集成电路复习总结
集成电路复习知识点

填空题:1.集成电路的加工过程主要是三个基本操作,分别是:形成某种材料的薄膜薄层在各种薄膜材料上形成需要的图形,通过掺杂改变材料的电阻率或-杂质类型。
2.M0晶体管的工作原理是利栅极与衬底之间形成的电场,在半导体表面形成_ 反形层使源、漏之间形成导电沟道。
3.用CMO电路设计静态数字逻辑电路,如果设计与非逻辑下拉支路应该是串联,如果设计或非逻辑下拉支路应该是并联。
4. M0存储器主要分为两大类,分别是:ROM和RAM。
5. CMO集成电路是利用NMO和PMO 的互补性来改善电路性能的,因此叫做CMO集成电路。
在P型衬底上用N阱工艺制作CMO 集成电路。
6.等比例缩小理论包括恒定电场等比例缩小定律、恒定电压等比例缩小定律、准恒定电场等比例缩小定律。
7. 1947年巴丁、肖克莱、布拉顿发明了半导体晶体管,并因此获得了1956年的诺贝尔物理学奖,1958年美国德州仪器公司的基尔比发明了第一块集成电路,并获得2000年诺贝尔物理学奖。
8.静态CMO逻辑电路中,一般PMO管的衬底接电源电压,NOM管的衬底接地电压;NMO下拉网络的构成规律是:NMO管串联实现与操作;NMO管并联实现一或操作;PMO 上拉网络则是按对偶原则构成,即PMO管串联实现或操作;PMO管并联实现与操作。
9.集成电路中非易失存储器包括三种,即:不可擦除ROM EPROM E2PROM 10.集成电路产业按照职能划分为设计、制造、封装三业。
11. CMOS-- ----------------------------------------------- ------逻辑电路的功耗由三部分组成:动态功耗Pd开关过程中的短路功耗PSC静态功耗Pso 12.时序电路的输出不仅与当前的输入有关,还与系统原来的状态有关。
13.集成电路的设计方法可分为三种,即:基于PLD的设计方法、半定制设计方法、定制设计方法。
判断题:1. N阱CMO工艺是指在N阱中加工NMO的工艺。
集成电路分析期末复习总结要点

集成电路分析集成工业的前后道技术:半导体(wafer)制造企业里面,前道主要是把mos管,三极管作到硅片上,后道主要是做金属互联。
集成电路发展:按规模划分,集成电路的发展已经历了哪几代?参考答案:按规模,集成电路的发展已经经历了:SSI、MSI、LSI、VLSI、ULSI及GSI。
它的发展遵循摩尔定律解释欧姆型接触和肖特基型接触。
参考答案:半导体表面制作了金属层后,根据金属的种类及半导体掺杂浓度的不同,可形成欧姆型接触或肖特基型接触。
如果掺杂浓度比较低,金属和半导体结合面形成肖特基型接触。
如果掺杂浓度足够高,金属和半导体结合面形成欧姆型接触。
、集成电路主要有哪些基本制造工艺。
参考答案:集成电路基本制造工艺包括:外延生长,掩模制造,光刻,刻蚀,掺杂,绝缘层形成,金属层形成等。
光刻工艺:光刻的作用是什么?列举两种常用曝光方式。
参考答案:光刻是集成电路加工过程中的重要工序,作用是把掩模版上的图形转换成晶圆上的器件结构。
曝光方式:接触式和非接触式25、简述光刻工艺步骤。
参考答案:涂光刻胶,曝光,显影,腐蚀,去光刻胶。
26、光刻胶正胶和负胶的区别是什么?参考答案:正性光刻胶受光或紫外线照射后感光的部分发生光分解反应,可溶于显影液,未感光的部分显影后仍然留在晶圆的表面,它一般适合做长条形状;负性光刻胶的未感光部分溶于显影液中,而感光部分显影后仍然留在基片表面,它一般适合做窗口结构,如接触孔、焊盘等。
常规双极型工艺需要几次光刻?每次光刻分别有什么作用?参考答案:需要六次光刻。
第一次光刻--N+隐埋层扩散孔光刻;第二次光刻--P+隔离扩散孔光刻第三次光刻--P型基区扩散孔光刻;第四次光刻--N+发射区扩散孔光刻;第五次光刻--引线接触孔光刻;第六次光刻--金属化内连线光刻掺杂工艺:掺杂的目的是什么?举出两种掺杂方法并比较其优缺点。
参考答案:掺杂的目的是形成特定导电能力的材料区域,包括N型或P型半导体区域和绝缘层,以构成各种器件结构。
集成电路考前必备复习考点

集成电路考前必备复习考点集成电路设计考点填空题1.NM L和NM H的概念,热电势,D触发器,D锁存器,施密特触发器。
低电平噪声容限:VIL-VOL高电平噪声容限:VOH-VIH这一容限值应该大于零热电势:两种不同的金属相互接触时,其接触端与非接触端的温度若不相等,则在两种金属之间产生电位差称为热电势。
2.MOS晶体管动态响应与什么有关?(本征电容P77)MOS晶体管的动态响应值取决于它充放电这个期间的本征寄生电容和由互连线及负载引起的额外电容所需要的时间。
本征电容的来源:基本的MOS结构、沟道电荷以及漏和源反向偏置PN结的耗尽区。
3.设计技术(其他考点与这种知识点类似)P147怎样减小一个门的传播延时:减小CL:负载电容主要由以下三个主要部分组成:门本身的内部扩散电容、互连线电容和扇出电容。
增加晶体管的宽长比提高VDD4.有比逻辑和无比逻辑。
有比逻辑:有比逻辑试图减少实现有一个给定逻辑功能所需要的晶体管数目,但它经常以降低稳定性和付出额外功耗为代价。
这样的门不是采用有源的下拉和上拉网络的组合,而是由一个实现逻辑功能的NMOS 下拉网络和一个简单的负载器件组成。
无比逻辑:逻辑电平与器件的相对尺寸无关的门叫做无比逻辑。
有比逻辑:逻辑电平是由组成逻辑的晶体管的相对尺寸决定的。
5.时序电路的特点:记忆功能的原理:(a)基本反馈;(b)电容存储电荷。
6.信号完整性。
(电荷分享,泄露)信号完整性问题:电荷泄露电荷分享电容耦合时钟馈通7.存储器与存储的分类按存储方式分随机存储器:任何存储单元的内容都能被随机存取,且存取时间和存储单元的物理位置无关。
顺序存储器:只能按某种顺序来存取,存取时间和存储单元的物理位置有关。
按存储器的读写功能分只读存储器(ROM):存储的内容是固定不变的,只能读出而不能写入的半导体存储器。
随机读写存储器(RAM):既能读出又能写入的半导体存储器。
按信息的可保存性分非永久记忆的存储器:断电后信息即消失的存储器。
集成电路原理与应用复习总结

Ui Ui I i I1 I
由
U U Ui U o 和 o 3 得 U 3 2U i R2 2 R1 R1 R2 Ui Ui R1 R
所以 I i
因此 Ri
Ui RR1 I i R R1
当 R R1 时, Ri , I I1 4. 几中常见的积分电路 ①反相积分器 ②同相积分器
第一章 集成运放的基础知识 1. 集成运放是一种高增益直接耦合放大器。 2. 跨导的计算 ①晶体管:������������ = ������������ ������ =
������������
������������
������������������ ������������
������ (
������������ ������������ ) ������������
2
解法一:用两级反相求和电路 ������ ������ = −5(������������2 + ������ ������4 ) − 5(−(������ ������1 + ������ ������3 )) ∴������1 = ������2 = ������3 = ������4 = 20������������ ������������1 = ������������2 = ������5 = 100������������ ������������1 = ������1 ∕∕ ������3 ∕∕ ������������1 ≈ 333.3������������ ������������2 = ������2 ∕∕ ������4 ∕∕ ������5 ∕∕ ������������2 ≈ 6.25������������ 接法二:两个同相求和电路和一个差动放大器 ������ ������ = 5[(������������1 + ������ ������3) − (������ ������2 + ������ ������4 )] ∴������1 = ������2 = ������3 = ������4 = ������������1 = ������������2 = ������6 = 100������������ ������5 = 20������Ω ������������ = 100������Ω, ������������ = 50������Ω 【例 2-3】试分析图 1 所示电路是什么电路,有何
郑州大学半导体集成电路复习总结.doc

郑州大学半导体集成电路复习总结1.基本概念:集成电路:是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体有源器件、电阻、电容等元件及它们之间的连接导线全部“集成”在一块半导体单晶片上,封装在一个外壳内,执行特定电路或系统功能的电路。
集成度:每块集成电路芯片中包含的元器件数目。
多项目晶圆技术:多项目晶圆就是将多个使用相同工艺的集成电路设计放在同一晶圆片上流片,制造完成后,每个设计可以得到数十片芯片样品,这一数量对于原型设计阶段的实验、测试已经足够。
而该次制造费用就由所有参加MPW的项目按照芯片面积分摊,成本仅为单独进行原型制造成本的5%-10%,极大地降低了产品开发风险、培养集成电路设计人才的门槛和中小集成电路设计企业在起步时的门槛。
无生产线集成电路设计:代工厂:加工厂的铸造车间,无自己产品。
优良的加工技术(包括设计和制造)及优质的服务为客户提供加工服务。
2.微电子的战略地位:对人类社会的巨大作用3.集成电路分类:按器件结构类型分类:①双极集成电路②金属-氧化物-半导体(MOS)集成电路③双极-MOS(BiMOS)集成电路按集成度分类:①小规模集成电路②中规模集成电路③大规模集成电路④超大规模集成电路⑤特大规模集成电路⑥巨大规模集成电路按使用的基片材料分类:①单片集成电路②混合集成电路按电路的功能结构分类:①数字集成电路②模拟集成电路③数模混合集成电路按应用领域分类:①标准通用集成电路②专用集成电路 4.集成电路按规模划分经历了哪几代?遵循什么定律?小规模集成(SSI)→中规模集成(MSI)→大规模集成(LSI)→超大规模集成电路(VLSI)→特大规模集成电路(ULSI)→GSI(巨大规模集成)→SoC(系统芯片)。
摩尔定律:集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小根号2倍。
5.IC(集成电路)、VLSI(超大规模集成电路)、ULSI(特大规模集成电路)6.高K介质:问题:90nm工艺之前,晶体管之间的电流泄露问题并不是很严重,因为晶体管之间有较长的间距。
数字集成电路复习必备知识点总结

1. 集成电路是指通过一系列特定的加工工艺,将晶体管、二极管、MOS管等有源器件和阻、电容、电感等无源器件,按一定电路互连,“集成”在一块半导体晶片(硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的一种器件。
2.集成电路的规模大小是以它所包含的晶体管数目或等效的逻辑门数目来衡量。
等效逻辑门通常是指两输入与非门,对于CMOS集成电路来说,一个两输入与非门由四个晶体管组成,因此一个CMOS电路的晶体管数除以四,就可以得到该电路的等效逻辑门的数目,以此确定一个集成电路的集成度。
3.摩尔定律”其主要内容如下:集成电路的集成度每18个月翻一番/每三年翻两番。
摩尔分析了集成电路迅速发展的原因,他指出集成度的提高主要是三方面的贡献:(1)特征尺寸不断缩小,大约每3年缩小 1.41倍;(2)芯片面积不断增大,大约每3年增大 1.5倍;(3)器件和电路结构的改进。
4.反标注是指将版图参数提取得到的分布电阻和分布电容迭加到相对应节点的参数上去,实际上是修改了对应节点的参数值。
5.CMOS反相器的直流噪声容限:为了反映逻辑电路的抗干扰能力,引入了直流噪声容限作为电路性能参数。
直流噪声容限反映了电流能承受的实际输入电平与理想逻辑电平的偏离范围。
6. 根据实际工作确定所允许的最低输出高电平,它所对应的输入电平定义为关门电平;给定允许的最高输出低电平,它所对应的输入电平为开门电平7. 单位增益点.在增益为0和增益很大的输入电平的区域之间必然存在单位增益点,即dVout/dVin=1的点8. “闩锁”现象在正常工作状态下,PNPN四层结构之间的电压不会超过Vtg,因此它处于截止状态。
但在一定的外界因素触发下,例如由电源或输出端引入一个大的脉冲干扰,或受r射线的瞬态辐照,使PNPN四层结构之间的电压瞬间超过Vtg,这时,该寄生结构中就会出现很大的导通电流。
只要外部信号源或者Vdd和Vss能够提供大于维持电流Ih的输出,即使外界干扰信号已经消失,在PNPN四层结构之间的导通电流仍然会维持,这就是所谓的“闩锁”现象9. 延迟时间:T pdo ——晶体管本征延迟时间;UL ——最大逻辑摆幅,即最大电源电压;Cg ——扇出栅电容(负载电容);Cw ——内连线电容;Ip ——晶体管峰值电流。
集成电路专业课课程习题重点总结概括归纳O( )O

集成电路专业课课程习题重点总结概括归纳O( )O 集成电路专业课课程习题重点总结概括归纳o(-)o1、集成电路的发展遵循了什么定律?简述集成电路设计流程。
说明版图设计在整个集成电路设计中所起的作用。
请问:摩尔定律:集成电路的集成度,即为芯片上晶体管的数目,内要18个月增加一倍或者每3年翻两番。
版图设计的作用:1、满足电路功能性能指标质量要求2、尽可能节省面积以提高集成度,降低成本3、尽可能缩短连线,以减少复杂度,缩短时间,改善可靠性;2、(1)集成电路设计方法的种类主要有哪些?(2)名词解释:asic、soc、dsp、hdl等常用简写请问:(1)全系列制订设计方法,半制订设计方法,标准单元设计方法,通用型单元设计方法,可编程逻辑电路设计方法。
(2)asic(applicationspecificintergratedcircuits)专用集成电路:指特定用户建议和特定电子系统的须要而设计、生产的集成电路soc(systemonchip)系统及芯片、片上系统:指它是一个产品、是一个有专用目标的集成电路,其中包括完整系统并有嵌入软件的全部内容dsp(digitalsignalprocessing)数字信号处理:就是一门牵涉许多学科而又广为应用于许多领域的新兴学科hdl(hardwaredescriptionlanguage)硬件描述语言:指对硬件电路进行行为描述、寄存器传输描述或者结构化描述的一种新兴语言3、(1)叙述多晶硅在cmos工艺中所起至的基本促进作用。
(2)假设某材料的方块电阻值为10ω,电阻的长度为30μm,宽度为10μm,该电阻阻值为多少?如果其他条件维持不变,长度变成25μm,则该电阻的阻值又就是多少?答:(1)多晶硅有着与单晶硅相似的特性,并且其特性可随结晶度与杂质原子的改变而改变。
在mos及双极型器件中,多晶硅可用来制作栅极、源极与漏极的欧姆接触、基本连线、薄pn结的扩散源、高值电阻等。
集成电路总结(附重点知识点参考答案)

1.集成电路重点知识复习点1.芯片制作过程中主要的工艺有哪些?主要的三项工艺:薄膜制备工艺、光刻/图形转移工艺、掺杂工艺薄膜制备工艺:在晶圆表面生长或淀积数层材质不同,厚度不同的膜层,如器件工作区的外延层,绝缘介质层,金属层等。
该工艺通过常用方法有:外延生长,氧化,淀积。
图形转移工艺:包括掩膜版的制作,涂光刻胶,曝光(光刻),显影,烘干,刻蚀。
电路结构以图形的形式制作在光刻掩膜版上。
然后通过图形转换工艺转移精确转移到硅晶片上。
掺杂工艺:包括扩散工艺和离子注入工艺。
各种杂质按照设计要求掺杂到晶圆上,形成晶体管的源漏端以及欧姆接触等。
2.PN结形成的过程是什么?在纯净的本增半导体中少量掺杂施主杂质,如磷,取代硅原子,就形成了N型半导体。
参与导电的主要是带负电的电子,电子为多数载流子,又称多子。
空穴为少数载流子,又称少子。
在纯净的本增半导体中少量掺杂受主杂质,如硼,取代硅原子,就形成了P型半导体。
因为参与导电的主要是带正电的空穴,空穴为多子。
当P型半导体和N型半导体放在一起之后,多子和少子从浓度高的区域向浓度低的区域扩散,P区留下的不能移动的负离子和N区留下的不能移动的正离子在半导体交界面形成了一个很薄的空间电荷区,又称耗尽层。
这就是PN结。
PN结有内电场,由N区指向P区,内电场阻止多子的扩散运动,促使少子的漂移运动。
最终PN结达到动态平衡。
PN结具有单向导电性,当外加正向电压(P区接正电压)时,PN结处于导通状态,结电阻很小。
当外加负向电压(N区接正电压)时,PN结处于截止状态,结电阻很大。
当反向电压加到一定程度,PN结会击穿二损坏。
3.典型的N阱CMOS的剖面图是什么?4.MOS器件的工作区域有哪些?每个区域中的载流子是如何运作的?以NMOS为例:截止区:Vgate加较小的正电压,外加电场使得正电荷积聚在栅极,同时,空穴被排斥到更为底层的主体的衬底区;当空穴被排斥,在栅极下端的主体的P区表面,只留下带负电的不可移动的离子,耗尽区在栅极下方形成;Vgate进一步加大,更多衬底的少子被吸引到表面,当Vgs=VT时,表面将产生足够的电子,使得主体表面形成一层很薄的N型区,此N型区域中,电子的浓度大于空穴的浓度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、中英名词解释(1)IC(Integrated Circuit):集成电路,是指通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容、电感等无源器件,按照一定的电路互联,“集成”在一块半导体晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的一种器件。
(2)摩尔定律(Moore's Law):芯片上晶体管数目每隔18个月翻一番或每三年翻两番,性能也会增加一倍。
(3)SOC(system on chip):在一个微电子芯片上将信息的采集、传输、存储、处理等功能集成在一起而构成系统芯片。
(4)EDA(Electronic-System Design Automation):电子设计自动化(5)能带:能量越高的能级,分裂的能级越多,分裂的能级也就相邻越近,这些邻近的能级看起来就像连续分布,这样的多条相邻近的能级被称为能带(6)本征半导体:是一种完全纯净的、结构完整的半导体晶体。
(经过一定的工艺过程将纯净的半导体制成的单晶体称为本征半导体。
导带中的自由电子与价带中的空穴都能参与导电。
)(7)肖特基接触:金属与半导体接触并且金属的费米能级低于N型半导体或高于P型半导体的费米能级,这种接触为肖特基接触。
(8)MESFET:(Metal-Semiconductor Filed Effect Transistor),即金属-半导体场效应晶体管(9)Spice(Simulation Program with Integrated Circuit Emphasis):集成电路仿真程序,主要用来在电路硬件实现之前读电路进行仿真分析。
(10)FPGA(Filed Programmable Gate Array):现场可编程门阵列。
(又称逻辑单元阵列,Logic Cell A)(11)IP(Intellectual Property):知识产权。
通常讲的IP核是指已经设计优化好。
经过验证、功能复杂、可以嵌入到其他电路中重复使用的集成电路模块。
(12)HBT(Hetro-junction Bipolar Transistor):异质结双极晶体管(13)短沟道效应:短沟道效应主要是指阈值电压与沟道相关到非常严重的程度。
随着沟道长度变的越来越短,阈值电压与沟长及漏电压有着明显的关系。
而随着沟长的变短,阈值电压与衬底偏压的关系变弱。
P-125 (14)沟通长度调制效应:MOS晶体管中,栅下沟道预夹断后、若继续增大Vds,夹断点会略向源极方向移动导致夹断点到源极之间的沟道长度略有减小,有效沟道电阻也就略有减小,从而使更多电子自源极漂移到夹断点,导致在耗尽区漂移电子增多是Id增大,这种效应称为沟道长度调制效应。
(15)电路仿真:将要分析的电路问题列出数学形式的电路方程,然后对电路方程求解。
就是设计好的电路图通过仿真软件进行实时模拟,模拟出实际功能,然后通过其分析改进,从而实现电路的优化设计。
P-132 (16)电路综合:synthesis 实现在满足设计电路的功能、速度及面积等限制条件下,将行为级描述转化为指定的技术库中单元电路的连接。
(17)ASIC(Application Specific Integrated Circuit):专用集成电路(18)VDSM(Very Deep Sub-micron):超深亚微米(19)VLSI(Very Large Scale Integration):超大规模集成电路(20)DRC:design rule check 设计规则检查,最小线宽、最小图形间距、最小接触孔尺寸、栅和源漏区的最小交叠等。
ERC:Electrical Rules Check 电气规则检查,检测有没有电路意义的连接错误,如短路、开路、孤立布线、非法器件等,介于设计规则与行为级分析之间,不涉及电路行为。
LVS:Layout Versus Schematic 电路与版图一致性验证,从版图提取出的电路网表与从原理图得到的网表进行比较,检查两者是否一致。
主要用于保证进行电路功能和性能验证之前避免物理设计错误。
(21)GDSII:Graphic Data System是一种时序提供格式,用于设计工具、计算机和掩膜制造商之间进行半导体物理制板的数据传输。
tape –out:提交最终GDSII文件加工Foundry:芯片代工厂(22)RTL:Register Transfer Level 寄存器传输级,用于描述同步数字电路操作的抽象级。
DC:Desing Compiler 设计编译器(用于综合)FM:Form Test 形式验证APR: Auto Place and Route 自动布局布线(23)STA:Static Timing Analysis静态时序分析SDF:Standard Delay Format 标准延时格式文件,数字电路后端设计中的一种文件SDC:Synopsys Design Constraints 时序约束简答(40分)(1)集成电路分类按器件结构类型分为双极集成电路、金属-氧化物-半导体集成电路、双极MOS集成电路;按集成度分为小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)、特大规模集成电路(ULSI)、巨大规模集成电路(GSI);按使用的基片材料分为单片集成电路与混合集成电路;按电路功能分为数字集成电路、模拟集成电路、数模混合集成电路;按应用领域分为标准通用集成电路、专用集成电路。
(2)集成电路材料有哪些?分别适合什么样的集成电路1导体,铝、金、钨、铜等金属和镍铬等合金,用于构成低值电阻、构成电容元件的极板、构成电感元件的绕线、构成传输线的导体结构、与轻掺杂半导体构成肖特基结接触、与重掺杂半导体构成半导体器件的电极的欧姆接触、构成元件之间的互连、构成与外界焊接用的焊盘。
2绝缘体,二氧化硅、氮氧化硅、氮化硅等硅的氧化物与氮化物,构成电容的绝缘介质、构成金属-氧化物-半导体器件(MOS)的栅绝缘层、构成元件和互连线之间的横向隔离、构成工艺层面之间的垂直隔离、构成防止表面机械损伤和化学污染的钝化层。
3半导体,利用半导体掺杂以后形成P型和N型半导体,在导体和绝缘体材料的连接或阻隔下组成各种集成电路的元件—-半导体器件。
(3)能带概念,PN节在正反向偏置下能带解释能量越高的能级。
分裂的能级越多,分裂的能级也就相邻越近,这些邻近的能级看起来就像连续分布,这样的多条相邻近的能级被称为能带。
P-18PN节正反偏置P-26零偏压时,P区和N区费米能级持平,电子占据水平相当,没有载流子流动,处于平衡状态。
正向偏压,从能带角度来说阻挡层势垒被削弱,阻挡层的总电场强度降低,PN结两端的能带弯曲变小。
N区的费米能级高于P区的费米能级,电子和空穴容易获得足够的能量越过势垒区到达对方区域。
从而有电流流过势垒区。
反向偏压,从能带角度来说阻挡层势垒被加强,阻挡层的总电场强度增大,PN结两端的能带弯曲变大。
P区的费米能级高于N区的费米能级,电子和空穴不能越过势垒区到达对方区域。
只有漏电流流过势垒区。
(4)MOS管工作原理P-32以NMOS晶体管为例,如果没有任何外加偏置电压,从漏到源是两个背对背的二极管结构。
它们之间所能流过的电流就是二极管的反向漏电流。
如果把源漏和衬底接地,在栅上加一足够高的正电压,正的栅压将要排斥栅下的P型衬底中的空穴而吸引电子。
电子在表面聚集到一定浓度时,栅下的P型层将变成N型层,即呈现反型。
N反型层与源漏两端的N型扩散层连通,就形成以电子为载流子的导电沟道。
如果漏源之间有电位差,将有电流流过。
如果加在栅上的正电压比较小,不足以引起沟道区反型,器件仍处在不导通状态。
引起沟道区产生强表面反型的最小栅电压,称为阈值电压VT。
(5)简述集成电路制造工艺流程。
包括外延生长、掩膜制版、光刻、掺杂、绝缘层形成、金属层形成。
外延层具有很多优良性能。
掺杂、隔离、串通等等。
目前常见的外延技术有:化学汽相沉积(化学汽相沉积生长法是通过汽体化合物之间的化学反应而形成的一种生长外延层的工艺。
通过晶圆表面吸附反应物,在高温下发生反应,生成外延层),金属有机物汽相沉积(由于许多III族元素有机化合物和V族元素氢化物在较低温度下即可成为气态,因此在金属有机物化学沉积过程中反应物不需要高温,只需要在衬底附近存在高温区使得几种反应物能够在衬底附近发生化学沉积反应即可),分子束外延生长(分子束外延是在超高真空下(~10-8 Pa)加热一种或多种原子或分子,这些原子分子束与衬底晶体表面反应从而形成半导体薄膜的技术)。
掩膜制造,掩膜版可分成:整版及单片版。
整版是指晶圆上所有的集成电路芯片的版图都是有该掩膜一次投影制作出来的,各个单元的集成电路可以不同。
单片版是指版图只对应晶圆上的一个单元,其他单元是该单元的重复投影,晶圆上各个芯片是相同的。
早期掩膜制造是通过画图照相微缩形成的。
光学掩膜版是用石英玻璃做成的均匀平坦的薄片,表面上涂一层60~80nm厚的铬,使其表面光洁度更高,这称之为铬版(Crmask),通常也称为光学(掩膜)版。
新的光刻技术的掩膜版与光刻技术有关。
光刻的作用是把掩膜版上的图形映射到晶圆上,并在晶圆上形成器件结构的过程。
对光刻的基本要求有:高分辨率、高灵敏度、精密的套刻对准、大尺寸硅片上的加工、低缺陷。
曝光是在光刻胶上形成预定图案,有光学光刻和非光学光刻。
刻蚀是将图形转移到晶圆上有湿法刻蚀、等离子体刻蚀、反应离子刻蚀等。
光刻基本步骤:涂光刻胶→曝光→显影与后烘→刻蚀→去除光刻胶摻杂的目的是制作N型或P型半导体区域,以构成各种器件结构。
主要方法有:热扩散法掺杂,离子注入法掺杂。
绝缘层形成的方式:热氧化、CVD。
绝缘层的作用:栅极隔离层,局部氧化隔离法隔离(LOCOS),浅沟槽隔离(STI)集成电路工艺中的金属层有三个主要功能:1)形成器件本身的接触线;2)形成器件间的互连线;3)形成焊盘。
金属层的形成主要采用物理汽相沉积(PVD:Pysical Vapor Deposition)技术。
PVD技术有蒸镀和溅镀两种。
金属CVD技术,正在逐渐发展过程中(6)简述以N+硅为衬底的工艺步骤。
双阱CMOS工艺采用的原始材料是在N+或P+衬底上外延一层轻掺杂的外延层,然后用离子注入的方法同时制作N阱和P阱。
使用双阱工艺不但可以提高器件密度,还可以有效的控制寄生晶体管的影响,抑制闩锁现象。
1衬底准备:衬底氧化后,在二氧化硅上生长氮化硅2光刻P阱,形成阱版,在P 阱区腐蚀氮化硅,P阱注入3去光刻胶,P阱扩散并生长二氧化硅4腐蚀氮化硅,N阱注入并扩散5形成场隔离区(场氧化层)6NMOS管场注入光刻7场区氧化,栅氧化,沟道掺杂(阈值电压调节注入)8多晶硅淀积、掺杂、光刻和腐蚀,形成栅区的多晶硅版9P阱中的NMOS管光刻和注入硼并扩散,形成N+版10PMOS管光刻和注入磷并扩散,形成P+版11硅片表面沉积二氧化硅薄膜12接触孔光刻,接触孔腐蚀13淀积铝,反刻铝,形成铝连线最后做栅极金属引线后得到双阱CMOS工艺的CMOS晶体管(7)简述某一规则的目的与作用。