八年级数学二次根式教学设计6篇

合集下载

新人教版八年级数学下册二次根式教案(14篇)

新人教版八年级数学下册二次根式教案(14篇)

新人教版八年级数学下册二次根式教案(14篇)篇1:新人教版八年级数学下册二次根式教案1.二次根式:式子( ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)( )2= ( ≥0); (2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.= ? (a≥0,b≥0); (b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1) ,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1) ;(2)例3、在根式1) ,最简二次根式是( )A.1) 2)B.3) 4)C.1) 3)D.1) 4)例4、已知:例5、 (龙岩)已知数a,b,若 =b-a,则 ( )A. a>bB. a2、二次根式的化简与计算例1. 将根号外的a移到根号内,得 ( )A. ;B. - ;C. - ;D.例2. 把(a-b)-1a-b 化成最简二次根式例3、计算:例4、先化简,再求值:,其中a= ,b= .例5、如图,实数、在数轴上的位置,化简:4、比较数值(1)、根式变形法当时,①如果,则;②如果,则。

二次根式教案(优秀8篇)

二次根式教案(优秀8篇)
(二)、探索新知:
本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

二次根式教学设计(通用15篇)

二次根式教学设计(通用15篇)

二次根式教学设计〔通用15篇〕篇1:二次根式教学设计【知识与技能】1.理解二次根式的概念,并利用〔a≥0〕的意义解答详细题目.2.理解〔a≥0〕是非负数和( )2=a.3.理解 =a〔a≥0〕并利用它进展计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出〔a≥0〕是一个非负数,用详细数据结合算术平方根的意义导出( )2=a〔a≥0〕,最后运用结论严谨解题.3.通过详细数据的解答,探究并利用这个结论解决详细问题.【情感态度】通过详细的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如〔a≥0〕的式子叫做二次根式.2. 〔a≥0〕是一个非负数;( )2=a〔a≥0〕及其运用.【教学难点】利用“ 〔a≥0〕”解决详细问题.关键:用分类思想的方法导出a〔a≥0〕是一个非负数;用探究的方法导出一、情境导入,初步认识回忆:当a是正数时,表示a的算术平方根,即正数a的正的平方根.当a是零时,等于0,它表示零的平方根,也叫做零的.算术平方根.当a是负数时,没有意义.【教学说明】通过对算术平方根的回忆引入二次根式的概念.二、考虑探究,获取新知概括:〔a≥0〕表示非负数a的算术平方根,也就是说,〔a≥0〕是一个非负数,它的平方等于a.即有:〔1〕≥0;〔2〕( )2=a〔a≥0〕.形如〔a≥0〕的式子叫做二次根式.注意:在中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.考虑:等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的的值,看看有什么规律.概括:当a≥0时, =a;当a<0时, =-a.三、运用新知,深化理解1.x取什么实数时,以下各式有意义?2.计算以下各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回忆二次根式的概念及有关性质:〔1〕( )2=a〔a≥0〕;〔2〕当a≥0时, =a;当a<0时, =-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】老师引导学生回忆知识点,让学生大胆发言,进展知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取.2.完成练习册中本课时练习的“课时作业”局部.本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.篇2:二次根式乘法教学设计两个含有二次根式的代数式相乘,假如他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。

初中数学初二数学下册《二次根式的运算》教案、教学设计

初中数学初二数学下册《二次根式的运算》教案、教学设计
-应用题:联系生活实际,设计二次根式应用题,让学生在实际问题中运用所学知识。
3.拓展题:针对学有余能力。
-探究题:引导学生自主探究二次根式的性质和运算规律,培养他们的探究精神。
-竞赛题:挑选数学竞赛中与二次根式相关的题目,鼓励学生挑战自我,提升竞争力。
1.基础题:完成课本相关练习题,巩固二次根式的性质、化简方法和运算规律。
-选择题:让学生通过选择题的形式,检验对二次根式概念的理解。
-计算题:设计不同类型的二次根式运算题目,让学生在练习中熟练掌握运算技巧。
2.提高题:根据学生的实际水平,适当增加难度,培养学生的逻辑思维能力和数学素养。
-综合题:将二次根式与其他数学知识相结合,设计综合性的题目,提高学生解决问题的能力。
4.设计丰富的例题和练习,帮助学生巩固所学知识,形成技能。
(三)情感态度与价值观
1.养成良好的学习习惯,严谨的学习态度,对数学产生浓厚的兴趣。
2.增强学生的自信心,让他们在克服困难、解决问题的过程中,体验成功的喜悦。
3.培养学生的团队合作意识,让他们在合作交流中学会倾听、尊重、互助。
4.使学生认识到数学在现实生活中的重要作用,激发他们运用数学知识解决实际问题的热情。
4.精讲精练,巩固知识
精选典型例题,进行详细讲解,帮助学生掌握解题思路和方法。同时,设计不同难度的练习题,让学生在练习中巩固所学知识。
5.及时反馈,调整教学
通过课堂提问、课后作业等方式,了解学生的学习情况,针对问题进行个别辅导,调整教学策略。
6.拓展延伸,提高能力
设计具有一定难度的拓展题,引导学生运用二次根式解决实际问题,提高他们的数学应用能力。
7.关注情感,激发兴趣
在教学过程中,关注学生的情感态度,鼓励他们积极参与课堂活动,体验数学学习的乐趣。

八年级二次根式的乘除说课稿6篇

八年级二次根式的乘除说课稿6篇

八年级二次根式的乘除说课稿6篇一、说教材本节课选自人教版九年级数学上册第二十一章二次根式第一节的内容。

“二次根式”是《课程标准》“数与代数”的重要内容。

本章是在第13章实数(13.1平方根;13.2立方根;13.3实数)的基础上,进一步研究二次根式的概念、性质、和运算。

本章内容与已学内容“实数”“整式”“勾股定理”联系紧密,同时也为以后将要学习的“锐角三角函数”、“一元二次方程”和“二次函数”等内容打下重要基础。

二、说学情学生已经学习了平方根(算术平方根)等有关知识,有了一定的知识基础和认识能力。

本课时及后面的知识的学习,对学生思维的严谨性、分类讨论及类比的数学思想等都有了更高的要求,如果学生在此不能很好地理解和正确地认知,将对后续的学习产生很大的影响,所以要求学生积极探究与思考,及时加以训练巩固,克服学习困难,真正“学会”。

三、说教学目标根据大纲的要求和教材结构内容分析,结合九年级学生的实际水平,考虑到学生已有的认知结构心理特征,本节课可确定如下教学目标:1.知识与技能:掌握二次根式的概念,二次根式的取值范围和被开方数的取值范围2.过程与方法:根据条件处理问题的能力及分类讨论问题的能力3.情感态度价值观:严谨的科学精神四、说教学重点和难点教学重点:二次根式中被开方数的取值范围教学难点:二次根式的取值范围五、说教法教学活动的本质是一种合作,一种交流。

学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,拓展学生探索的空间,体现由具体到抽象的认识过程。

为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到对二次根式进行条件约束等问题,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。

六、说学法新课程标准指出:学生是学习的主体。

要让学生成为真正的主人,需要在数学教学的过程中,让老师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位。

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)最简二次根式篇一教学建议1.教材分析本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法。

本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来联接。

(1)知识结构(2)重难点分析①本节的重点Ⅰ.概念Ⅰ.利用二次根式的性质把二次根式化简为。

重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算。

二次根式化简的最终目标就是;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为的基础上进行的。

因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步。

②本节的难点是化简二次根式的方法与技巧。

难点分析化简二次根式,实际上是二次根式性质的综合运用。

化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分。

所以对初学者来说,这一过程容易出现符号和计算出错的问题。

熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

③重难点的解决办法是对于这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断。

因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对概念理解后应用具体的实例归纳总结出把一个二次根式化为的方法,在观察对比中引导学生总结具体解决问题的方法技巧。

数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学二次根式教案【优秀8篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。

人教版八年级下册数学16.1二次根式(教案)

人教版八年级下册数学16.1二次根式(教案)
-二次根式的性质:掌握二次根式的乘除法、加减法运算规则,这是本节课的核心知识。
-二次根式的化简:学会化简二次根式,包括将复杂二次根式化简为最简二次根式,以及合并同类二次根式。
-二次根式的应用:了解二次根式在实际问题中的应用,如求解平面几何中的面积、长度等。
举例:重点强调√a(a≥0)的定义,以及如何将√(ab)和√(a/b)等复杂形式化简为最简二次根式。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对二次根式的概念和性质掌握得还算不错。通过引入日常生活中的例子,他们能够更好地理解二次根式的实际意义。在讲授过程中,我注意到有些学生对于二次根式的化简和混合运算感到有些困惑,这让我意识到这部分内容是教学的难点。
3.二次根式的化简:学会化简二次根式,掌握将复杂二次根式化简为最简二次根式的方法。
4.二次根式的乘除法运算:掌握二次根式的乘除法运算规则,能正确进行相关运算。
5.二次根式的加减法运算:学会二次根式的加减法运算,并能熟练运用运算规则进行混合运算。
6.二次根式的应用:了解二次根式在实际问题中的应用,如求解平面几何中的面积、长度等问题。
4.培养学生的数学建模素养:通过解决实际问题时运用二次根式,培养学生建立数学模型、运用数学知识解决现实问题的能力。
5.培养学生的几何直观素养:在学习二次根式的应用过程中,使学生能运用几何直观发现、理解并解决相关问题。
三、教学难点与重点
1.教学重点
-二次根式的概念:理解二次根式的定义,掌握其一般形式,这是学习后续内容的基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学二次根式教学设计6篇二次根式的混合运算(1)教学目的:会进行二次根式的加减、乘混合运算。

重点:二次根式的加减乘混合运算。

难点:运算法则的综合运用。

关键:掌握混合运算顺序和步骤。

教学过程:复习提问:1.叙述二次根式加减法的两个步骤。

2.填空:当a≥0,b≥0时,;3.叙述单项式乘以多项式运算顺序;4.叙述多项式乘以多项式的运算法则。

二次根式的乘法:(a≥0,b≥0)二次根式的除法:(a≥0,b>0)新课:形如的式子,表示什么?a需要满足什么条件?根据平方根的定义,当a≥0时,表示a的算术平方根,是一个非负数,它的平方等于a;当a16.1第一课时二次根式的概念教学目标:1、解决实际问题,体会学习二次根式是实际的需要。

2、通过二次根式概念的学习,经历观察、概括的思维过程,理解二次根式的概念。

3、通过二次根式概念的建立,理解二次根式中被开方数中字母的取值范围。

教学重点:二次根式概念的理解。

教学难点:二次根式概念的理解。

教学方法:自主学习问题启发相结合。

教学手段:多媒体课件、学案。

教学过程:一、复习1、式子(﹣3)2中,-3叫2叫2、求数4,5,10,49,0的平方根和算术平方根,4的立方根是3、-4有没有算术平方根?我们已经学习了平方根和算术平方根的定义,引进了一个新的符号word/media/image1_1.png。

今天我们学习一个和前面的算术平方根有关的知识:二次根式2、探究定义1、观察:完成课本第二页“思考”的内容。

观察word/media/image2_1.png,word/media/image3_1.png,word/media/image4_1.png,word/media/image5_1.png这些式子在形式上有什么共同特点?2、思考:(1)都含有word/media/image1_1.png(2)被开方数都是非负数(S表示面积,h是高度。

)。

3、归纳:二次根式的定义形如word/media/image6_1.png(a≥0)的式子叫作二次根式,根号下的数叫作被开方数。

注意:被开方数a可以是数,也可以是式,只有当被开方数是非负实数时,二次根式才在实数范围内有意义.4、概念解析:(1)word/media/image2_1.png和word/media/image6_1.png都是二次根式吗?word/media/image6_1.png中,被开方数a不一定是非负数,所以word/media/image6_1.png不是二次根式。

(2)word/media/image7_1.png和word/media/image2_1.png的形式一样吗word/media/image7_1.png的根指数是3,word/media/image2_1.png 的根指数是2,2省略不写,所以word/media/image7_1.png不是二次根式。

练习下列各式一定是二次根式的是()A.word/media/image8.gifB.C.word/media/image8.gifD.word/media /image8.gif5、总结:二次根号下被开方数是非负数的式子是二次根式。

当被开方数为非负数时,二次根式才有意义。

例1:若二次根式word/media/image9_1.png有意义,求某的取值范围。

解:由word/media/image10_1.png,•解得:word/media/image11_1.png因此当word/media/image11_1.png时,word/media/image13_1.png 有意义.练习:课本第3页,第2题。

补充练习:当word/media/image14_1.png取什么值时,下列二次根式有意义?word/media/image15_1.pngword/media/image16_1.pngword/media/i mage17_1.png,word/media/image18_1.pngword/media/image19_1.pngword/media/image 20_1.pngword/media/image21_1.png三、本堂小结这节课我们研究了哪些问题?我们在研究这些问题时,经历了怎样的过程?通过这个研究过程,你有什么感受和体会?四、课后作业:课本第5页,第1、6、7题。

五、板书设计教学建议1.教材分析本节是在前两节的||基础上,从实际运算的客观需要出发,引出最简二次根式的概念,然后通过一组||例题介绍了化简二次根式的方法.本小节内容比较少(求学||生了解最简二次根式的概念并掌握化简二次根式的方法),但是本节知识在全章中||却起着承上启下的重要枢纽作用,二次根式性质的||应用、二次根式的化简以及二次根式的运算都需要最简二次根||式来联接.(1)知识结构(2)重难点分析①本节的重点Ⅰ.最简二次根式概念Ⅱ.利用二次根式的性质把二次根式化简为最简二次根式.重点分析本章的主要内容是二次根式的||性质和运算,但自始至终围绕着二次根式的化简和运算.二次根式化简的||最终目标就是最简二次根式;而二次根式的运算则是合并同类||二次根式,怎样判定同类二次根式,是在化简为最简二次根式的基础上进行的.因此本节||以二次根式的概念和二次根式的性质为基础,内容虽然简||单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,||不可因为内容简单而采取弱化处理;同时初二学||生代数成绩的分化一般是由本节开始的,分化的根本原因就是对最简二||次根式概念理解不够深刻,遇到相关问题不知怎样操作||,具体操作到哪一步.②本节的难点是化简二次根式的方法与技巧.难点分析化简二次根式,实际上是二次根式性质的综合运用.||化简二次根式的过程,一般按以下步骤:把根号||下的带分数或绝对值大于1的小数化成假分数,把绝对值小于||1的小数化成分数;被开方数是多项式的要因式分解;使||被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算||术平方根代替后移到根号外面;化去分母中的根号;约分.||所以对初学者来说,这一过程容易出现符号和计算出错的问题.熟练掌握化简||二次根式的方法与技巧,能够进一步开拓学生的解题||思路,提高学生的解题能力.③重难点的解决办法是对||于最简二次根式这一概念,并不要求学生能否背出定义,关键是遇到实际式子能||够加以判断.因此建议在教学过程中对概念本身采取弱化处理,让||学生在反复练习中熟悉这个概念;同时教学中应充分对最简二次根式概念理解||后应用具体的实例归纳总结出把一个二次根式化为最简二次||根式的方法,在观察对比中引导学生总结具体解决问题的方法||技巧.另外,化简运算在本节既是重点也是难点,学生在简洁性和准确性上都容易出现||问题,因此建议在教学过程中多要求学生观察二次根式的特点――根据其特点分析运用哪条||性质、哪种方法来解答,培养学生的分析能力和||观察能力――多要求学生注意每步运算的根据,培养学生的||严谨习惯.2.教法建议素质教育和新的教改||精神的根本是增强学生学习的自主性和学生的参与意识,使每一个学生想学、||爱学、会学。

因此教师设计教学时要充分考虑到学生心理特点和思维||特点,充分发挥情感因素,使学生完全参与到整个教||学中来。

⑴在复习引入时要注意每个学生的反映,对预备知识掌||握比较好的学生要用适当的方式给于表扬,掌握差一些的学生||要给予鼓励和适当的指导,使每一个学生愉快的进入下一个环||节。

⑵学生自主学习时段,教师要注意学生的反馈情况,根据学||生的反馈情况和学生的层次采取适当的方式对需要帮助的||学生给予帮助,中上等的学生可以启发,中等的学生||可以与他探讨,偏后的学生可以帮他分析.一.教学目标1.了解最简二次根式的意义,并能作出准确判断.2.能熟练地把二次根式化为最简二次根式.3.了解把二次根式化为最简二次根式在实际问题中的应用.4.进一步培养学||生运用二次根式的性质进行二次根式化简的能力,提高运算能力.6.通过本节的学习,渗透转化的数学思想.二.重点难点1.教学重点会把二次根式化简为最简二次根式2.教学难点准确运用化二次根式为最简二次根式的方法三.教学方法程序式教学四.课时安排2课时五.教学过程1.复习引入教师准备本节内容需要的二次根式的性质和与||性质相关例题、练习题以及引入材料.⑴.二次根式的性质⑵.二次根式性质例题⑶.二次根式性质练习题【引入材料】看下面的问题:已知:=1.732,如何求出的近似值解法1:解法2:比较两种解||法,解法1很繁,解法2较简便,比例说明,将二次根式化||简,有时会带来方便.2.概念讲解与巩固学生阅读教师预备的材料,理解后自||主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续||进行.教师要及时了解学生对最简二次根式概念的反馈情况,如果掌握比||较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从||备选练习题选择巩固.【概念讲解材料】满足下列条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.如:都不是最简二次根式,因为被||开方数的因数(或系数)为分数或因式为分式,不符合条||件(1),条件(1)实际上就是要求被开方数的分母中不||带根号.又如也不是最简二次根式,因为被开方数中含有能开得尽方的因数或因式,||不满足条件(2).注意条件(2)是对被开方数分解成||质因数或分解成因式后而言的,如.判断一个二次根式是不是最简二次根式的方法||,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的||就是,否则就不是.【概念理解学习材料1】例1下列二次根式中哪些是最简二次根式哪些不是为什么分析:判断一个二次根式是不是最简二次根式的方法||,就是逐个检查定义中的两个条件是否同时满足||,同时满足两个条件的就是,否则就不是.解:最简二次根式有,因为被开方数中含能开得尽方的因数9,所以它不是最简二次根式.说明:判断一个二次根式是否为最简二次根式主要方法是||根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或||因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多||项式时要先因式分解后再观察。

【概念理解巩固材料1】正选练习题1判断下列各式是否是最简二次根式备选选练习题1判断下列各式是否是最简二次根式【概念理解学习材料2】例2判断下列各式是否是最简二次根式分析:(1)显然满足最简二次根式的两个条件.(2)或解:最简二次根式只有,因为或说明:最简||二次根式应该分母里没根式,根式里没分母(或小数).【概念理解巩固材料2】正选练习题2判断下列各式是否是最简二次根式备选选练习题2判断下列各式是否是最简二次根式【概念理解学习材料3】例3判断下列各式是否是最简二次根式分析:最简二次根式应该分母里没根式,根||式里没分母(或小数)来进行判断发现和是最简二次根式,而不是最||简二次根式,因为在根据定义知也不是最简二次根式,因为解:最简二次根式有和,因为【概念理解巩固材料3】正选练习题3判断下列各式是否是最简二次根式备选选练习题3判断下列各式是否是最简二次根式题目可根据学生实际情况选择2-3道.【概念理解学习材料4】例4判断下列各式是否是最简二次根式分析:被开方数是多项式的要先分解因式再进行观察判断.(1)不能分解因式,显然满足最简二次根式的两个条件.(2)解:最简二次根式只有,因为说明:被开方数比较复杂时,应先进行因式分解再观察.【概念理解巩固材料4】正选练习题4判断下列各式是否是最简二次根式备选选练习题4判断下列各式是否是最简二次根式题目可根据学生实际情况选择2-3道.3.化简二次根式为最简二次根式方法学习与巩固学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成||一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对二次根式化简||的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适||当沟通,如需要可从备选练习题选择巩固.【化简方法学习材料1】例1把下列二次根式化为最简二次根式课本、报刊杂志中的成语、名言警句等俯首皆是,但学||生写作文运用到文章中的甚少,即使运用也很||难做到恰如其分。

相关文档
最新文档