以对物体进行数码焦处理和数码光学变焦。

本文将重点介绍光场成像技术的研究和应用。

第二章光场成像技术的基本原理光场成像技术的基本原理是在微观尺度下,物体这一区域内的每一点都能发射出大量的子光束。

通过记录和处理这些子光束的交叉信息,可以获得物体在三维空间内的光场信息。

光场图像的解密依赖于计算机处理能力和数字信号处理技术。

光场成像技术常用的方法主要包括物体波前捕获和背景光经过规定轨迹后在物体表面形成干涉条纹等。

第三章光场成像技术的应用3.1 医学影像在医学方面,光场成像技术可应用于动态全息术,用于捕捉和传输三维医学图像,如人体器官形态、运动、自发活动和药物传输等生理功能及其内部结构。

采用光场成像技术对疾病的研究有帮助,可提高疾病诊断和治疗效率,成为医学影像领域的一种有前景的方法。

3.2 工业制造在工业制造行业,光场成像技术可以用于检测和测量物体形状、表面和内部结构,以及质量的控制和改进,如半导体工艺、汽车制造、制药和航空航天等领域。

光场成像技术在工业制造中有广泛的应用,是提高生产效率和保证产品质量的重要手段。

3.3 虚拟现实光场成像技术可用于虚拟现实和增强现实技术,如计算机游戏、立体电影等,这些技术通过深度和距离信息感知用户的环境,可以产生增强现实感和超现实的体验。

光场成像技术的应用将为虚拟现实技术带来更丰富、更真实的视觉体验。

第四章光场成像技术的未来发展未来光场成像技术的发展有望在更广阔领域发挥重要作用,特别是随着虚拟现实技术和增强现实技术的发展,光场成像技术将成为这些领域的关键技术。

在医学领域,光场成像技术将有望更广泛地应用于生理学和病理学的研究。

在工业制造领域,光场成像技术将有望提高产品质量、加快设计和生产过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光场成像理论目录1. 光场概念 (1)1.1 七维全光函数 (1)1.2 全光函数的降维 (1)2. 光场采集设备的发展与典型结构 (2)2.1 多相机光场采集 (3)2.2 单相机光场采集 (6)3. 微透镜阵列的光场采集 (11)3.1 基于针孔阵列的光场采集 (11)3.2 基于微透镜阵列的光场采集 (13)1. 光场概念1.1 七维全光函数光场(Light field)的概念最早于1936年由A.Gershun 提出,用以描述光在三维空间中的辐射传输特性。

1991年,E.adelson 和J.Bergen 根据人眼对外部光线的视觉感知,提出全光函数(Plenoptic function),利用七维函数表征场景中物体表面发出(或反射)的光线。

在全光函数可以表示为:7(,,,,,,)P P x y z t θϕλ=其中,,,x y z —表征光纤中任意一点的三维坐标;,θϕ—表征光纤传输方向λ—表征光线波长t —表示时间此时,全光函数7(,,,,,,)P P x y z t θϕλ=表示了波长为λ的光线t 时刻经过三维空间中坐标为(,,)x y z 的点,且传播方向为(,)θϕ的一条光线。

与只包含位置信息的光场不同,全光函数的七维表示增加了光线的色彩信息及动态变化。

1.2 全光函数的降维根据全光函数7(,,,,,,)P P x y z t θϕλ=的意义,当光线在自由空间中传播时,其频率(即波长λ)不发生变化,对于静态场,此时全光函数可由七维降至五维,即5(,,,,)P P x y z θϕ=由于观察者往往受限于目标的成像范围,此时五维光场出现一位冗余,当给定光线在自由空间的辐射不发生变化,因此在限光器的空间范围内,五维光场可以表示为四维光场。

四维光场的参数化表征可有一下三种方式:1) 方向-点参数化表政法。

利用光线与平面的交点(,)x y 和光线方向(,)θϕ作为四维参数来描述光场中的光线。

2) 球面光场参数表征法。

利用紧紧包围三维物体的球面上两点,可以表征球面封闭范围内任意一条光线的传播。

尽管该参数表征方式采样均匀,但无法表征与球面相切的光线。

3) 双平面参数化表征法。

双平面参数化表征法是采用光线与两个平行平面的焦点坐标来对光场中光线进行参数化表征。

其表达形式为(,,,)L s t u v ,其中(,)s t 和(,)u v 分表是光纤盒两平面的坐标交点。

由于实际中大部分成像系统都可以简化成两个相互平行的平面,如传统光学系统中的光瞳面和探测器像面,因此双平面参数化表征法具有较高的合理性和实用性。

图1.1 三种光场参数化模型2. 光场采集设备的发展与典型结构区别于传统成像方式,光场成像是一种计算成像技术,对捕获光场信息进行相应的数字处理才能得到相应的图像信息。

从目前光场相机的结构组成上区分,可分为多相机阵列和单相机改造两种方式。

多相机阵列采集光场信息是通过相机阵列对同一目标进行成像,因为每一个相机分别处于不同视角,因此对应光场的一个方向采样。

单相机改造结构是利用在单个相机中引入光学调制元件,改变成像结构进行如何光场的重新采集,实现将入射的四维光场重新分布在二维探测器平面。

2.1 多相机光场采集在多相机阵列出现之前,一般通机械移动装置实现相机多目标多视角图像采集。

其中典型结构包括M.Levoy所设计的移动机械臂和A.Isaksen等人设计的二维移动平台。

自1996年,美国斯坦福大学的Marc Levoy等人将相机固定到一个广场采集支架,如图2.1所示。

利用支架的二维平移和二维转动实现四个自由度的调整,仅为完成目标广场的完成采集。

在2000年,根据斯坦福实验室所设计的移动机械臂原理,A.Isaksen等人设计了类似的二维移动平台驱动相机进行光场采样,如图2.2所示,利用光场参数的变化实现不同的成像应用,包括改变景深及调节焦点。

当相机在平台上能够移动较大范围距离时,合成光场能够穿透遮挡物对其后目标进行图像的重构。

图2.1 斯坦福采集光场平台图2.2 二维移动平台和相机在2002年,J.C.Yang利用结构排列紧密的微透镜阵列代替摄像头阵列设计了一种结构紧促、成本低廉的光场采集设备,如图2.3所示。

设备通过8×11 个微透镜阵列对物体进行多角度成像实现光场采集,再利用一个平板扫描仪对透镜像平面完成一次扫描,即可将所有微透镜所成的像记录到计算机中。

图2.3 采集微透镜阵列和平板扫描仪的光场采集装置早期的多相机阵列还包括J.C.Yang等人设的8×11个摄像机阵列(如图 2.4),以及C.Zhang和T.Chen设计可独立调节姿态的多相机阵列(如图2.5)。

在后者的设中,每个相机都固定到一个移动机构单元中,可以各自在水平方向和两维转动方向进行调节。

图2.4 J.C.Yang等人设计的实时相机阵列图2.5 可独立调节姿态的相机阵列论是采用外部机械或是扫描仪,要完成光场的采集都需要一定的扫描周期,因此只能局限于对静态物体的拍摄,而采用多相机阵列可以弥补这一缺陷。

斯坦福大学的学者利用大型的相机阵列对光场进行捕捉与处理,对此进行全面的分析和研究。

围绕成像应用领域的不同,在2003 年B.Wilburn等人设计了几种不同的摄像机阵列,如图2.6.所示。

通过严格控制每个相机单元的时间同步以及位置的精度,从而能精确地对光场数据进行捕捉处理,获得高分辨率光场图像。

图2.6 斯坦福相机阵列2.2 单相机光场采集多相机阵列的规模和尺寸限制其使用场合,而实现单相机内的广场获取则更具实际意义。

1992年,E.Adelson和J.Wang设计了一种全光相机(Plenoptic camera),其结构原理如图2.7.a所示,系统由主镜头、微透镜阵列、成像探测器组成。

探测器与主镜头的光瞳关于微透镜共轭,主镜头出射的光线经过每个微透镜后投影到其对对应的若干像元上,这些像元共同组成一个“宏像素”(Macropixel)。

此时每个宏像素的坐标对应目标像点的几何位置,二宏像素中所覆盖的每个探测器像元则代表目标的不同视角信息。

在该系统的设计中,包含了一个光学扩散片和一个场景。

前者的作用类似于摄影相机中的额低通滤镜,相处高于透镜阵列采样频率的高频成分;而场景的引入可以将宏像素对齐到微透镜所在位置。

在如图2.7.b所示系统中,利用中继镜头将微透镜阵列焦面上的像转接到探测器,可以解决犹豫微透镜焦距非常小导致的探测器和微透镜阵列难以直接耦合的困难。

由于二次成像具有较严重的渐晕效应,因此在微透镜焦平面处加入一片毛玻璃进行匀光补偿。

图2.7 (a)全光相机设计结构;(b)采用终极镜头的全光相机2005年,R. Ng等人简化了全光相机的设计,在常规摄影相机的基础上制成手持式全光相机(光场相机),如图2.8所示。

等通探测器芯片立接安装在微透镜阵列的焦面上,减少了中继镜头所带来的额外尺寸以及渐晕效应。

由于宏像素的排列次序与相应微透镜单元的排列保持一致,两者并不需要严格的对齐,因此也可以去除场镜。

图2.9中,顶部两幅图片为手持式光场相机所拍摄的光场图像,宏观上来看与常规图像没有太大区别,但从放大后的图中可以明显看出,每个微透镜所对应的宏像素均覆盖了若干个探测器像元。

对二维光场图像中的像素进行重新排列,得到四维光场矩阵,将四维光场重新投影到新的像平而进行积分叠加,就可以获得不同像平而上的对焦图像。

这一对焦过程完全依靠数字计算来完成,而非传统的机械对焦方式,因此称之为“数字对焦”(Digital refocusing)。

图2.9底部三幅图片给出光场相机依次对焦到前、中、后三个、同深度位置的重构图像。

图2.9 上图为光场相机结构原理图;下图为光场相机外观图2.8光场图像与数字对焦T.Georgiev等人基于光场维度冗余性,减少光场方向维度的采样,即用较低的分辨率换取相对较高的空间分辨率。

在光场相机中,减少方向采样的直接方法就是减小微透镜单元的孔径和焦距,使单个宏像素所覆盖的像元数减少。

减小微透镜单元孔径和焦距的方法分别会引入制造和处理的两大问题。

为此,T.Georgiev等人对此展开相关研究,其中A.Lumsdaine和T.Georgiev提出的光场相机2.0,又称”聚焦光场相机”,其结构如图2.9所示。

探测器位于微透镜阵列之前某个有限距离处的虚拟无平面上。

若该虚拟物平面和探测器分别距离微透镜a和b,那么光场相机对光场的方向分辨率为/a b,空问分辨率为探测器分辨率的/b a倍。

通过调整参数a和b可以对光场方向采样和空问采样进行折衷调节。

图2.9 光场相机2.0结构针对处理的问题,T.Georgiev等设计了一种外置与常规相机镜头前端的微透镜阵列(或透镜-棱镜阵列),如图2.10所示。

每个子图像为光场的一个方向维度采样,而子图像内的像元表示光场的空间采样。

由于光场的方向采样数一般都远小于其空间采样数,因此采用这种排列方式能够减少子图像边缘像素的比例,因而提高了探测器像元的有效利用率。

图2.10 采用外置透镜-棱镜阵列的光场相机与此结构类似,由P.Green等人设计的多孔径相机,如图2.11所示。

多孔径相机将主镜头的孔径分割为四个同心环,目标经过每个环形子孔径所成的像,经过不同的反射光路重新分布到探测器像面。

与上述光场相机在光场方向维度的二维形采样方式不同,多孔径相机只对光场的方向维度沿径向进行一维采样,将其获得的多孔径图像直接相加即可合成为常规扣机在不同光圈下的图像。

环形孔径分割方式难以直接在折射型透镜上实现,因此需采用额外的反射和中继光路,增加了整个系统的尺寸重量和工程复杂度。

图2.11 基于环形分割的多孔径相机C.K.Liang 等人设计的一种可编程孔径相机(Programmable aperture camera),可通过多次曝光对主镜的子孔径进行采样,每次曝光只允许特定子孔径位置的光线成像到探测器。

可编程孔径相机所采集到的光场具有与探测器桕当的空问分辨率,但这同时是以牺牲噪光时间或图像信噪比为代价的,多次曙光成像所形成的庞大数据量也成为额外的负担。

A.Veeraraghavan等人还提出了另一种采用编码调制的方式获取光场的方法,即外差式光场相机(Heterodyne light field camera),如图2.12所示。

与空域对光场进行调制的光场相机不同,外差式光场相机实现的是四维光场在傅里叶频域中的调制。

在傅里叶域来看,某个深度位置所成的像就是四维光场沿相应角度θ的二维切片。

如果在这个深度平面放置一片具有特定透过率函数的编码掩膜,则光线经过掩膜滤光的过程在傅里叶域表现为光场频谱与透过率函数傅里叶变换的卷积。

将掩膜透过率函数设计为余弦函数,其傅里叶变换为脉冲函数,就可以实现光场频谱沿θ角度的复制和搬移。

相关文档
最新文档