初中数学中考总复习:一元二次方程、分式方程的解法及应用--巩固练习题及答案(基础)
人教版数学九年级上学期课时练习-一元二次方程解法-因式分解法(巩固篇)(人教版)

专题21.13 一元二次方程解法-因式分解法(巩固篇)(专项练习)一、单选题1.方程()22x x x -=-的根是( )A .1x =B .12x =,20x =C .11x =,22x =D .2x =2.在数轴上原点两侧两点A 、B ,其中点A 表示的数是a ,点B 表示的数是2a a +,如果A ,B 两数的绝对值相等,那么a 的值是( )A .0或2B .0C .2D .-23.在平面直角坐标系中,点2(2,1)A x x +与点(3,1)B -关于y 对称,则x 的值为( ) A .1 B .3或1 C .3-或1 D .3或1-4.已知关于x 的方程20x px q ++=的两个根为11x =,22x =-,则二次三项式2x px q++可分解为( )A .()()12x x +-B .()()12x x ++C .()()12x x -+D .()()12x x --5.已知实数x 满足(x 2﹣2x +1)2+4(x 2﹣2x +1)﹣5=0,那么x 2﹣2x +1的值为( )A .﹣5或1B .﹣1或5C .1D .56.若实数a 、b 满足2222()(3)10a b a b +++=,则a 2+b 2的值为( ) A .-5 B .-2或5 C .2 D .-5或-2 7.用换元法解分式方程2221x x x x -+=-时,如果设2x x y -=,则原方程可化为关于y 的整式方程是( ).A .2210y y ++=B .2210y y +-=C .220y y -+=D .220y y +-= 8.解方程2221x x x x++=+时.如果设2y x x =+,那么原方程可化为( )A .220y y +-=B .220y y -+=C .220y y ++=D .220y y --= 9.已知矩形的长和宽是方程2680x x -+=的两个实数根,则矩形的对角线的长为( )A .6B .7C .20D .10.已知一个直角三角形的两条直角边长恰好是方程x 2﹣14x +48=0的两根,则此三角形的斜边长为( )A .6B .8C .10D .1411.若三角形两边长分别为3和4,第三边的长是方程257(5)x x x -=-的根,则此三角形的周长为( )A .12B .14C .12或14D .13或1512.如图,一次函数y =-3x +4的图象交x 轴于点A ,交y 轴于点B ,点P 在线段AB 上(不与点A ,B 重合),过点P 分别作OA 和OB 的垂线,垂足为C ,D .若矩形OCPD 的面积为1时,则点P 的坐标为( )A .(13,3)B .(12,2)C .(12,2)和(1,1)D .(13,3)和(1,1) 二、填空题13.方程220220x x -=的解是______.14.已知关于x 的一元二次方程x 2-4mx +3m 2=0,若m >0,且该方程较大的实数根为1,则m 的值为_________.15.x =-的解是_____.16.若0x >,0y >,50x y --=,则x y =__________. 17.方程x 2213x x-=-3x ﹣4中,如果设y =x 2﹣3x ,那么原方程可化为关于y 的整式方程是________.18.已知实数a 、b 满足()()2222228a b a b +-+=,则22a b +的值为___________. 19.在实数范围内,已知221221x x x x +++=,则1x x+的值是______. 20.阅读下面的材料,回答问题:解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =. 当1y =时,21x =,①1x =±;当4y =时,24x =,①2x =±;①原方程有四个根:11x =,21x =-,32x =,42x =-.(1)在由原方程得到方程①的过程中,利用__法达到__的目的,体现了数学的转化思想.(2)方程222()4()120x x x x +--+=的解为________________.21.如果m 是方程x 2+2x -3=0的实根,那么代数式m 3-7m 的值是 _____.22.“降次”是解一元二次方程的基本思想,用这种思想解高次方程x 3-x =0,它的解是_____________.23.已知正比例函数513y x =图像上有一个点M ,点M 的横坐标是方程x 2+6x ﹣91=0的根,则点M 的纵坐标为 ___.24.如图,点A 在数轴的负半轴,点B 在数轴的正半轴,且点A 对应的数是21x -,点B 对应的数是2x x +,已知5AB =,则x 的值为______.三、解答题25.解方程:(1)x 2-2x -3=0 (2)(x ﹣3)2=2x ﹣626.用适当的方法解下列方程:(1)2-430x x (2)()3-2-2x x x =27.阅读下列例题的解答过程:解方程:3(x -2)2+7(x -2)+4=0解:设x -2=y ,则原方程化为:3y 2+7y +4=0①a =3,b =7,c =4,①b 2-4ac =72-4×3×4=1①y 716-±=. ①y 1=-1,y 2=-43. 当y =-1时,x -2=-1,①x =1;①当y =-43时,x -2=-43,①x =23. ①原方程的解为:x 1=1,x 2=23.(1)请仿照上面的例题解一元二次方程:(x -3)2-5(x -3)-6=0;(2)若()()222223a b a b ++-=,求代数式22a b +的值.28.例:解方程()()42181150x x ---+=解:设()21t x =-,则28150t t -+=解得3t =或5t =当3t =时有()213x -=,解得1x =±当5t =时有()215x -=,解得1x =±①原方程的解为1x =1x =±认真阅读例题的解法,体会解法中蕴含的数学思想,并使用例题的解法及相关知识解方程()()632172180x x +-+-=29.阅读例题,解答问题: 例:解方程220x x --=. 解:原方程化为220x x --=. 令y x =,原方程化成220y y --=解得12y =,21y =-(不合题意,舍去). 2x ∴=.2x ∴=±.①原方程的解是12x =,22x =- 请模仿上面的方法解方程:()215160x x ----=.30.以下是婷婷解方程 x (x -3)=2(x -3)的解答过程:解:方程两边同除以(x -3),得:x =2①原方程的解为x =2试问婷婷的解答过程是否有错误? 如果有错误,请写出正确的解答过程.31.对于实数a 、b ,定义一种新运算“a ①b ”,规定如下:2a b ab b =-☆,例如22322130=⨯-=☆.(1)若12x =☆,则满足条件的x 值为______;(2)对于()12a x -=☆,存在两个不同的数值x ,求a 的取值范围;(3)若22x x >☆☆时,求x 的取值范围.32.阅读例题,解答问题:例:解方程x 2﹣|x |﹣2=0,解:原方程化为|x |2﹣|x |﹣2=0.令y =|x |,①y 2﹣y ﹣2=0解得:y 1=2,y 2=-1当|x |=2,x =±2;当|x |=-1时(不合题意,舍去)①原方程的解是x 1=2,x 1=-2,仿照上例解方程(x +1)2﹣5|x +1|﹣6=0.参考答案1.C【分析】移项后用因式分解法求解即可.解:①x (x −2)=x −2,①x (x −2)−(x −2)=0,①(x −2)(x −1)=0,①x -2=0,或x -1=0,①x 1=2,x 2=1.故选:C .【点拨】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.2.D【分析】根据A ,B 两数的绝对值相等,且在数轴上原点两侧,可得关于a 的一元二次方程,解方程并检验即可得到答案.解:①点A 、B 在数轴上原点两侧,且表示的两数的绝对值相等,①20a a a ++=,解得:120,2a a ==-,当10a =时,点A 、B 表示的两数都是0,是在数轴上的同一个点,①不符合题意,应舍去,①2a =-.故选:D .【点拨】本题考查了数轴上绝对值相等的两点对应的数之间的关系,涉及到了绝对值的意义,相反数的概念和解一元二次方程等知识点,解决本题的关键是能正确列出方程并且正确求解,最后要检验结果是否符合题意.3.C【分析】先根据关于y 轴对称点的坐标特点建立方程,然后解一元二次方程,即可得出结果. 解:①A 、B 两点关于y 轴对称,①223x x +=,①()()310x x +-=,解得3x =-或1,故选:C .【点拨】本题考查了关于y 轴对称点的坐标特点和解一元二次方程,根据关于y 轴对称点的坐标特点建立方程是解题的关键.4.C【分析】根据方程的两根,将其配成两个相乘的式子,即是原方程的分解式,即可得出答案. 解:①关于x 的方程20x px q ++=的两个根为11x =,22x =-,①原方程为:(x -1)(x +2)=0,①二次三项式2x px q ++可分解为()()12x x -+,故选:C .【点拨】本题考查了一元二次方程解的定义,运用因式分解法反向求方程的分解式. 5.C【分析】设y =x 2﹣2x +1,将已知方程转化为关于y 的一元二次方程,然后利用因式分解法解方程即可.解:设y =x 2﹣2x +1,则y 2+4y ﹣5=0,整理,得(y +5)(y ﹣1)=0,解得y =﹣5(舍去)或y =1,即x 2﹣2x +1的值为1,故选C .【点拨】本题考查了用换元法解和因式分解法解一元二次方程,解题的关键是熟练掌握换元法解和因式分解法.6.C【分析】根据换元法,令a 2+b 2=m ,将原式整理成含有m 的一元二次方程,解出m 的值,根据题意对m 的值进行取舍即可.解:令a 2+b 2=m ,原式可化为:(3)10m m +=,即23100m m +-=,解得:m=-5或m=2,因为a 2+b 2≥0所以m=2a²+b²=2故答案为C.【点拨】本题考查了一元二次方程的解法,利用换元法求一元二次方程根,进而求出相应代数式的值,解决本题的关键是正确理解题意,能够用m 将所求式子替换下来.7.C【分析】根据换元法,可得答案.解:设x 2﹣x =y ,原方程等价于y ﹣1+2y=0, 两边都乘以y ,得y 2﹣y +2=0,故选:C .【点拨】本题考查了解分式方程,解题的关键是利用换元法.8.A【分析】根据方程的特点,设2y x x =+,可将方程中的x 全部换成y ,转化为关于y 的分式方程,去分母转化为一元二次方程.解:把2y x x =+代入原方程得:21y y +=,方程两边同乘以y 整理得:220y y +-=. 故选A.【点拨】此题考查换元法解分式方程,解题关键在于掌握运算法则.9.D【分析】设矩形的长和宽分别为a 、b ,解出a 、b ,利用勾股定理得到矩形的对角线长代入计算出矩形的对角线长即可.解:设矩形的长和宽分别为a 、b ,①x 2﹣6x +8=0①(x ﹣4)(x ﹣2)=0①x =4或x =2,①长和宽是方程的两个实数根∴a =4,b =2,所以矩形的对角线长==故选:D .【点拨】本题考查了一元二次方程的解法,也考查了矩形的性质及勾股定理,熟练掌握一元二次方程的解法及勾股定理是解题的关键.10.C【分析】先解方程x 2-14x +48=0,得出两根,再利用勾股定理来求解即可.解:①x 2﹣14x +48=0,①(x ﹣6)(x ﹣8)=0,①x =6或8;①两直角边为6和8,①10,故选:C .【点拨】本题考查一元二次方程的解法,用到的知识点是因式分解法和勾股定理,关键是根据方程的特点选择合适的解法.11.A【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长. 解:解方程257(5)x x x -=-得:12=7=5x ,x ,①1<第三边的边长<7,①第三边的边长为5.①这个三角形的周长是3+4+5=12.故选:A .【点拨】此题考查因式分解法解一元二次方程,三角形的三边关系,解题关键在于要注意已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.12.D【分析】由点P 在线段AB 上可设点P 的坐标为(m ,-3m +4)(0<m <43),进而可得出OC =m ,OD =-3m +4,结合矩形OCPD 的面积为1,即可得出关于m 的一元二次方程,解之即可得出m 的值,再将其代入点P 的坐标中即可求出结论.解:①点P 在线段AB 上(不与点A ,B 重合),且直线AB 的解析式为y =-3x +4,①设点P 的坐标为(m ,-3m +4)(0<m <43), ①OC =m ,OD =-3m +4.①矩形OCPD 的面积为1,①m (-3m +4)=1,①m 1=13,m 2=1, ①点P 的坐标为(13,3)或(1,1). 故选:D .【点拨】本题考查了一次函数图象上点的坐标特征以及解一元二次方程,利用一次函数图象上点的坐标特征及,找出关于m 的一元二次方程是解题的关键.13.0或2022【分析】先将x 提取出来,可得等式()20220x x -=,则x =0或x -2022=0,由此可解出x 的值. 解:220220x x -=,()20220x x -=,则x =0或x -2022=0,解得:10x =,22022x =,故答案为:0或2022.【点拨】本题考查利用提取公因式解一元二次方程,能够掌握提取公因式是解决本题的关键.14.13【分析】直接由因式分解法解出一元二次方程的两根,然后根据0m >比较大小代入即可得出答案.解:22430x mx m -+=,()(3)0x m x m ∴--=,即方程的两根为1x m =,23x m =,0m >,3m m ∴>,即31m =,得13m =. 故答案为:13. 【点拨】本题考查了一元二次方程的解法,解题的关键是熟练掌握因式分解法解一元二次方程.15.x =﹣1【分析】将方程两边同时平方,再解一元二次方程,根据二次根式有意义的条件取舍解.x =-,∴5x +6=x 2,∴x 2﹣5x ﹣6=0,(x ﹣6)(x +1)=0∴x 1=6,x 2=﹣1,当x =6时原方程没有意义,∴x =﹣1.答案:x =﹣1.【点拨】本题考查了解无理方程,解一元二次方程,二次根式有意义的条件,正确的计算是解题的关键.16.25【分析】根据题意原方程可变形为2250-=,再利用因式分解法解答,即可求解.解:①0x >,0y >,50x y --=,①2250-=,①0=,①0x >,0y >0≠,0=5=, ①25x y =. 故答案为:25【点拨】本题主要考查了解一元二次方程,二次根式的性质,熟练掌握一元二次方程的解法是解题的关键.17.y 2+4y ﹣1=0【分析】先将原方程移项,把y =x 2﹣3x 代入整理即可得到答案.解:原方程移项得:x 2﹣3x 213x x-+-4=0中, 把y =x 2﹣3x 代入原方程得:y 1y-+4=0, 方程两边同乘以y 整理得:y 2+4y ﹣1=0.故答案为:y 2+4y ﹣1=0.【点拨】此题考查了用换元法解一元二次方程,正确掌握方程换元的方法是解题的关键.18.4【分析】设y =a 2+b 2,原式化为关于y 的一元二次方程,求出方程的解得到y 的值,即为a 2-b 2的值.解:设y =a 2+b 2,原式化为y 2-2y -8=0,即(y -4)(y +2)=0,可得y -4=0或y +2=0,解得:y 1=4,y 2=-2,①y =a 2+b 2>0①a 2+b 2=4.故答案为:4.【点拨】本题考查了换元法解一元二次方程,学生做题时注意a 2+b 2的值为正数. 19.-3【分析】直接利用换元法解方程,再利用一元二次方程的解法分析得出答案. 解:设1x a x+=, 则221221x x x x +++=, 211()2()21x x x x+++-=, 故2230a a +-=,解得:11a =,23a =-, 当11x x+=时, 则210x x -+=,此时△241430b ac =-=-=-<,∴此方程无解, 故11x x+≠, 故1x x +的值是3-. 故答案为:3-.【点拨】此题主要考查了换元法解方程,正确解一元二次方程是解题关键. 20. 换元 降次 13x =-,22x =【分析】(1)本题主要是利用换元法降次来达到把一元四次方程转化为一元二次方程,来求解,然后再解这个一元二次方程.(2)利用题中给出的方法先把x 2+x 当成一个整体y 来计算,求出y 的值,再解一元二次方程.解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想.(2)设x 2+x =y ,原方程可化为y 2−4y −12=0,解得y 1=6,y 2=−2.由x 2+x =6,得x 1=−3,x 2=2.由x 2+x =−2,得方程x 2+x +2=0,①=b 2−4ac =1−4×2=−7<0,此时方程无实根.所以原方程的解为x 1=−3,x 2=2.故答案为:① 换元;①降次;①x 1=−3,x 2=2.【点拨】本题应用了换元法,把关于x 的方程转化为关于y 的方程,这样书写简便且形象直观,并且把方程化繁为简化难为易,解起来更方便.21.6-【分析】先求出m 的值,再代入代数式求解即可. 解: x 2+2x -3=0∴ ()()310x x +-=∴ 13,1x x x =-=m 是方程x 2+2x -3=0的实根∴ 13,1x x x =-=∴()()33737327216m m =--⨯-=-+=--或 ()()337171176m m =-⨯=-=-- 故答案为:6-.【点拨】本题考查了代数式的计算问题,掌握解一元二次方程的方法、代入法是解题的关键.22.1230,1,1x x x ==-=【分析】先把方程的左边分解因式,再化为三个一次方程进行降次,再解一次方程即可. 解:30,x x110,x x x则0x =或10x +=或10,x -=解得:1230,1, 1.x x x故答案为:1230,1, 1.x x x【点拨】本题考查的是利用因式分解的方法把高次方程转化为一次方程,掌握“因式分解的方法与应用”是解本题的关键.23.3513或5-##5-或3513【分析】根据因式分解法解一元二次方程,进而将两根分别代入正比例函数解析式即可求得点M 的纵坐标解:x 2+6x ﹣91=0即()()7130x x -+=解得127,13x x ==-点M 的横坐标是方程x 2+6x ﹣91=0的根,∴当7x =,解得3513y =,当13x =-时,解得5y =- ∴点M 的纵坐标为3513或5- 故答案为:3513或5- 【点拨】本题考查了解一元二次方程,正比例函数上点的特征,正确的解一元二次方程是解题的关键.24.-2【分析】根据数轴上点的位置可得2210x x x -<<+,即可得到()2215AB x x x =+--=,由此解方程,再根据210x -<即12x <进行求解即可. 解:由数轴上点的位置可得2210x x x -<<+,①()2215AB x x x =+--=即260x x --=,①()()230+-=x x ,解得3x =或2x =-,①210x -<即12x <, ①2x =-,故答案为:-2.【点拨】本题主要考查了数轴上两点的距离,解一元二次方程,解题的关键在于能够熟练掌握数轴上两点的距离以及解一元二次方程的方法.25.(1)x 1=3,x 2=-1(2)x 1=3,x 2=5【分析】(1)把常数项移到右边后,用配方法解一元二次方程即可;(2)把右边部分移项后,用因式分解法解一元二次方程即可.(1)解:x 2-2x -3=0移项,得:x 2-2x =3,配方,得:x 2-2x +1=3+1,即(x -1)2=4.两边同时开方,得:x -1=±2,①x 1=3,x 2=-1.(2)解:(x ﹣3)2=2x ﹣6①(x ﹣3)2=2(x ﹣3),①(x ﹣3)2﹣2(x ﹣3)=0,则(x ﹣3)(x ﹣5)=0,①x ﹣3=0或x ﹣5=0,解得:x 1=3,x 2=5.【点拨】此题考查了用配方法和因式分解法解一元二次方程,熟练掌握解一元二次方程的方法和步骤是解题的关键.26.(1)1231x x ==, (2)12123x x ==,【分析】根据因式分解法解一元二次方程即可解:(1)2-430x x()()310x x --=解得1231x x ==,(2)()322x x x -=-()()2310x x --= 解得12123x x ==,【点拨】本题考查了解一元二次方程,掌握一元二次方程的解法是解题的关键. 27.(1)122,9x x == (2)223a b +=【分析】(1)令3t x =-,则原方程为2560t t -=-,然后根据因式分解法进行求解方程即可;(2)令22y a b =+,则原方程可化简为2230y y --=,然后根据因式分解法进行求解方程即可.(1)解:令3t x =-,则原方程为2560t t -=-, ()()160t t +-=①60t -=或10t +=,①121,6t t =-=,当1t =-时,则31x -=-,解得:2x =;当6t =时,则36x -=,解得:9x =;①原方程的解为122,9x x ==;(2)解:令22y a b =+,则原方程可化简为2230y y --=,()()130y y +-=①30y -=或10y +=,①121,3y y =-=,①220a b +≥,①当1y =-时不符合题意,①3y =,即223a b +=;①原方程的解为223a b +=.【点拨】本题主要考查一元二次方程的解法,熟练掌握利用换元法求解一元二次方程是解题的关键.28.11x =-,212x =【分析】利用题中给出的方法先把(2x +1)3当成一个整体t 来计算,求出t 的值,再解一元二次方程.解:设()321t x =+,则2780t t --=,解得1t =-或8t =,当1t =-时有()3211x +=-,解得1x =-,当8t =时有()3218x +=,解得12x =, ①原方程的解为11x =-,212x =. 【点拨】本题考查了一元二次方程-换元法,看懂题例理解换元法是关键.换元法的一般步骤有:设元、换元、解元、还原几步.29.17x =,25x =-【分析】根据题意利用换元法解一元二次方程,然后解绝对值方程即可. 解:原方程化为215160x x ----=. 令1y x =-,原方程化成2560y y --=. 解得16y =,21y =-(不合题意,舍去).16x ∴-=,16x ∴-=±.①原方程的解是17x =,25x =-.【点拨】本题主要考查了用换元法和因式分解法解一元二次方程,解绝对值方程,解题的关键在于能够准确根据题意使用换元法解方程.30.有错误,见分析【分析】首先判断出婷婷解方程的过程是错误的,再移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.解:婷婷的解答过程有错误.(3)2(3)x x x -=-移项,得:()()3230x x x ---=()()320x x --=x -3=0或x -2=013x =,22x =【点拨】本题考查了解一元二次方程,能够选择适当的方法解一元二次方程是解此题的关键.31.(1)2或1- (2)78a >且a ≠1 (3)12x <或2x > 【分析】(1)根据定义列出一元二次方程,解方程求解即可;(2)根据定理列出一元二次方程,根据一元二次方程有2个不同实根,令0∆>,求得a 的范围即可;(3)根据题意列出不等式,进而因式分解,根据同号为正列出一元一次不等式组求解即可(1) 解:2a b ab b =-☆∴211x x x =⨯-☆12x =☆22x x ∴-=即()()210x x -+=解得122,1x x ==-故答案为:2或1-(2)()12a x -=☆()212a x x ∴--=即()2120a x x ---=①存在两个不同的数值x ,()()()214120a ∴∆=---⨯->,且a ≠1, 解得78a >且a ≠1 (3)22x x >☆☆∴2242x x x ->-即()()2120x x -->则2102x x ->⎧⎨>⎩或2102x x -<⎧⎨<⎩解得12x <或2x > 【点拨】本题考查了新定义运算,解一元二次方程,一元二次方程根的判别式,解一元一次不等式组,理解新定义是解题的关键.32.15=x ,27x =-【分析】 原方程化为215160x x +-+-=,令1y x =+,得2560y y --=,再利用因式分解法解一元二次方程即可. 解:原方程化为215160x x +-+-=, 令1y x =+,∴2560y y --=, 解得1261y y ==-,,当16x +=,16x +=±,即x =5或x =-7, 当11x +=-时(不合题意,舍去),∴原方程的解是15=x ,27x =-.【点拨】本题主要考查解一元二次方程和换元法,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.。
人教版初三上学期数学一元二次方程及解法练习题(附答案)

人教版初三上学期数学一元二次方程及解法练习题(附答案)人教版初三上学期数学一元二次方程及解法练习题(附答案)(1);(2);(3);(4)。
4、一元二次方程根的判别式与其根的关系:综合练习: 1.观察下列方程: ①x2=1 ②3x2=1-x ③x(x-1)= x -1 ④ +2x-5=0 ⑤x2-y-1=0 ⑥x2-(x-3)2=9 其中是一元二次方程的是 . 2.把方程(x-2)(x+3)=5化为一元二次方程一般形式为 .其中二次项系数为 . 一次项系数为 . 常数项为 . 3.关于x的方程(m+2)xn-1-(2m-1)x-3=0,当时,它是一元二次方程,当时,它是一元一次方程. 1、用直接开平方法解方程:⑴x2=9 ⑵3x2=12 ⑶ 1/3 x2-3=0 ⑷ (3x+1)2=1 ⑸(2x-1)2 -9=0 ⑹x2+4x+4=1(7).x2=16 (8) . 2x2 -6 =0 (9) (x+1)2=4(10) (3x+2)2=4 (11)3(x-1)2=15 (12)x2+6x+9=25能力提升: 1.关于x的方程(n-1)xn2+1-(2n+1)x-3=0,当n= 时,它是一元二次方程 2.解一元二次方程:(1) x2+2x+1=4 (2)x2+2x-3=0一元二次方程及解法(2)配方法步骤:举例说明题组训练: 1、把下列方程化为(x+ m)2=n(m,n是常数,n≥0)的形式(1)x2+2x=48;(2)x2-4x=12;(3)x2-6x+6=0;(4) 2、完成下列填空:x2+4x+4=(__+__)2 x2-8x+___=(__―__)2 4x2+__x+25=(___+__)2 16 x2+__x+1=(__+__)2 x2+10x+___=(__+__)2 x2-5x+___=(__―__)29x2-__x+25=(___+__)2 9 x2-¬__x+1=(__-__)2 3、用配方法解方程(1)x2-10x-11=0 (2)x2-6x+4= 0 (3)x2+4x-16= 0(4)x2-4x=12;(5)x2-6x=7 (6)x2+8x+2=0(7)x2-4x-5=0 (8) x2+5x+2=0 (9)3x2+2x-5=0(10)2y2+y-6=0 (11)3x2+8x-3=0 (12)-2x2=5x-3一元一次方程及解法(3)求根公式推导过程:(和应用求根公式的步骤)根的判别式与根的关系:跟踪训练:先用根的判别式判断根的情况再求解:(1)x -x-1=0;(2)5x +2=3x2;(3)y -6=5y(4)3t -2t-1=0 (5)4x(x-1)=x -1 (6)x2-6x+4= 0(7)3x +1=2 x (8)2y2+y-5= 0 (9)x2-4x=12;(10)3x2+6x=1 (11)2t2-7t-4=0; (12)x2-x-1=0(13)y2-6=5y (14)3t2-2t-1=0 (15)4x(x-1)=x2-1一元一次方程及解法(4)因式分解法解一元二次方程的原理: 1、填空(1)方程x2=x的解是。
中考数学易错题专题复习-一元二次方程组练习题及答案解析

∴ .
(2)(y+2)2=12,
∴ 或 ,
∴
2.解方程:(x+1)(x﹣3)=﹣1.
【答案】x1=1+ ,x2=1﹣
【解析】
试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.
试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,
解得:x1=1+ ,x2=1﹣ .
(1)解方程求两条线段的长。
(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。
(3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。
【答案】(1)2和6;(2) ;(3)
【解析】
【分析】
(1)求解该一元二次方程即可;
(2)先确定等腰三角形的边,然后求面积即可;
(3)设分为两段分别是 和 ,然后用勾股定理求出x,最后求面积即可.
【详解】
解:(1)由题意得 ,
即: 或 ,
∴两条线段长为2和6;
(2)由题意,可知分两段为分别为3、3,则等腰三角形三边长为2,3,3,
由勾股定理得:该等腰三角形底边上的高为:
∴此等腰三角形面积为 = .
(3)设分为 及 两段
∴ ,
∴ ,
∴面积为 .
【点睛】
本题考查了一元二次方程、等腰三角形、直角三角形等知识,考查知识点较多,灵活应用所学知识是解答本题的关键.
8.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.
【答案】1
【解析】试题分析:根据一元二次方程解的定义,把x=﹣1代入x2+2ax+a2=0得到关于a的一元二次方程1﹣2a+a2=0,然后解此一元二次方程即可.
中考复习——一元二次方程及分式方程(附答案)

一元二次方程及分式方程专题训练一、填空题:(每题 3 分,共 36 分)1、当 a ____时,方程 (a-1) x2+x-2=0 是一元二次方程。
2、方程 2x (1+x)=3 的一般形式为_________。
3、当 x=____时,分式x+1x+2的值等于45。
4、方程 2x2=32 的解为____。
5、方程21-x2-1=11+x的解为____。
6、方程 x2-5x-6=0 可分解成____与____两个一元一次方程。
7、已知 m 是方程 x2-x-23=0 的一个根,则 m2-m=____。
8、2x2+4x+10=2 (x+___)2+____。
9、以-2 和 3 为根的一元二次方程为______(写出一个即可)。
10、如果方程 x2-3x+m=0 的一根为 1,那么方程的另一根为____。
11、如果方程x+1x-2-1=m2-x有增根,那么 m=____。
12、长 20m、宽 15m 的会议室,中间铺一块地毯,地毯的面积是会议室面积的12,若四周未铺地毯的留空宽度相同,则留空的宽度为____。
二、选择题:(每题 4 分,共 24 分)1、下列方程中是一元二次方程的是()A、x+3=5B、xy=3C、x2+1x=0 D、2x2-1=02、若关于 x 的方程2x-ax-1=1 无解,则 a 的值等于()A、0B、1C、2D、4 3、方程 2x (x-2)=3 (x-2) 的根是()A、x=32B、x=2C、x1=32,x2=2 D、x=-324、把方程 x2+3=4x 配方得()A、(x-2)2=7B、(x-2)2=1C、(x+2)2=1D、(x+2)2=25、某车间原计划 x 天内生产零件 50 个,由于采用新技术,每天多生产零件 5 个,因此提前3 天完成任务,则可列出的方程为()A、50x-3=50x-5 B、50x=50x-3-5 C、50x-3=50x-5 D、50x=50x-3-56、把一个小球以 20m/s 的速度竖直向上弹出,它在空中高度 h (m) 与时间 t (s) 满足关系:h=20t-5t2,当 h=20 时,小球的运动时间为()A、20sB、2sC、(22+2) sD、(22-2) s三、解下列方程:(每题 6 分,共 36 分)1、x (x+5)=24 2、2x2=(2+3) x 3、x2-4x=5 4、4 (x-1)2=(x+1)25、5x=7x-26、x+1x-1-1=4x2-1四、解答题:(每题 8 分,共 32 分)1、解关于 x 的方程ax-ab=1+x(a≠b)2、方程 x2+3x+m=0 的一个根是另一根的 2 倍,求 m 的值。
中考数学专题复习分类练习 一元二次方程组综合解答题含答案解析

中考数学专题复习分类练习一元二次方程组综合解答题含答案解析一、一元二次方程1.解方程:(x+1)(x﹣3)=﹣1.【答案】x1=1+3,x2=1﹣3【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,解得:x1=1+3,x2=1﹣3.2.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.3. y与x的函数关系式为:y=1.7x(x≤m);或( x≥m) ;4.从图象来看,该函数是一个分段函数,当0≤x≤m时,是正比例函数,当x>m时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.5.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.6.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴∴x1x 2.7.已知1x 、2x 是关于x 的方程222(1)50x m x m -+++=的两个不相等的实数根.(1)求实数m 的取值范围;(2)已知等腰ABC ∆的一边长为7,若1x 、2x 恰好是ABC ∆另外两边长,求这个三角形的周长.【答案】(1)m>2; (2)17【解析】试题分析:(1)由根的判别式即可得;(2)由题意得出方程的另一根为7,将x =7代入求出x 的值,再根据三角形三边之间的关系判断即可得.试题解析:解:(1)由题意得△=4(m +1)2﹣4(m 2+5)=8m -16>0,解得:m >2; (2)由题意,∵x 1≠x 2时,∴只能取x 1=7或x 2=7,即7是方程的一个根,将x =7代入得:49﹣14(m +1)+m 2+5=0,解得:m =4或m =10.当m =4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17; 当m =10时,方程的另一个根为15,此时不能构成三角形;故三角形的周长为17.点睛:本题主要考查判别式、三角形三边之间的关系,熟练掌握韦达定理是解题的关键.8.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.(1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.【答案】(1)a ≤174;(2)x =1或x =2 【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b 2﹣4ac≥0,建立关于a 的不等式,即可求出a 的取值范围;(2)根据(1)确定出a 的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a ﹣2)≥0,解得a ≤174; (2)由(1)可知a ≤174, ∴a 的最大整数值为4,此时方程为x 2﹣3x +2=0,解得x =1或x =2. 【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x 米2, 根据题意得:4600022000x -﹣46000220001.5x-= 4 解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x 米,根据题意得,(20﹣3x )(8﹣2x )=56 解得:x=2或x=263(不合题意,舍去). 答:人行道的宽为2米.10.已知关于x 的方程(x-3)(x-2)-p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值.【答案】(1)详见解析;(2)p=±1.【解析】【分析】(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把2212123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,解方程即可求解.【详解】证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0,x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2,∵无论p 取何值时,总有4p 2≥0,∴1+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)x 1+x 2=5,x 1x 2=6﹣p 2,∵2212123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2,∴52=5(6﹣p 2),∴p=±1.考点:根的判别式;根与系数的关系.11.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法. 例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n 中黑点的个数分别是 、 .请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有 个圆圈;第n 个点阵中有 个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n 个;(1)61;3n 2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.12.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件:(1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m的值.【答案】(1)销售单价至少为35元;(2)m=16.【解析】试题分析:(1)根据利润的公式列出方程,再求解即可;(2)销售价为原销售价×(1﹣m%),销售量为(150+m),列出方程求解即可.试题解析:(1)设销售单价至少为x元,根据题意列方程得,150(x﹣20)=2250,解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m)=5670,150+m﹣150×m%﹣m%×m=162,m﹣m2=12,60m﹣3m2=192,m2﹣20m+64=0,m1=4,m2=16,∵要使销售量尽可能大,∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.13.已知关于x的方程x2﹣(2k+1)x+4(k﹣12)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?【答案】(1)详见解析;(2)k=32或2.【解析】【分析】(1)计算判别式的值,利用完全平方公式得到△=(2k﹣3)2≥0,然后根据判别式的意义得到结论;(2)利用求根公式解方程得到x1=2k﹣1,x2=2,再根据等腰三角形的性质得到2k﹣1=2或2k﹣1=3,然后分别解关于k的方程即可.【详解】(1)∵△=(2k+1)2﹣4×4(k﹣12)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)() 2k12k3 x=2±+﹣∴x1=2k﹣1,x2=2,∵a 、b 、c 为等腰三角形的三边,∴2k ﹣1=2或2k ﹣1=3,∴k =32或2. 【点睛】 本题考查了根的判别式以及等腰三角形的性质,分a 是等腰三角形的底和腰两种情况是解题的关键.14.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游?【答案】(1)2280;(2)15【解析】【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值.【详解】(1)2280()2因为1020020002625⨯=<.因此参加人比10人多,设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=.解得 15x = 225x =,∵2005150x -≥,∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游.【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.15.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.。
专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

专题复习】九年级数学上册一元二次方程解法练习100题(含答案)1.解方程:$2x^2-8x+3=0$,使用公式法。
2.解方程:$(2x-1)(x+3)=43$。
3.解方程:$4y^2+4y-1=-10-8y$。
4.解方程:$(x-1)(x-3)=8$。
5.解方程:$5x^2-8x+2=0$。
6.解方程:$x(x-3)=10$。
7.解方程:$x^2-2=-2x$。
8.解方程:$3x(7-x)=18-x(3x-15)$。
9.解方程:$4x(3x-2)=6x-4$。
10.解方程:$x^2+12x+27=0$。
11.解方程:$2x^2-4x+1=0$,使用配方法。
12.解方程:$4(x-1)^2=9(x-5)$。
13.解方程:$x^2-6=-2(x+1)$。
14.解方程:$x^2+4x-5=0$。
15.解方程:$2x^2+5x-1=0$。
16.解方程:$3(x-2)^2=x(x-2)$。
17.解方程:$2x^2-3x-2=0$。
18.解方程:$2x^2-7x+1=0$。
19.解方程:$x^2-6x-4=0$,使用配方法。
20.解方程:$x^2-4x-3=0$。
21.解方程:$x^2-5x+2=0$。
22.解方程:$x^2-4x+8=0$。
23.解方程:$3x^2-6x+4=0$。
24.解方程:$(x-2)(x-3)=12$。
25.解方程:$(x-3)(x+7)=-9$。
26.解方程:$3x^2+5(2x+1)=0$,使用公式法。
27.解方程:$x^2-12x-4=0$。
28.解方程:$(x-5)(x-6)=x-5$。
29.解方程:$x^2-8x-10=0$。
30.解方程:$x(x-3)=15-5x$。
31.解方程:$5x(x-3)=(x+1)(x-3)$。
32.解方程:$x^2+8x+15=0$。
33.解方程:$25x^2+10x+1=0$。
34.解方程:$x^2+6x-7=0$,使用配方法。
35.解方程:$x^2+4x-5=0$,使用配方法。
中考总复习一元二次方程分式方程的解法及应用--巩固练习

中考总复习一元二次方程分式方程的解法及应用--巩固练习一、一元二次方程的解法及应用1.解法一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b和c为已知常数,且a ≠ 0。
解一元二次方程可以通过以下步骤进行:- 求解判别式D = b^2 - 4ac的值,判别式D的值决定了方程的根的情况。
-当D>0时,方程有两个不相等的实数根。
-当D=0时,方程有两个相等的实数根。
-当D<0时,方程没有实数根。
-根据判别式D的值分情况讨论:-当D>0时,设方程的两个根为x1和x2,则有:x1=(-b+√D)/(2a),x2=(-b-√D)/(2a)。
-当D=0时,有一个重根,设方程的根为x,则有:x=-b/(2a)。
-当D<0时,方程没有实数根。
2.应用一元二次方程的应用非常广泛,涉及到物理、工程、经济等领域。
-物理:一元二次方程可以用于描述自由落体运动的高度、抛物线的轨迹等问题。
-工程:在建筑、土木等工程领域中,一元二次方程可以用于解决各种问题,如建筑物的最大高度、桥梁的弯曲等等。
-经济:在经济学中,一元二次方程可以用于解决收入、支出以及市场需求等问题。
二、分式方程的解法及应用1.解法分式方程是指含有分式表达式的方程。
解分式方程可以通过以下步骤进行:-化简分式方程,将其转化为简单的方程。
-求解方程,得到未知数的值。
-检验所得解是否满足原方程,若满足则为方程的解,否则无解。
2.应用分式方程的应用也非常广泛,主要用于解决涉及到分数的问题,如比例、扇形的面积等。
-比例:分式方程可以用于解决比例的问题,如已知两个量的比例关系,可以通过设未知数,列方程,求解来计算其中一个未知数的值。
-扇形的面积:分式方程可以用于求解扇形的面积。
通过设未知数,列方程,求解来计算扇形的半径、弧长等。
三、巩固练习以下是一些巩固练习题,以帮助你巩固一元二次方程和分式方程的解法及应用。
1.求解一元二次方程-2x^2+3x-2=0-x^2-5x+6=02.求解分式方程-(x+1)/(x-2)=1/3-(2x-3)/(x+4)-1/2=1/(x+4)3.应用题-一个矩形的长是宽的3倍,如果矩形的周长是32,求矩形的长和宽。
专题2.6 一元二次方程和分式方程的解法及运用(专项练习)

专题2.6一元二次方程和分式方程的解法及运用(专项练习)一、单选题1.(2021·河南郸城·九年级期中)方程20x x -=的根是()A .1x =B .1x =,0x =C .0x =D .1x =-,0x =2.(2021·全国·九年级专题练习)解分式方程132x 11x-=--,去分母得()A .()12x 13--=-B .()12x 13--=C .12x 33--=-D .12x 23-+=3.(2021·河北滦州·九年级期中)用配方法解一元二次方程2650x x -+=时,下列变形正确的为()A .2(3)14x +=B .2(3)14x -=C .2(3)4x +=D .2(3)4x -=4.(2021·湖北·武汉市洪山区杨春湖实验学校九年级阶段练习)已知m ,n 是x 2-2x -2016=0的两个实数根,则22m n +的值为()A .1008B .2016C .2018D .20205.(2021·湖北随州·九年级阶段练习)用配方法解一元二次方程x 2+8x +7=0,则方程可化为()A .(x +4)2=9B .(x ﹣4)2=9C .(x +8)2=23D .(x ﹣8)2=96.(2021·贵州遵义·中考真题)在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣3,1.小明看错了一次项系数P ,得到方程的两个根是5,﹣4,则原来的方程是()A .x 2+2x ﹣3=0B .x 2+2x ﹣20=0C .x 2﹣2x ﹣20=0D .x 2﹣2x ﹣3=07.(2021·四川内江·中考真题)某商品经过两次降价,售价由原来的每件25元降到每件16元,已知两次降价的百分率相同,则每次降价的百分率为()A .20%B .25%C .30%D .36%8.(2021·广西河池·中考真题)关于x 的一元二次方程220x mx m +--=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .实数根的个数由m 的值确定9.(2021·广东海珠·一模)为了能让更多人接种,某药厂的新冠疫苗生产线开足马力,24小时运转,该条生产线计划加工320万支疫苗,前5天按原计划的速度生产,5天后以原来速度的1.25倍生产,结果比原计划提前3天完成任务.设原计划每天生产x 万支疫苗,则可列方程为()A .32032031.25x x =-B .3205320531.25x xx x --=-C .32032031.25x x=+D .3205320531.25x xx x--=+10.(2021·河北滦州·八年级期中)关于x 的方程32211x mx x -=+++无解,则m 的值为()A .﹣5B .﹣8C .﹣2D .511.(2021·四川巴中·中考真题)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论①c =2;②b 2﹣4ac >0③方程ax 2+bx =0的两根为x 1=﹣2,x 2=0④7a +c <0其中正确的有()x …﹣3﹣2﹣112…y…1.8753m1.875…A .①④B .②③C .③④D .②④12.(2021·全国·九年级专题练习)若整数a 使关于x 的不等式组1112341x xx a x -+⎧≤⎪⎨⎪->+⎩,有且只有45个整数解,且使关于y 的方程2260111y a y y+++=++的解为非正数,则a 的值为()A .61-或58-B .61-或59-C .60-或59-D .61-或60-或59-二、填空题13.(2021·全国全国·八年级专题练习)代数式31x -与代数式23x -的值相等,则x =_____.14.(2021·江西·南昌市心远中学八年级期末)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程_____.15.(2021·全国·八年级专题练习)若关于x 的方程322x m x x-=--有增根,则m 的值为________16.(2021·全国·八年级)已知分式方程21+-x ax=1的解为非负数,则a的取值范围是_____.17.(2021·四川万源·八年级期末)若关于x的分式方程2755x ax x-+=--有增根,则a的值为_______18.(2021·江苏姜堰·八年级期中)近年来,我市大力发展城市快速交通,张老师开车从家到学校有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线A的平均速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考总复习:一元二次方程、分式方程的解法及应用—巩固练习(基础)
【巩固练习】 一、选择题
1. 用配方法解方程2250x x --=时,原方程应变形为( )
A .()216x +=
B .()216
x -= C .()229x += D .()229x -=
2.关于x 的一元二次方程2
210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()
x x -的值是( ) A .1 B .12
C .13
D .25
3.若关于x 的一元二次方程2
210kx x --=有两个不相等的实数根,则k 的取值范围是( )
A .1k >-
B . 1k >-且0k ≠
C .1k <
D . 1k <且0k ≠
4.若关于x 的一元二次方程0235)1(2
2=+-++-m m x x m 的常数项为0,则m 的值等于( )
A .1
B .2
C .1或2
D .0
5.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2
,设金色纸边的宽为x cm ,那么x 满足的方程是( ).
A .2
13014000x x +-= B .2
653500x x +-= C .2
13014000x x --= D .2
653500x x --=
6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A.
B.
C.
D.
二、填空题
7.若ax 2
+bx+c=0是关于x 的一元二次方程,则不等式3a+6>0的解集是____ ____. 8.如果方程ax 2
+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.
9.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .
10.当m 为 时,关于x 的一元二次方程02
142=-+-m x x 有两个相等的实数根;
此时这两个实数根是 .
11.如果分式方程1+x x =1
+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1
-x m
= m 有实数根,则 m 的取值范围是 .
三、解答题 13. (1)解方程:
x x x x 414341
2+-=---; (2)解方程:x x x x 22
1103
+++=.
14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分
钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.
15.关于x 的一元二次方程12
01x p x x 有两实数根=-+-、.2x (1)求p 的取值范围;
(2)若p x x x x 求,9)]1(2)][1(2[2211=-+-+的值.
16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地
(1)怎样围才能使矩形场地的面积为750平方米? (2)能否使所围的矩形场地面积为810平方米,为什么?
【答案与解析】 一、选择题 1.【答案】B ;
【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方,
整理即可得到B 项是正确的.
2.【答案】C ;
【解析】∵22
127x x += ∴
221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.
原方程化为2
30x x +-=,212()x x -=21212()411213.x x x x +-=+=
3.【答案】B ;
【解析】由题意得方程有两个不相等的实数根,则△=b 2
-4ac>0,即4+4k>0.解得1k >-且0k ≠. 4.【答案】B ;
【解析】有题意2
320,10m m m -+=-且≠,解得2m =.
5.【答案】B ;
【解析】(80+2x )(50+2x )=5400,化简得2
653500+-=x x . 6.【答案】B ;
【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为千米。
又已知乘车的时间为b 小时,故汽车的速度为/S av
B b
-千米小时,应选.
二、填空题 7.【答案】a>-2且a ≠0; 【解析】不可忘记a ≠0. 8.【答案】a <1且a ≠0; 【解析】△>0且a ≠0. 9.【答案】100)1(1202=-x ;
【解析】平均降低率公式为(1)n
a x
b -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后
的量.)
10.【答案】m=2
9;x 1=x 2=2.
【解析】由题意得,△=(-4)2
-4(m -2
1)=0
即16-4m+2=0,m=2
9.
当m=2
9时,方程有两个相等的实数根x 1=x 2=2.
11.【答案】-1;
【解析】原方程可化为:x= m.
∵ 原分式方程无解 ∴x=-1,故代入一次方程有m=-1. 所以,当m=-1时,原分式方程无解. 12.【答案】当m≤
4
1
且m≠0时; 【解析】原方程可化为:mx2
-x+1=0
当m=0时,得x=1,原分式方程无解,不符合题意舍去.
当m≠0时, ⊿=12
-4m≥0,解之m≤4
1 所以,当m≤4
1
且m≠0时,原分式方程有实数根.
三、解答题
13.【答案与解析】 (1)部分移项得: x x x x 4143412=--+--- ∴x x x x 4143412=------ ∴x 412
= ∴x =2
经检验:x =2是原分式方程的根.
(2)原方程可化为:
x x x x
22131
3++
+=+ ∴或x x x x 2231
3+=+=
解之得:,x x 12341132121
6
21,,=
-±=-±
1,23,412x x =
=-经检验:.
14.【答案与解析】
设这列火车的速度为x 千米/时 根据题意,得
方程两边都乘以12x ,得
解得 经检验,是原方程的根
答:这列火车原来的速度为75千米/时.
15.【答案与解析】
(1)由题意得:.0)1(4)1(2
≥---=∆p
解得:4
5≤
p
(2)由9)]1(2)][1(2[2211=-+-+x x x x 得,.9)2)(2(2
222
11=-+-+x x x x
.
1,1,01,01,
01,22221122
2121221-=--=-∴=-+-=-+-∴=-+-p x x p x x p x x p x x p x x x x 的两实数根是方程Θ
.9)1(,9)12)(12(2=+=-+-+∴p p p 即
.4,2-==∴p p 或 .4,4
5
-=∴≤
p p p 的值为所求Θ
说明:1.可利用,1,12121x x x x -==+得121x x -=代入原求值式中求解;
16.【答案与解析】
设AD=BC=xm ,则AB=(80-2x )m (1)由题意得:x (80-2x )=750 解得:x 1=15, x 2=25 , 当x=15时,AD=BC=15m ,AB=50m
当x=25时,AD=BC=25m ,AB=30m
答:当平行于墙面的边长为50m ,斜边长为15m 时,矩形场地面积为750m 2
;或当平行于墙面的边长为30m ,邻边长为25m 时矩形场地面积为750m 2
. (2)由题意得:x (80-2x )=810 △=40-4×405=1600-1620=-20<0 ∴方程无解,即不能围成面积为810m 2
的矩形场地.。