九年级上册数学试卷

合集下载

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。

2024-2025学年沪科新版九年级上册数学期末复习试卷(含详解)

2024-2025学年沪科新版九年级上册数学期末复习试卷(含详解)

2024-2025学年沪科新版九年级上册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列英文大写字母中,不属于中心对称图形的是( )A.K B.N C.S D.Z2.(4分)下列事件中不是随机事件的是( )A.掷一枚均匀的骰子,骰子停止转动后3点朝上B.任意买一张电影票,座位号是偶数C.在地面上,抛出去的球会下落D.上海明天会下雨3.(4分)在平面直角坐标系中,点P(m2+1,2)关于原点对称的点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)观察表格,估算一元二次方程x2﹣x﹣1=0的近似解:x 1.4 1.5 1.6 1.7 1.8 x2﹣x﹣1﹣0.44﹣0.25﹣0.040.190.44由此可确定一元二次方程x2﹣x﹣1=0的一个近似解x的范围是( )A.1.4<x<1.5B.1.5<x<1.6C.1.6<x<1.7D.1.7<x<1.85.(4分)在一个不透明的盒子中装有20个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.4左右,则盘子中白球可能有( )A.12个B.8个C.10个D.6个6.(4分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B,与y轴交于点C.下列结论:①abc<0,②2a+b<0,③b2>4ac,④4a﹣2b+c>0,⑤3a+c>0.其中正确的结论个数为( )个.A.2B.3C.4D.57.(4分)函数y=ax+1与y=﹣ax2+ax+1(a≠0)的图象可能是( )A.B.C.D.8.(4分)如图,风力发电机的三个相同叶片两两夹角为120°.以旋转轴O为原点,水平方向为x轴建立平面直角坐标系,恰好其中一个叶片尖点A对应的坐标为(10,10).若叶片每秒绕点O顺时针旋转90°,则第2023秒时叶片尖点A的坐标为( )A.(10,10)B.(﹣10,10)C.(10,﹣10)D.(﹣10,﹣10)9.(4分)如图所示,E,F分别在矩形ABCD的边BC,AB上,BF=3,BE=4,CE=3.AE与CF交于点P,且∠APC=∠AEB+∠CFB,则矩形ABCD的面积为( )A.70B.63C.77D.65.810.(4分)如图①,动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动到点C,图②是点P运动时,△ACP的面积y(cm2)随着时间x(s)的变化的关系图象,则正六边形的边长为( )A.2cm B.cm C.1cm D.3cm二.填空题(共4小题,满分20分,每小题5分)11.(5分)(1)点A(8,﹣6)关于原点的对称点是A′( );(2)点B(0,5)关于原点的对称点是B′( );(3)点C( )关于原点的对称点是C′(4,7);(4)点D( )关于原点的对称点是D′(0,0).12.(5分)小致创办了一个微店商铺,营销一款成本是20元/盏的小型LED护眼台灯.在“双十一”前8天进行了网上销售后发现,该台灯的日销售量p(盏)与时间x(天)之间满足一次函数关系,且第1天销售了78盏,第2天销售了76盏,护眼台灯的销售价格y(元/盏)与时间x(天)之间符合函数关系式y=(1≤x≤8,且x为整数).这8天中最大日销售利润是 元.13.(5分)如图,等边△ABC中,AB=10,点E为AC中点,D是线段BE上的一个动点,则CD+BD 的最小值是 .14.(5分)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b>m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论有 .三.解答题(共2小题,满分16分,每小题8分)15.(8分)解方程:(1)2x2﹣8x=0;(2)x2+10x=24.16.(8分)如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,求点E 的坐标.四.解答题(共2小题,满分16分,每小题8分)17.(8分)二次函数y=ax2+bx﹣1(a,b为常数,a≠0)的图象经过点A(1,2),(1)求该二次函数图象的对称轴(结果用含a的代数式表示).(2)若该函数图象经过点B(3,2),①求函数的表达式,并求该函数的最值.②设M(x1,y1),N(x2,y2)是该二次函数图象上两点,其中x1,x2是实数.若x1﹣x2=1,求证:.18.(8分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,P为第二象限内抛物线上一点.(1)求抛物线的解析式;(2)如图,连接PO交直线BC于点D,当时,直接写出点P的横坐标.五.解答题(共1小题,满分16分,每小题16分)19.(16分)如图,已知△ABC与△A'B'C'关于点O成中心对称,点A的对称点为点A',请你找出对称中心O,并作出△A'B'C'.六.解答题(共3小题,满分24分,每小题8分)20.(8分)某商场销售一批进价为10元/件的日用品,经调查发现,每月销售件数y(件)与销售价格x (元/件)之间的关系如图所示,每月销售该商品获得的利润为W(元).(1)分别求出y与x,W与x的函数解析式;(2)当商场每月销售该商品的利润为4000元时,求该商品的定价;(3)为了获得最大的利润,该商品的销售价应定为多少?最大利润是多少?21.(8分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位长度,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图中画出这条直线;(4)求△ABC的面积.22.(8分)如图,抛物线y=ax2﹣bx+3与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,连接BC,对称轴为直线l,顶点为M.(1)求抛物线的解析式;(2)设点E为x轴上一点,当AE=CE时,求点E的坐标;(3)设点P为直线BC上方抛物线上一点,连接OP交BC于点Q,过点P作PR∥y轴交BC于点R,若OQ=2PQ,求点P的坐标;(4)设点G是y轴上一点,是否存在点G,使得GM+GB最小,若存在,求出点G的坐标;若不存在,请说明理由.七.解答题(共2小题,满分16分,每小题8分)23.(8分)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动.【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图1,将一个三角形纸板△ABC绕点A逆时针旋转θ到达的位置△AB′C′的位置,那么可以得到:AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′.(_____)刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键.故数学就是一门哲学.【问题解决】(1)上述问题情境中“(_____)”处应填理由: ;(2)如图2,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A′B′C′的位置.①请在图中作出点O;②如果BB′=6cm,则在旋转过程中,点B经过的路径长为 ;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置.另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止.此时,两个纸板重叠部分的面积是多少呢?如图3所示,请你帮助小李解决这个问题.24.(8分)如图(1),抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B两点,与y轴交于C,顶点D (1,4).(1)写出抛物线的解析式,点B,点C的坐标;(2)直线y=1交抛物线于点E,F(点E在点F的右边),交直线BC于点G,若FG=3GE,求t的值:(3)如图(2),点M是抛物线对称轴上一点,且点M的纵坐标为m,当△MBC是锐角三角形时,求m的取值范围.参考答案与试题解析题号12345678910答案A C C C A B B B A A一.选择题(共10小题,满分40分,每小题4分)1.【解答】解:A.不是中心对称图形,故此选项符合题意;B.是中心对称图形,故此选项不符合题意;C.是中心对称图形,故此选项不符合题意;D.是中心对称图形,故此选项不符合题意;故选:A.2.【解答】解:A、掷一枚均匀的骰子,骰子停止转动后3点朝上,是随机事件,故A不符合题意;B、任意买一张电影票,座位号是偶数,是随机事件,故B不符合题意;C、在地面上,抛出去的球会下落,是必然事件,故C符合题意;D、上海明天会下雨,是随机事件,故D不符合题意;故选:C.3.【解答】解:∵m2≥0,∴m2+1>0,∴点P(m2+1,2)在第一象限,∴点P(m2+1,2)关于原点对称的点在第三象限,故选:C.4.【解答】解:由表格中数据可知,x逐渐增大,y也随着增大,当x从1.6增大到1.7时,y从负数为整数,∴使得y=0的x在1.6到1.7之间.故选:C.5.【解答】解:设袋中有黄球x个,由题意得=0.4,解得x=8,则白球可能有20﹣8=12个.故选:A.6.【解答】解:∵抛物线开口向上,于y轴交于负半轴,∴a>0,c<0,∵抛物线对称轴在y轴和直线x=1之间,∴,∴b<0,﹣b<2a,即2a+b>0,故②错误;∴abc>0,故①错误;由函数图象可知,抛物线与x轴有两个不相等的交点,∴Δ=b2﹣4ac>0,∴b2>4ac,故③正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,故④正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),∴a﹣b+c=0,∴b=a+c,∵2a+b>0,即b>﹣2a,∴a+c>﹣2a,∴3a+c>0,故⑤正确;故选:B.7.【解答】解:由函数y=ax+1与抛物线y=﹣ax2+ax+1可知两函数图象交y轴上同一点(0,1),抛物线的对称轴为直线x=﹣=,在y轴的右侧,A、当a>0时,直线经过第一、三象限,抛物线开口方向向下,故选项不合题意;B、抛物线的对称轴在y轴的右侧,故选项符合题意;C、当a>0时,直线经过第一、三象限,抛物线开口方向向下,故选项不合题意;D、抛物线的对称轴在y轴的左侧,故选项不合题意;故选:B.8.【解答】解:∵A(10,10),∴A在第一象限的角平分线上,∵叶片每秒绕原点O顺时针转动90°,∴第1、2、3、4s的坐标为:A1(10,﹣10),A2(﹣10,﹣10),A3(﹣10,10),A4(10,10)(与重合A(10,10)),如图,∴点A的坐标以每4秒为一个周期依次循环,∵2023÷4=505⋯3,∴第2023s时,点A的对应点A2023的坐标与A3相同,为(﹣10,10).故选:B.9.【解答】解:过点E作EQ∥CF,过点F作BC的平行线交EQ于Q,连接AQ、BQ,如图所示:则四边形CEQF为平行四边形,∵四边形ABCD是矩形,∴∠ABC=90°,FQ=CE=3=BF,∵∠APC=∠AEB+∠CFB,∠APC=∠EPF,∴∠ABC+∠EPF+∠AEB+∠CFB=360°,∴∠EPF=(360°﹣∠ABC)=(360°﹣90°)=135°,∴∠APF=180°﹣∠EPF=180°﹣135°=45°,∵EQ∥CF,∴∠QEA=∠APF=45°,∠BCF=∠BEQ,∵FQ∥BC,∴∠BFQ=∠ABC=90°,∵FQ=BF,∴△BFQ是等腰直角三角形,∴∠ABQ=45°=∠QEA,∴A、E、B、Q四点共圆,∴∠BAQ=∠BEQ=∠BCF,∵∠BFQ=90°,∴∠AFQ=90°,在△AFQ和△CBF中,,∴△AFQ≌△CBF(AAS),∴AF=BC=BE+CE=4+3=7,∴AB=AF+BF=7+3=10,∴S矩形ABCD=AB•BC=10×7=70,故选:A.10.【解答】解:如图,连接BE,AE,CE,BE交AC于点G由正六边形的对称性可得BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS)∴△ACE为等边三角形,GE为AC边上的高线∵动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动∴当点P运动到点E时△ACP的面积y取最大值设AG=CG=a(cm),则AC=AE=CE=2a(cm),GE=a(cm)∴2a×a÷2=(cm)∴a2=3∴a=(cm)或a=﹣(舍)∵正六边形的每个内角均为120°∴∠ABG=×120°=60°∴在Rt△ABG中,=sin60°∴=∴AB=2(cm)∴正六边形的边长为2cm故选:A.二.填空题(共4小题,满分20分,每小题5分)11.【解答】解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴(1)点A(8,﹣6)关于原点的对称点A′为(﹣8,6),(2)同理:点B(0,5)关于原点的对称点B′为(0,﹣5),(3)同理:点C'关于原点的对称点C为(﹣4,﹣7),(4)同理:点D'关于原点的对称点D为(0,0).12.【解答】解:(1)设日销售量p(盏)与时间x(天)之间的函数关系式为p=kx+b,把(1,78),(2,76)代入得:,解得:,即日销售量p(盏)与时间x(天)之间的函数关系式为p=﹣2x+80;(2)设日销售利润为w元,w=(﹣2x+80)(x+25﹣20)=﹣(x﹣10)2+450;∵﹣<0,1≤x≤8,且x为整数,∴当x=8时,w取得最大值,最大值是448;∴在这8天中,最大日销售利润是448元,故答案为:448.13.【解答】解:过点C作CF⊥AB于点F,过点D作DH⊥AB于点H,则CD+DH≥CF,∵△ABC是等边三角形,AB=10,∴∠A=∠ABC=60°,AB=AC=10∴CF=AC•sin A=10×=5,∵点E为AC中点,∴∠ABE==30°,∴DH=,∴CD+BD=CD+DH≥CF,∴CD+BD≥5,∴CD+BD的最小值是5,故答案为:5.14.【解答】解:①由抛物线可知:a>0,c<0,对称轴:,∴b>0,∴abc<0,故①不符合题意;②∵,∴b=2a,∵x=1时,y=a+b+c=0,∴c+3a=0,∴c+2a=﹣3a+2a=﹣a<0,故②不符合题意;③(1,0)关于x=﹣1的对称点为(﹣3,0),∴x=﹣3时,y=9a﹣3b+c=0,故③不符合题意;④当x=﹣1时,y的最小值为a﹣b+c,∴x=m时,y=am2+bm+c,∴am2+bm﹣c≥a﹣b+c,即a﹣b≤m(am+b),故④符合题意;⑤二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,∴Δ>0,即b2﹣4ac>0,∴4ac﹣b2<0,故⑤不符合题意;故答案为:④.三.解答题(共2小题,满分16分,每小题8分)15.【解答】解:(1)2x2﹣8x=0,2x(x﹣4)=0,2x=0或x﹣4=0,解得x1=0,x2=4;(2)x2+10x=24,x2+10x﹣24=0,(x+12)(x﹣2)=0,x+12=0或x﹣2=0,解得x1=﹣12,x2=2.16.【解答】解:(1)∵AB=2,对称轴为直线x=2.∴点A的坐标是(1,0),点B的坐标是(3,0).∵抛物线y=x2+bx+c与x轴交于点A,B,∴1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理,得1+3=﹣b,1×3=c,∴b=﹣4,c=3,∴抛物线的函数表达式为y=x2﹣4x+3;(2)如图1,连接AC、BC,BC交对称轴于点P,连接PA.由(1)知抛物线的函数表达式为y=x2﹣4x+3,A(1,0),B(3,0),∴C(0,3),∴BC==3,AC==.∵点A、B关于对称轴x=2对称,∴PA=PB,∴PA+PC=PB+PC.此时,PB+PC=BC.∴点P在对称轴上运动时,(PA+PC)的最小值等于BC.∴△APC的周长的最小值=AC+AP+PC=AC+BC=3+;(3)如图2,根据“菱形ADBE的对角线互相垂直平分,抛物线的对称性”得到点D是抛物线y=x2﹣4x+3的顶点,即(2,﹣1),当E、D点在x轴的上方,即DE∥AB,AE=AB=BD=DE=2,此时不合题意,∴点E的坐标为:(2,1).四.解答题(共2小题,满分16分,每小题8分)17.【解答】(1)解:把A(1,2)代入y=ax2+bx﹣1得:a+b﹣1=2,∴b=3﹣a,∴x=﹣=﹣,∴二次函数图象的对称轴为直线x=﹣;(2)解:①把B(3,2)代入y=ax2+bx﹣1得:9a+3b﹣1=2,由(1)知b=3﹣a,∴9a+3(3﹣a)﹣1=2,解得a=﹣1,∴b=3﹣a=3﹣(﹣1)=4,∴函数的表达式为y=﹣x2+4x﹣1;∵y=﹣x2+4x﹣1=﹣(x﹣2)2+3,∴当x=2时,函数有最大值为3;②证明:∵x1﹣x2=1,∴x2=x1﹣1,∵M(x1,y1),N(x1﹣1,y2)是二次函数y=﹣x2+4x﹣1图象上两点,∴y1+y2=﹣+4x1﹣1﹣(x1﹣1)2+4(x1﹣1)﹣1=﹣2+10x1﹣7=﹣2(x1﹣)2+,∵﹣2(x1﹣)2≤0,∴y1+y2≤.18.【解答】解:(1)将点A(1,0)和点B(﹣3,0)代入y=ax2+bx+3,得,解得.∴抛物线的解析式为y=﹣x2﹣2x+3.(2)如图,过点P作PT⊥x轴于点T,过点D作DK⊥x轴于点K,则PT∥DK,∴△OPT∽△ODK,∴,∵,即,∴,∵y=﹣x2﹣2x+3.∴C(0,3),∴设直线BC的解析式为y=kx+3(k≠0),∴﹣3k+3=0,解得:k=1,∴设直线BC的解析式为y=x+3,设P(t,﹣t2﹣2t+3)且﹣3<t<0,∴OT=﹣t,设直线OP的解析式为y=k1x(k1≠0),∴,∴,∴直线OP的解析式为,,解得,∴,∴,解得:或.∴点P的横坐标为或.五.解答题(共1小题,满分16分,每小题16分)19.【解答】解:如图,点O和△A′B′C′为所作.六.解答题(共3小题,满分24分,每小题8分)20.【解答】解:(1)设y=kx+b(k≠0).∴.解得:.∴y与x的函数解析式为:y=﹣20x+800;W=(﹣20x+800)(x﹣10)=﹣20x2+1000x﹣8000;答:y与x的函数解析式为:y=﹣20x+800;W=﹣20x2+1000x﹣8000;(2)当w=4000时,4000=﹣20x2+1000x﹣8000.x2﹣50x+60=0.(x﹣20)(x﹣30)=0.解得:x1=20,x2=30.答:当商场每月销售该商品的利润为4000元时,该商品的定价为20元/件或30元/件;(3)∵﹣20<0,∴二次函数的开口方向是向下.∴x=﹣=25时,w最大,最大值为:(﹣20×25+800)(25﹣10)=4500(元).答:为了获得最大的利润,该商品的销售价应定为25元/件,最大利润是4500元.21.【解答】解:(1)作图见解答过程;A1(0,4),B1(2,2),C1(1,1);(2)作图见解答过程;A2(6,4),B2(4,2),C2(5,1);(3)作图见解答过程;△A1B1C1与△A2B2C2关于直线x=3轴对称.(4)S△ABC=2×3﹣×1×1﹣×2×2﹣×1×3=2.22.【解答】解:(1)由题意得,,∴,∴抛物线的函数关系式是:y=﹣x2++3;(2)设E(x,0),∵C(0,3),A(﹣2,0),由AE=CE得,(x+2)2=x2+9,∴x=,∴E(,0);(3)如图1,设点P(x,﹣x2++3),设PR交OB于D,∴PD=﹣x2++3,∵PR∥y轴,∴△PQR∽△OQC,△BRD∽△BCO,∴==,=,∴PR=OC=,=,∴RD=3﹣,∵PD﹣RD=PR,∴﹣x2++3﹣(3﹣x)=,∴x=2,当x=2时,y=﹣x2++3=3,∴P(2,3);(4)如图2,∵y=﹣x2++3=﹣(x﹣1)2+,∴M(1,),点B关于y轴的对称点记作D(﹣4,0),连接DM交y轴于G,对称轴交x轴记作N,则GM+GB最小,∵OG∥MN,∴=,∴=,∴OG=,∴G(0,).七.解答题(共2小题,满分16分,每小题8分)23.【解答】解:【问题解决】(1)根据题意,AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′的理由是:旋转前后的图形对应线段相等,对应角相等,故答案为:旋转前后的图形对应线段相等,对应角相等;(2)①如图:作线段BB',AA'的垂直平分线,两垂直平分线交于O,点O为所求;②∵∠BOB'=90°,OB=OB',∴△BOB'是等腰直角三角形,∵BB'=6,∴OB==3,∵=(cm),∴点B经过的路径长为cm,故答案为:cm;【问题拓展】连接PA',交AC于M,连接PA,PD,AA',PB',PC,如图:∵点P为中点,∴∠PAB=,由旋转得∠PA'B'=30°,PA=PA′=4,在Rt△PAM中,PM=PA•sin∠PAM=4×sin30°=2,∴A'M=PA'﹣PM=4﹣2=2,在Rt△A′DM中,A'D===,DM=A'D=,∴S△A'DP=××4=;S扇形PA'B'==,下面证明阴影部分关于PD对称:∵∠PAC=∠PA'B'=30°,∠ADN=∠A'DM,∴∠AND=∠A'MD=90°,∴∠PNA'=90°,∴PN=PA'=2,∴AN=PA﹣PN=2,∴AN=A′M,∴△AND≌△A'MD(AAS),∴AD=A′D,∴CD=B'D,∵PD=PD,PB'=PC,∴△PB′D≌△PCD(SSS),∴阴影部分面积被PD等分,∴S阴影=2(S扇形PA'B'﹣S△A'DP)=2(﹣)=(cm2).∴两个纸板重叠部分的面积是cm2.24.【解答】解:(1)∵抛物线的顶点为D(1,4),∴设y=a(x﹣1)2+4(a≠0),∵抛物线经过点A(﹣1,0),∴4a+4=0,∴a=﹣1,y=﹣(x﹣1)2+4=﹣x2+2x+3,当y=0时,﹣(x﹣1)2+4=0,解得x=﹣1(舍去)或x=3,当x=0时,y=3,∴B(3,0),C(0,3);(2)设直线BC的解析式为y=kx+d,将点B(3,0),C(0,3)代入,得,解得,∴y=﹣x+3,设对称轴交直线EF于点H,交直线BC于T,则DH⊥EF,EH=HF,①如图,当x=1时,y=﹣1+3=2,∴T(1,2),∵H(1,t),∴t<2,∵FG=3GE,∴HG=GE,∵G(3﹣t,t),∴HG=3﹣t﹣1=2﹣t,∴HE=4﹣2t,故E(5﹣2t,t),代入抛物线解析式得﹣(5﹣2t)2+2(5﹣2t)+3=t,解得,(舍去);②如图,当t<0时,∵FG=3EG,∵FE=2EG,故HE=EG,∵H(1,t),G(3﹣t,t),∴HG=3﹣t﹣1=2﹣t,∴,∴,即,代入抛物线得,解得,(舍去);∴t值为或.(3)①如图,当m>0时,连接CD,设对称轴交x轴于P,过D作DN⊥y轴于N,则CN=DN=1,故∠DCN=45°,∵∠OCB=45°,∴∠DCB=90°,即点M与D重合时,△BCM是直角三角形,此时m=4,当∠CM1B=90°时,过M1作M1L⊥y轴于L,∴∠BM1P+∠CM1P=∠CM1L+∠CM1P=90°,∴∠BM1P=∠CM1L,∴∠M1PB=∠M1LC=90°,∴△M1PB∽△M1LC.∴,∴,解得m1=,,经检验这都是所列方程的解,但,舍去,∴,∴当△MBC是锐角三角形时,;②如图,当m<0时,当∠CM2B=90°时,过M2作M2K⊥y轴于K,∵∠M2PB=∠M2KC=90°,∠BM2P=∠CM2K,∴△M2PB∽△M2KC,∴,∴,解得,,经检验这都是所列方程的解,但>0,舍去,∴,当∠CBM3=90°时,PB=PM3=2,即M3(1.﹣2),故当△MBC是锐角三角形时,,综上所述,当△MBC是锐角三角形时,或.。

九年级上册数学测试题(含答案)

九年级上册数学测试题(含答案)

九年级上册数学测试题(考试时间: 120 分钟分数: 120 )一、选择题(本大题共10 小题,共 30 分)1.某钢铁厂一月份生产钢铁 560 吨,从二月份起 ,由于改进操作技术 ,使得第一季度共生产钢铁1850 吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为 x,则可得方程A. B.C. D.2.若一元二次方程的常数项是 0,则 m 等于 ( )A. B. 3 C. D. 93.如图 ,AB 是的一条弦 ,于点 C,交于点 D,连接若,,则的半径为 ()A. 5B.C. 3D.4.若抛物线与 x 轴有交点 ,则 m 的取值X围是( )A. B. C. D.5.如图 ,A,B,C 是上三个点 ,,则下列说法中正确的是()A. B. 四边形 OABC 内接于C. D.6.中,于 C,AE 过点 O,连接 EC,若,,则 EC长度为( )A. B. 8 C. D.7.下列判断中正确的是 ( )A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦8. 如图 ,已知与坐标轴交于点A,O,B,点C在上,且,若点 B 的坐标为,则弧 OA 的长为 ( )A.B.C.D.9.将含有角的直角三角板 OAB 如图放置在平面直角坐标中 ,OB 在 x 轴上 ,若,将三角板绕原点 O 顺时针旋转,则点 A 的对应点的坐标为( )A.B.C.D.10.如图 ,在中 ,,,以点 C 为圆心 ,CB 的长为半径画弧 ,与 AB 边交于点 D,将绕点 D旋转后点 B 与点 A 恰好重合 ,则图中阴影部分的面积为 ()A. B.C. D.二、填空题(本大题共8 小题,共 24分)11.m 是方程的一个根 ,则代数式的值是______.12.已知,,是二次函数上的点 ,则, , 从小到大用“”排列是 ______.13.如图 ,在中 ,直径,弦于 E,若,则______.14.如图是一座抛物形拱桥 ,当水面的宽为 12m时,拱顶离水面 4m,当水面下降3m 时 ,水面的宽为 ______15.如图 ,正的边长为 4,将正绕点 B顺时针旋转得到,若点 D 为直线上的一动点 ,则的最小值是 ______.16.如图 ,在平面内将绕着直角顶点 C 逆时针旋转,得到,若,,则阴影部分的面积为 ______.17.如图,A、B、C、D 均在上 ,E 为 BC 延长线上的一点 ,若,则______.18.如图 ,内接于,于点 D,若的半径,则 AC 的长为 ______.三、解答题(本大题共7 小题,共66分)19. 已知关于 x 的一元二次方程有实数根.求 m 的取值X围;( 3+3=6分)若方程有一个根为,求 m 的值及另一个根.20. 如图 ,E 与 F 分别在正方形 ABCD 边 BC 与 CD 上,.以A 为旋转中心 ,将按顺时针方向旋转 ,画出旋转后得到的图形.( 4+4=8分)已知,,求 EF 的长.21. 平面上有 3 个点的坐标:,,.在 A,B,C 三个点中任取一个点 ,这个点既在直线上又在抛物线上的概率是多少?从A,B,C 三个点中任取两个点 ,求两点都落在抛物线上的概率.( 4+4=8分)22. 如图 ,抛物线与x轴交于A、B两点点A在点B的左侧,点 A 的坐标为,与 y 轴交于点,作直线动点P在x轴上运动,过点 P 作轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.( 4+4+4=12)Ⅰ求抛物线的解析式和直线 BC 的解析式;Ⅱ当点 P 在线段 OB 上运动时 ,求线段 MN 的最大值;Ⅲ当以 C、O、M、N 为顶点的四边形是平行四边形时,直接写出 m 的值.23. 如图,内接于,,CD 是的直径 ,点 P 是 CD 延长线上的一点 ,且.( 5+5=10分)求证: PA 是的切线;若,,求的半径.24. 如图 ,AB 是的直径,四边形ABCD内接于,延长 AD,BC 交于点 E,且.求证:;若,,求的长.25. 如图 ,A、B、C 是圆 O 上三点 ,,点 D 是圆上一动点且,过点 D 作 BC 的平行线 DE,过点 A 作 AB 的垂线 AE,两线交于点 E.(1)求证: AB 是圆 O 的直径。

人教版九年级上册数学期末考试试卷及答案

人教版九年级上册数学期末考试试卷及答案

人教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.如图,∠A是⊙O的圆周角,∠A=50°,则∠BOC的度数为A.40°B.50°C.90°D.100°3.一元二次方程的根的情况是()A.有两个实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根4.如图,关于抛物线2=--,下列说法中错误的是()y x(1)2(A)顶点坐标为(1,-2)(B)对称轴是直线1x=(C)当1x>时,y随x的增大而减小(D)开口方向向上5.下列事件中是必然事件的是().(A)抛出一枚硬币,落地后正面向上(B)明天太阳从西边升起(C)实心铁球投入水中会沉入水底(D)NBA篮球队员在罚球线投篮2次,至少投中一次6.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A B C∠=︒,则∠1'',若60B的度数是().(A)15︒(B)25︒(C)10︒(D)20︒7.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1B.2C.﹣1D.﹣28.如图,A是⊙的弦,半径O⊥A于点,且A=6cm,B=4cm.则O的长为A.5c B.3c C.2c D.1c9.若关于x的一元二次方程2(1)220k x x-+-=有两个不相等的实数根,则k的取值范围是(A)12k>(B)12k≥(C)12k>且k≠1(D)12k≥且k≠110.函数与在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题11.方程225x=的解为.12.抛物线y=3(x﹣2)2+5的顶点坐标是_____.133___________.14.如图,AB为半圆的直径,且4AB=,半圆绕点B顺时针旋转45°,点A旋转到'A的位置,则图中阴影部分的面积为.15.甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红球的概率是.16.一元二次方程的根是_________.三、解答题17.(1)用配方法解方程:2810x x -+=;(2)用公式法解方程:2531x x x -=+.18.抛物线256y x x =-+与x 轴交于A B 、两点,则AB 的长为.19.在如图网格图中,每个小正方形的边长均为1个单位,在Rt △ABC 中,∠C =90°,AC =3,BC =4.(1)试在图中作出△ABC 以A 为旋转中心,沿顺时针方向旋转90°后的图形△AB 1C 1;(2)若点B 的坐标为(﹣3,5),试在图中画出直角坐标系,并直接写出A 、C 两点的坐标;(3)根据(2)的坐标系作出与△ABC 关于原点对称的图形△A 2B 2C 2,并直接写出点A 2、B 2、C 2的坐标.20.随着市民环保意识的增强,节庆期间烟花爆竹销售量逐年下降.某市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为9.8万箱.求该市2011年到2013年烟花爆竹年销售量的平均下降率.21.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、丙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.22.如图,在△ABC中,90=,ABC∠的平分线BE交AC于点E,过点E作直线BE的∠︒C垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH AB=.⊥于点H,求证:CD HF23.如图,已知抛物线的对称轴为直线l:4,x=且与x轴交于点(2,0),A与y轴交于点C(0,2).(1)求抛物线的解析式;(2)试探究在此抛物线的对称轴l上是否存在一点P,使AP CP+的值最小?若存在,求+的最小值,若不存在,请说明理由;AP CP(3)以AB为直径作⊙M,过点C作直线CE与⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.24.已知A(x1, y1),B(x2, y2)是反比例函数y=−2x图象上的两点,且x2−x1=−2,x1⋅x2=3.(1)在图中用“描点”的方法作出此反比例函数的图象;(2)求y1−y2的值及点A的坐标;(3)若−4<y≤−1,依据图象写出x的取值范围.25.一出租车油箱的容积为70升,某司机将该车邮箱加满油后,将客人送达340km外的某地后立即返回.设出租车可行驶的总路程为y(单位:km),行驶过程中平均耗油量为x(单位:升/km).(1)写出y与x之间的函数解析式,并写出自变量x的取值范围;(2)若该车以每千米耗油0.1升行驶送达客人至目的地,返程时由于堵车,油耗平均增加了50%,该车返回出发地是否需要加油?若需要,试求出至少需加多少油,若不需要,请说明理由。

浙教版九年级上册数学期末考试试题含答案

浙教版九年级上册数学期末考试试题含答案

浙教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.在平面直角坐标系中,下列二次函数的图象开口向上的是()A .2y =B .221y x x =-++C .22y x x=-+D .20.5y x x=-+2.下列属于随机事件的是()A .从装满红球的口袋随意摸一个球是红球B .抛一个硬币,正好反面朝上C .从一副扑克牌任抽2张都是红心5D .抛一枚骰子两次出现点数之和为133.已知34x y =,则下列结论一定成立的是()A .3x =,4y =B .1y x -=C .34x y=D .74x y y +=4.Rt ABC ∆中,斜边12AB =,其重心与外心之间的距离为()A .2B .3C .4D .65.若点A 在⊙O 内,点B 在⊙O 外,OA =3,OB =5,则⊙O 的半径r 的取值范围是()A .0<r <3B .2<r <8C .3<r <5D .r >56.在平面直角坐标系中,将抛物线()21y x =+向右平移2个单位,再向下平移4个单位,得到的抛物线解析式是()A .()234y x =+-B .()214y x =--C .()234y x =++D .()214y x =-+7.角α,β满足045αβ<<<︒︒,下列是关于角α,β的命题,其中错误..的是()A .0sin α<<B .0tan 1β<<C .cos sin βα<D .sin cos βα<8.已知二次函数()()20y a x m a =->的图象经过点()1,A p -,()3,B q ,且p q <,则m 的值不可能...是()A .2-B .C .0D .529.如图,30MAN ∠=︒,O 是MAN ∠内部一点,O 与MAN ∠的边AN 相切于点B ,与边AM相交于点C ,D ,AB =OE CD ⊥于E ,OB =,则弦CD 的长是()A .B .C .4D .10.如图,E ,F ,G ,H 分别是矩形ABCD 四条边上的点,连结EG ,HF 相交于点O ,//EG AD ,//FH AB ,矩形BFOE ∽矩形OGDH ,连结AC 交EG ,FH 于点P ,Q .下列一定能求出BPQ ∆面积的条件是()A .矩形BFOE 和矩形OGDH 的面积之差B .矩形ABCD 与矩形BFOE 的面积之差C .矩形BFOE 和矩形FCGO 的面积之差D .矩形BFOE 和矩形EOHA 的面积之差二、填空题11.比例式453x=中x 的值等于___________.12.为估计种子的发芽率,做了10次试验.每次种了1000颗种子,发芽的种子都是950颗左右,预估该种子的发芽率是___________.13.如图,点D 在钝角ABC 的边BC 上,连接AD ,45B ∠=︒,CAD CDA ∠=∠,:5:7CA CB =,则CAD ∠的余弦值为__________.14.如图,直线AB 与抛物线2y ax bx c =++(0a >)相交于()2,5A -,()5,12B 两点,点P 是抛物线上位于直线AB 下方的点,则点P 的横坐标m 的取值范围是___________.15.如图,点A ,B ,C 都在O 上,2tan 3ABC ∠=,将圆O 沿BC 翻折后恰好经过弦AB 的中点D ,则BCAB的值是___________.16.如图,矩形OABC 中,3OA =,5AB =,抛物线2y x bx c =++的顶点为P ,且经过点(),M m n 和()4,N m n +,其中点M ,N 位于矩形OABC 的内部(不含边界),则MNP ∆的面积是___________,b c +的取值范围是___________.三、解答题17.计算:22sin 60cos 303tan 45︒+︒+︒.18.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得元购物券,最多可得元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.19.由36个边长为1的小正方形组成的66⨯网格中,线段AB 的两个端点在格点上.(1)如图1,C ,D 也在格点上,连结AB ,CD 相交于点O ,求AOBO的值和OC 的长;(2)如图2,仅用无刻度直尺在线段AB 上找一点M ,使得23AM MB =.20.如图,在东西方向的海岸线l 上有长为300米的码头海岸AB ,在码头的最西端A 处测得轮船M 在它的北偏东45︒方向上;同一时刻,在A 处正东方向距离A 处50米的C 处测得轮船M 在北偏东37︒方向上.(1)求轮船M 到海岸线l 的距离;(结果保留整数米)(2)如果轮船M 沿着南偏东22︒的方向就行,那么该轮船能否行至码头海岸AB 靠岸?请说明理由.(参考数据:sin 370.60︒≈,tan 370.75︒≈,sin 220.37︒≈,tan 220.40︒≈)21.如图,在锐角ABC ∆,4AB BC ==,以BC 为直径画O 交AC 于点D ,过点D 作DE AB ⊥于点E .(1)求证:DE 是O 的切线;(2)当4AC AE =时,求阴影部分弓形的面积.22.(1)抛物线y =ax 2+c 经过点A (2,3),点B (-1,-3)两点,求该抛物线的解析式.(2)如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管应多长?23.ABC ∆和ADE ∆均是等腰直角三角形,其中90ACB AED ∠=∠=︒.如图1,开始时,//DE AC ,现在固定ABC ∆将ADE ∆绕着点A 按顺时针方向旋转α(0180α︒<<︒).(1)当ADE ∆中的DE 边旋转到与ABC ∆的某条边平行时,旋转角α的度数是;(2)如图2,连结BD ,CE ,求证:ABD ACE ∆∆∽;(3)若2AB AD =,在ADE ∆的旋转过程中,当C ,D ,E 三点在同一条直线上时,请画出图形求DBC ∠的度数.24.定义:若一个三角形存在两个内角之差是第三个内角的两倍,则称这个三角形为关于第三个内角的“差倍角三角形”.例如,在ABC ∆中,100A ∠=︒,60B ∠=︒,20C ∠=︒,满足2A B C ∠-∠=∠,所以ABC ∆是关于C ∠的“差倍角三角形”.(1)若等腰ABC ∆是“差倍角三角形”,求等腰三角形的顶角A ∠的度数;(2)如图1,ABC ∆中,3AB =,8AC =,9BC =,小明发现这个ABC ∆是关于C ∠的“差倍角三角形”.他的证明方法如下:证明:在BC 上取点D ,使得1BD =,连结AD ,(请你完成接下去的证明)(3)如图2,五边形ABCDE 内接于圆,连结AC ,AD 与BE 相交于点F ,G , AB BCDE ==,ABE ∆是关于AEB ∠的“差倍角三角形”.①求证:四边形CDEF 是平行四边形;②若1BF =,设AB x =,CDEFAEGS y S ∆=四边形,求y 关于x的函数关系式.参考答案1.A 【分析】二次函数y =ax 2+bx +c (a ≠0),①当a >0时,抛物线y =ax 2+bx +c (a ≠0)的开口向上;②当a <0时,抛物线y =ax 2+bx +c (a ≠0)的开口向下,据此判断即可.【详解】解:A 、∵a0,∴2y =的图象开口向上,故本选项符合题意;B 、∵a =﹣1<0,∴y =﹣x 2+2x +1的图象开口向下,故本选项不符合题意;C 、∵a =﹣2<0,∴y =﹣2x 2+x 的图象开口向下,故本选项不符合题意;D、∵a=﹣0.5<0,∴y=﹣0.5x2+x的图象开口向下,故本选项不符合题意;故选:A.【点睛】本题考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答.2.B【分析】根据事件发生的可能性大小判断.【详解】解:A、从装满红球的口袋随意摸一个球是红球,是必然事件;B、抛一枚硬币,正好反面朝上,是随机事件;C、从一副扑克牌中任抽2张都是红心5,是不可能事件;D、抛一枚骰子两次出现点数之和为13,是不可能事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.D【分析】根据比例的基本性质以及合比性质进行判断,即可得出结论.【详解】解:A.由34xy=,不能得到x=3,y=4,故本选项错误;B.由34xy=,不能得到y﹣x=1,故本选项错误;C.由34xy=,可得4x=3y;由34xy=,可得xy=12,故本选项错误;D.由34xy=,可得3114xy+=+,即74x yy+=,故本选项正确.故选:D.【点睛】本题主要考查了比例的性质.利用“两内项之积等于两外项之积”是解题的关键.4.A【分析】根据直角三角形的性质得到162CD AB==,根据重心的性质求解即可;【详解】∵直角三角形的外心是斜边的中点,∴162CD AB==,∵M是Rt ABC∆的重心,∴123DM DC==;故答案选A.【点睛】本题主要考查了直角三角形的性质,三角形的重心和三角形的外心,准确计算是解题的关键.5.C【分析】直接根据点与圆的位置关系的判定方法求解.【详解】解:∵点A在半径为r的⊙O内,点B在⊙O外,∴OA小于r,OB大于r,∵OA=3,OB=5,∴3<r<5.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.6.B 【分析】找出抛物线的顶点坐标,将其按要求平移后可得出新抛物线的顶点坐标,进而即可得出抛物线的解析式.【详解】解:∵抛物线y=(x+1)2的顶点坐标为(-1,0),∴平移后抛物线的顶点坐标为(1,-4),∴平移后抛物线的解析式为y=(x-1)2-4.故选:B .【点睛】本题考查了二次函数图象与几何变换,通过平移顶点找出平移后抛物线的解析式是解题的关键.7.C 【分析】由角α,β满足045αβ<<<︒︒,确定锐角三角函数的增减性,sin α随α的增大而增大,cos β随β的增大而减小,tan β随β的增大而增大,利用45°函数值的分点即可确定答案.【详解】解:角α,β满足045αβ<<<︒︒,sin α随α的增大而增大,cos β随β的增大而减小,tan β随β的增大而增大,A.∵sin 45=2︒,∴0<sin α<2,选项A 正确,不合题意;B .∵tan 45=1︒,∴0tan 1β<<,选项B 正确,不合题意;C .sin 45=2︒,cos 45=2︒,cos ,sin 22βα><,cos sin βα>,选项C 不正确,符合题意;D .sin 45=2︒,cos 45=2︒,cos 22αβ><,sin cos βα<,选项D 正确,不符合题意.【点睛】本题考查锐角三角函数值的大小比较问题,掌握函数的增减性质利用45°函数值的特殊关系是解题关键.8.D 【分析】根据二次函数图象上点的坐标特征得到m +1<3﹣m 或m ≤﹣1,解得即可.【详解】解:∵二次函数y =a (x ﹣m )2(a >0),∴抛物线的开口向上,对称轴为直线x =m ,∵图象经过点A (﹣1,p ),B (3,q ),且p <q ,∴m +1<3﹣m 或m ≤﹣1解得m <1,故选:D .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.9.C 【分析】延长BO 交AM 点F ,计算BF ,后计算OB ,OC ,OE ,最后,运用垂径定理计算即可.【详解】如图,延长BO 交AM 点F ,连接OC ,∵O 与MAN ∠的边AN 相切,∴∠ABF=90°,∵30MAN ∠=︒,AB =∴BF=3,∠AFB=60°,∠FOE=30°,设EF=x ,则OF=2x ,,∵OB =,∴OB=3x ,∴BF=OB+OF=5x ,∴,∴∴,⊥,∵OE CD∴在直角三角形OCE中,=,根据垂径定理,得CD=2CE=4,故选C.【点睛】本题考查了切线的性质,直角三角形的性质,垂径定理,会用延长线段BO构造特殊的直角三角形是解题的关键.10.A【分析】设BF=a,BE=b,BE=b,AE=kb,根据△AEP∽△ABC,△FQC∽△ABC,分别用含a、b、k的式子表示出EP、FQ,利用割补法表示出△BPQ面积,即可求解.【详解】解:设BF=a,BE=b,BE=b,AE=kb,∵EP∥BC,∠AEP=∠ABC=90°,∴△AEP∽△ABC,∴==1AE EP k AB BC k +,∴()111k k EP BC k a ka k k ==+=++ ,同理,△FQC ∽△ABC ,∴==1FQ FC k AB BC k +,∴()111k k FQ BA k b kb k k ==+=++ ,∵BPQ ABC ABP BQCS S S S =--△△△△()()()()1111111222k a k b k b ka k a kb =++-+-+ ()2112ab k =-,∵2BEOF HOGD S ab S k ab ==矩形矩形,,∴ BPQ S ()12BEOFHOGD S S =-矩形矩形.故选:A【点睛】本题为三角形相似知识的综合,综合性较强,根据题意设出参数,根据相似表示出相关线段,恰当利用割补法进行转换是解题关键.11.154【分析】根据比例的性质列出方程,通过解方程求得x 的值即可.【详解】解:∵453x=,∴4x =15,解得x =154,故答案为:154.【点睛】本题主要考查了比例的性质.利用“两内项之积等于两外项之积”列出方程是解题的关键.12.95%【分析】根据发芽率的意义,求出发芽的种子数占实验种子总数的百分比即可.【详解】解:(950×10)÷(1000×10)×100%=95%,故答案为:95%.【点睛】本题考查频率估计概率,理解发芽率的意义是正确计算的前提.13【分析】作AH ⊥BC 于H ,设AC═CD=5k ,则BC=7k ,设AH=BH=x ,在Rt △ACH 中,利用勾股定理求得x 的值(x 用k 表示,求得的值需淘汰不构成钝角三角形的值),然后表示AD ,DH ,利用余弦的定义即可求得.【详解】解:如图作AH ⊥BC 于H ,∵CAD CDA ∠=∠,:5:7CA CB =,设AC═CD=5k ,BC=7k ,∵∠B=45°,∠AHB=90°,∴AH=BH ,设AH=BH=x ,在Rt △ACH 中,∵AH 2+HC 2=AC 2,∴x 2+(7k-x )2=(5k )2,解得x=3k 或4k ,当x=4k 时,即AH=4k ,HC=7k-4k=3k ,AH>HC ,此时根据大边对大角,∠HAC<∠HCA ,又∠HAC+∠HCA=90°,∴∠HAC<45°,∴∠BAC<90°,与△ABC 为钝角三角形矛盾,故x=4k 舍去,当x=3k 时,∴BH=AH=3k ,HC=7k-3k=4k ,DH=k ,∴AD ==,∴cos cosDH CAD ADH AD ∠=∠==【点睛】本题考查解直角三角形,等腰三角形的判定定理,勾股定理,一元二次方程的应用等.解决本题的关键是作辅助线构造直角三角形,注意作辅助线时尽量不要破坏已给的角.14.25m -<<【分析】先求出直线AB 的解析式为:7y x =+,点P 是抛物线上位于直线AB 下方的点,点P 的横坐标满足27x ax bx c +>++,由27x ax bx c +=++的两根为x 1=-2,x 2=5,不等式的解集是25x -<<,点P 的横坐标m 的取值范围即可求出.【详解】解:直线AB 与抛物线2y ax bx c =++(0a >)相交于()2,5A -,()5,12B 两点,设直线AB 的解析式为:y kx b =+,由直线过A 、B 代入解析式得25512k b k b -+=⎧⎨+=⎩,解得17k b =⎧⎨=⎩,直线AB 的解析式为:7y x =+,点P 是抛物线上位于直线AB 下方的点,点P 的横坐标满足27x ax bx c +>++,由27x ax bx c +=++的两根为x 1=-2,x 2=5,不等式的解集是25x -<<.∴点P 的横坐标m 的取值范围是25m -<<.故答案为:25m -<<.【点睛】本题考查直线解析式的求法,方程的解,利用图像解不等式,掌握直线解析式的求法,方程的解,利用图像解不等式,根据点P 的位置构造不等式27x ax bx c +>++是解题关键.15.4【分析】如图,连接AC ,CD ,过点C 作CE ⊥AB 于E .设AD =DB =2a .想办法用a 表示BC 即可解决问题.【详解】解:如图,连接AC ,CD ,过点C 作CE ⊥AB 于E .∵D 为AB 的中点,设AD =DB =2a∵∠ABC =∠CBD ,∴ AC CD=,∴CA =CD ,∵CE ⊥AD ,∴AE =ED =a ,∴BE =DE +DB =3a ,∵2tan 3∠==C EC EB AB ,∴EC =2a ,∴BC =,∴44BC AB a ==,【点睛】本题考查圆周角定理,圆心角、弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.842b c -<+<【分析】根据题意,先把抛物线的一次项系数和常数项用含,m n 的式子表示出来,从而表示出点P 的坐标,再利用两点间的距离求出MN 的长,和点P 到MN 的距离,即可求出三角形的面积;再根据点M ,N 在矩形内部求出,m n 的范围,进而可求b c +的范围【详解】点M 和点N 的纵坐标均为n 可知,M 与N 关于对称轴对称,点M (m 、n )点N (4m +、n )∴MN 的距离为:44m m +-=∴点P 的横坐标为:2m + 抛物线2y x bx c =++的对称轴为:2bx =-22b m ∴-=+24b m ∴=--将点M (m 、n )代入2y x bxc =++得:2m bm c n ++=,则24c m m n =++①,点P 为抛物线的顶点,则点P 的纵坐标为:22244416164444ac b c m m c m m a ----==---,将①式代入得P 点的坐标为(2m +、4n -)∴点P 到MN 的距离为:()44n n --=14482PMN S ∴=⨯⨯=△2224424b c m m m n m m n +=--+++=++- ②点M 在矩形的内部,045m m >⎧∴⎨+<⎩01m ∴<< 点N 在矩形的内部03n ∴<<代入②式有:42b c -<+<故答案为:①8;②42b c -<+<【点睛】本题考查了二次函数的性质以及二次函数图像上点的特征,解题关键是用含,m n 式子表示出点P 的坐标,结合题意求出,m n 的范围17.74【分析】分别把各角的三角函数值代入原式,再由二次根式混合运算的法则进行计算即可.【详解】解:原式22122⎛=⨯- ⎝⎭,314+,74=.【点睛】本题考查了特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.18.(1)20,80;(2)58.【分析】(1)若两次都转向“10元”,该顾客最少可得20元购物券,若两次都转向“40元”,最多可得80元购物券.(2)画树状图或列表即可求得所有等可能的结果与该顾客所获购物券金额不低于50元的情况,然后利用概率公式求解即可求得答案.【详解】解:(1)画树状图得:则该顾客最少可得20元购物券,最多可得80元购物券;故答案为:20,80;(2)画树状图得:∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况,∴该顾客所获购物券金额不低于50元的概率为:105168=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(1)34,157;(2)见解析【分析】(1)由//AB CD ,可证AOC BOD ∆∆∽,由性质知34AO CO AC BO DO BD ===,由勾股定理求出22345CD =+=,利用比例即可求出CO 的长;(2)从A 向左取两个格为E ,过B 向右取三个格为F ,连结EF 交AB 与点M ,构造相似,利用相似比即可求出M 满足条件.【详解】解:(1)由图知:3AC =,4BD =,∵//AB CD ,∴A B∠=∠,C D∠=∠.∴AOC BOD∆∆∽,∴34 AO CO ACBO DO BD===,∵5 CD=,∴31577 CO CD==,(2)从A向左取两个格为E,过B向右取三个格为F,连结EF交AB与点M,∵AE∥BF,∴∠A=∠B,∠E=∠F,∴△AEM∽△BFM,∴AE AM2== BF BM3,如图,点M是所求作的点.【点睛】本题考查网格作图问题,与平行线性质,相似三角形的判定与性质,掌握网格作图经常利用相似或全等解决问题.20.(1)轮船M到海岸线l的距离为200米;(2)该轮船能行至码头海岸AB靠岸【分析】(1)过点M作MD⊥AC交AC的延长线于D,设DM=x,解直角三角形即可得到结论;(2)作∠DMF=22°,交l于点F.解直角三角形即可得到结论.【详解】解:(1)过点M作MD⊥AC交AC的延长线于D,设DM=x,∵在Rt △CDM 中,CD=DM•tan ∠CMD=x•tan37°,又∵在Rt △ADM 中,∠MAC=45°,∴AD=DM ,∵AD=AC+CD=50+x•tan37°,∴50+x•tan37°=x ,∴50502001tan 3710.75x ︒=≈=--,答:轮船M 到海岸线l 的距离约为200米;(2)作∠DMF=22°,交l 于点F ,在Rt △DMF 中,DF=DM•tan ∠FMD=DM•tan22°≈200×0.40=80(米),∴AF=AC+CD+DF=DM+DF≈200+80=280<300,所以该轮船能行至码头AB 靠岸.【点睛】本题考查了解直角三角形的应用-方向角问题,读懂题目信息并作出辅助线构造成直角三角形是解题的关键.21.(1)见解析;(2)23π【分析】(1)连接OD ,由等腰三角形的性质得到,∠A =∠C,∠ODC =∠C ,∠A =∠ODC,可得OD ∥AB,根据平行线的性质得到OD ⊥DE ,于是得到DE 是⊙O 的切线;(2)根据等腰三角形的性质得到AD =CD ,根据直角三角形的性质得到∠ADE =30°,求得∠A =60°,然后根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)连结OD ,∵OD OC =,∴∠=∠C ODC .∵AB BC =,∴C A ∠=∠.∴A ODC ∠=∠.∴OD ∥AB .∵DE AB ⊥,∴DE OD ⊥,而OD 是圆O 的半径,∴DE 是O 的切线.(2)连结BD ,∵BD ⊥AC ,AB =BC ,∴AD =CD ,∵AC =4AE ,∴AD =2AE ,∵∠AED =90°,∴∠ADE =30°,∴∠A =60°,∴∠ABD =∠CBD =30°,∴∠COD =60°,AD =CD =12AB =2,BD =2AB =∴2602112360223S BD CD ππ⨯⨯=-⨯⨯⋅=-阴影【点睛】本题考查了切线的判定和性质,等腰三角形的性质,直角三角形的性质,扇形面积的计算,正确的作出辅助线是解题的关键.22.(1)y=2x 2-5;(2)2.25m.【分析】(1)把点A (2,3),点B (-1,-3)代入y=ax 2+c ,解方程组即可得到结论;(2)先求出顶点坐标,然后设抛物线的解析式为y=a (x-1)2+3(0≤x≤3),将(3,0)代入求得a 值,则x=0时得的y 值即为水管的长.【详解】解:(1)把点A (2,3),点B (-1,-3)代入y=ax 2+c 得,433a c a c +=⎧⎨+=-⎩,解得:25a c =⎧⎨=-⎩,∴该抛物线的解析式为:y=2x 2-5;(2)∵在距池中心的水平距离为1m 时达到最高,高度为3m ,∴抛物线的顶点坐标为(1,3),∴设抛物线的解析式为:y=a (x-1)2+3(0≤x≤3),代入(3,0)求得:a=-.将a 值代入得到抛物线的解析式为:y=34-(x-1)2+3(0≤x≤3),令x=0,则y=94=2.25.故水管长为2.25m ;【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.23.(1)45︒或90︒;(2)见解析;(3)图见解析,15DBC ∠=︒或75︒.【分析】(1)分2种情况进行讨论:AB ∥DE 、BC ∥DE ,分别画出图形,计算出度数即可;(2)根据等腰直角三角形的性质得出2AC AE AB AD ==,∠BAC=∠DAE=45°,即可得出∠BAD=∠CAE ,从而证得△ABD ∽△ACE ;(3)由(2)可知,△ABD ∽△ACE ,得到∠ABD=∠ACE=90°,根据AB=2AD 得出∠ACE=30°,即可得出∠DBC=15°或75°.【详解】解:(1)当△ADE 中的DE 边旋转到与△ABC 的某条边平行时,旋转角α的度数是45°,90°.①当AB ∥DE 时,α=45°;②当DE ∥BC 时,α=90°;∴旋转角α的所有可能的度数为45°,90°.故答案为45°,90°;(2)∵△ABC 和△ADE 均是等腰直角三角形,其中∠ACB=∠AED=90°.∴22AC AE AB AD ==,∠BAC=∠DAE=45°,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE ,∴△ABD ∽△ACE ;(3)如图,由BAD CAE ∆∆∽得,ABD ACE ∠=∠,2ACABAE AD ==.在Rt ACE ∆中,90AEC ∠=︒,2AC AE =,∴30ACE ∠=︒,∴30ABD ACE ∠=∠=︒.∴453015DBC ∠=︒-︒=︒.如图,在BAD CAE ∆∆∽得,ABD ACE ∠=∠,2AC AB AE AD==.在Rt ACE ∆中,90AEC ∠=︒,2AC AE =,∴30ACE ∠=︒,∴30ABD ACE ∠=∠=︒.∴453075DBC ∠=+=︒︒︒.∴15DBC ∠=︒或75︒.【点睛】本题考查了作图-旋转变换,等腰直角三角形的性质,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.24.(1)108A ∠=︒;(2)见解析;(3)①见解析;②22421x y x -=-【分析】(1)利用“差倍角三角形”的意义,建立方程求解,即可得出结论;(2)先判断出∠C=∠BAD ,进而判断出∠CAD=∠ADC ,即可得出结论;(3)①先判断出∠CAD=∠ABE ,进而得出AC ∥DE ,即可得出结论;②先判断出△ABF ∽△EBA ,得出BE=x 2进而得出CD=x 2-1,AE=x 2-1,AF=21x x-,再判断出221-x x ,即可得出结论【详解】解:(1)设等腰三角形的顶角∠A 为2x ,则等腰三角形的底角为90°-x ,∵等腰△ABC 是“差倍角三角形”,∴90°-x-2x=2×2x ,∠A=2x=108°,∴顶角∠A 的度数为108°;(2)∵3AB =,1BD =,9BC =,∴ABBDBC AB =.又∵B B ∠=∠,∴BAD BCA ∆∆∽.∴BAD C ∠=∠.设BAD C α∠=∠=.∵8CA CD ==,∴1902DAC ADC α∠=∠=︒-.∴3902B α︒∠=-,1902BAC α∠=︒+.∴2BAC B C ∠-∠=∠.∴ABC ∆是差倍角三角形.(3)①证明:连结CE ,∵»»BC DE =,∴ECD BEC ∠=∠,∴BE CD ∥.∵ AB BC DE ==,∴AEB BAC DAE ∠=∠=∠.∵ABE ∆是关于AEB ∠的差倍角三角形,∴2FAG BAE BAC DAE BAE AEB ABE ∠=∠-∠-∠=∠-∠=∠.∴FAG ABE ADE ∠=∠=∠.∴//AC DE .∴四边形CDEF 是平行四边形②∵∠BAF=∠AEB ,∠ABF=∠EBA ,∴△ABF ∽△EBA ,∴ABBF AFBE AB AE ==,∴2221AB x BE x BF ===,∴EF=BE-BF=x 2-1,∵四边形CDEF 是平行四边形,∴CD=EF=x 2-1,∵ AE CD =,∴AE=CD=x 2-1,∴222(1)1AB AE x x x AF BE x x ⋅--===,过点B 作BM ⊥AC 于M ,EN ⊥AC 于N,∴BM ∥EN ,∴△BFM ∽△EFN ,∴211BM BF EN EF x ==-,∴211BM ENx =-过点G 作GH ⊥AE 于H ,∵∠BAC=ACB=∠AEG=∠EAG ,∴△ABC ∽△AGE ,∴BM ACGH AE =,∴22222112111(1)EN x x x x GH GH x x x ---===--,∴221EN x GH x -=,∴22222221421112CDEFAEGS DE EN DE EN x x xyS AE GH x x xAE GH∆⋅--===⋅=⋅=--⋅四边形.【点睛】此题是圆的综合题,主要考查了相似三角形的判定和性质,圆周角定理,新定义,平行四边形的判定和性质,构造出相似三角形判断出221EN xGH x-=是解本题的关键.。

人教版九年级上册数学期末考试试题含答案

人教版九年级上册数学期末考试试题含答案

人教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列手机手势解锁图案中,是中心对称图形的是()A .B .C .D .2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件3.下列方程中,是一元二次方程的是()A .x +1x=0B .ax 2+bx +c =0C .x 2+1=0D .x ﹣y ﹣1=04.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.抛物线y=(x+2)2-3的对称轴是()A .直线x =2B .直线x=-2C .直线x=-3D .直线x=36.关于反比例函数y =﹣4x的图象,下列说法正确的是()A .经过点(﹣1,﹣4)B .图象是轴对称图形,但不是中心对称图形C .无论x 取何值时,y 随x 的增大而增大D .点(12,﹣8)在该函数的图象上7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°8.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣19.如图,直线y=2x与双曲线2yx在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A.①②B.①②③C.①②④D.②③④二、填空题11.点P(4,﹣6)关于原点对称的点的坐标是_____.12.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.13.已知正六边形的边长为10,那么它的外接圆的半径为_____.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=6x(x>0)和y=﹣8x(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则BB'的长为_____.三、解答题17.解方程:x2﹣4x﹣12=0.18.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.19.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖.(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.20.如图,破残的圆形轮片上,弦AB的垂直平分线交 AB于点C,交弦AB于点D.已知CD=c m.12AB=cm,4(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.21.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.22.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.23.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.24.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.已知抛物线y=1x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.2(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.参考答案1.B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.4.B【分析】常数项移到方程左边,两边都加上一次项系数一半的平方,最后再把左边写成完全平方式,右边化简即可.【详解】解:∵x2-2x-5=0∴x 2-2x=5∴x 2-2x+1=5+1∴()216x -=.故答案为:B .【点睛】本题考查用配方法解一元二次方程.其关键是化二次项系数为1,算准一项系数一半的平方及用准完全平方公式.当一项系数为负时,用完全平方差公式;当一项系数为正时,用完全平方和公式5.B 【详解】试题解析:在抛物线顶点式方程2()y a x h k =-+中,抛物线的对称轴方程为x =h ,2(2)3y x =+- ,∴抛物线的对称轴是直线x =-2,故选B.6.D 【分析】反比例函数()0ky k x=≠的图象k 0>时位于第一、三象限,在每个象限内,y 随x 的增大而减小;0k <时位于第二、四象限,在每个象限内,y 随x 的增大而增大;在不同象限内,y 随x 的增大而增大,根据这个性质选择则可.【详解】∵当12x =时,4842y =-=-∴点(12,﹣8)在该函数的图象上正确,故A 、B 、C 错误,不符合题意.故选:D .【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.7.B 【分析】连接OA ,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.8.D 【分析】根据根的判别式(240b ac =-≥△)即可求出答案.【详解】当原方程为一元一次方程时,k=0,此时方程y=-2x-1有实数解当原方程为一元二次方程时,由题意可知:440k +≥△=时,方程有实数解∴1k ≥-故选:D .【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围.9.D 【解析】试题分析:联立直线与反比例解析式得:y 2x{2y x==,消去y 得到:x 2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A (1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D .10.B 【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确是①②③,故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.11.(﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P (4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.12.(0,﹣7)【分析】根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】令0x =,得7y =-,故与y 轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y 轴的交点坐标问题,掌握与y 轴的交点坐标的特点(0x =)是解题的关键.13.10【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为10的正六边形可以分成六个边长为10的正三角形,∴外接圆半径是10,故答案为:10.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.14.5【分析】设共有x 个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:()1102x x -=⨯,把相关数值代入求正数解即可.【详解】设共有x 个飞机场.()1102x x -=⨯,解得15=x ,24x =-(不合题意,舍去),故答案为:5.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15.7【分析】根据反比例函数比例系数k 的几何意义得到S △OQM =4,S △OPM =3,然后利用S △POQ =S △OQM +S △OPM 进行计算.【详解】解:如图,∵直线l ∥x 轴,∴S △OQM =12×|﹣8|=4,S △OPM =12×|6|=3,∴S △POQ =S △OQM +S △OPM =7.故答案为7.考点:反比例函数系数k 的几何意义.16.π【分析】根据图示知45BAB ∠'=︒,所以根据弧长公式180n r l π=求得 'BB 的长.【详解】根据图示知,45BAB ∠'=︒,∴ 'BB 的长为:454180ππ⨯=.故答案为:π.【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17.x 1=6,x 2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:()()620x x -+=,60x =﹣或20x +=,所以1262x x ==-,.18.2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x ,根据该平台2017年及2019年的交易额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x ,根据题意得:()25001720x -=,解得:10.2==20%x ,2 2.2x =-(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.19.(1)25;(2)12【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是25;故答案为:2 5;(2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率31 62 ==所以刚好是一男生一女生的概率为1 2.【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键.20.(1)作图见解析;(2)(1)作图见解析;(2)132 cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=132 cm,故半径为:132 cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.21.(1)75°(2)见解析【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF =90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.22.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.5.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△P AB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=k x,得k=3,∴反比例函数的表达式y=3 x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=5,∴直线AD 的解析式为y =﹣2x +5,令y =0,得x =52,∴点P 坐标(52,0),(3)S △P AB =S △ABD ﹣S △PBD =12×2×2﹣12×2×12=2﹣12=1.5.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23.(1)见解析;(2)见解析;(3)BE =16.【分析】(1)如图,连接OE .欲证明PE 是⊙O 的切线,只需推知OE ⊥PE 即可;(2)由圆周角定理得到90AEB CED ∠=∠=︒,根据“同角的余角相等”推知34∠=∠,结合已知条件证得结论;(3)设EF x =,则2CF x =,由勾股定理可求EF 的长,即可求BE 的长.【详解】(1)如图,连接OE .∵CD 是圆O 的直径,∴90CED ∠=︒.∵OC OE =,∴12∠=∠.又∵PED C ∠=∠,即1PED ∠=∠,∴2PED ∠=∠,∴=2=90PED OED OED ∠+∠∠+∠︒,即90OEP ∠=︒,∴OE EP ⊥,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)∵AB 、CD 为⊙O 的直径,∴==90AEB CED ∠∠︒,∴34∠=∠(同角的余角相等).又∵1PED ∠=∠,∴4PED ∠=∠,即ED 平分∠BEP ;(3)设EF x =,则2CF x =,∵⊙O 的半径为10,∴210OF x =-,在Rt △OEF 中,222OE OF EF +=,即()22210210x x +-=,解得8x =,∴8EF =,∴216BE EF ==.【点睛】本题考查了圆和三角形的几何问题,掌握切线的性质、圆周角定理和勾股定理是解题的关键.24.(1)y =﹣x 2+2x +3;(2)①S =﹣m 2+3m ,1≤m ≤3;②P (32,3);(3)存在,点P 的坐标为(32,3)或(﹣12﹣).【分析】(1)将点B ,C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式,由PD ⊥x 轴且OD m =知P (m ,﹣2m +6),即可用含m 的代数式表示出S ;②在①的情况下,将S 与m 的关系式化为顶点式,由二次函数的图象及性质即可写出点P 的坐标;(3)分情况讨论,如图2﹣1,当90CPD ∠=︒时,推出3PD CO ==,则点P 纵坐标为3,即可写出点P 坐标;如图2﹣2,当90PCD ∠=︒时,证PDC OCD ∠=∠,由锐角三角函数可求出m 的值,即可写出点P 坐标;当90PDC ∠=︒时,不存在点P .【详解】(1)将点B (3,0),C (0,3)代入2y x bx c =-++,得09333b c =-++⎧⎨=⎩,解得23b c ì=ïí=ïî,∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =++=--+-,∴顶点M (1,4),设直线BM 的解析式为y kx b =+,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为=26y x -+,∵PD ⊥x 轴且OD m =,∴P (m ,﹣2m +6),∴()21126322PCD S S PD OD m m m m -++ ====-,即23S m m =-+,∵点P 在线段BM 上,且B (3,0),M (1,4),∴13m ≤≤;②∵2239324S m m m ⎛⎫=-+=--+ ⎪⎝⎭,∵10-<,∴当32m =时,S 取最大值94,∴P (32,3);(3)存在,理由如下:①如图2﹣1,当90CPD ∠=︒时,∵90COD ODP CPD ∠=∠∠=︒=,∴四边形CODP 为矩形,∴3PD CO ==,将3y =代入直线=26y x -+,得32x =,∴P (32,3);②如图2﹣2,当∠PCD =90°时,∵3OC =,OD m =,∴22229CD OC OD m =++=,∵//PD OC ,∴PDC OCD ∠=∠,∴cos PDC cos OCD ∠=∠,∴DC OCPD DC =,∴2DC PD OC = ,∴()29326m m =+-+,解得1 3m -=-(舍去),23m +=-,∴P (3-+12-),③当90PDC ∠=︒时,∵PD ⊥x 轴,∴不存在,综上所述,点P 的坐标为(32,3)或(3-+12-.【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.25.(1)y =12x 2﹣x ﹣4;(2)S =﹣(m ﹣2)2+16,S 的最大值为16;(3)点P 的坐标为:(1,﹣)或(1,﹣1).【分析】(1)根据交点式可求出抛物线的解析式;(2)由S=S △OBC +S △OCD +S △ODA ,即可求解;(3)∠BPC=45°,则BC 对应的圆心角为90°,可作△BCP 的外接圆R ,则∠BRC=90°,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,证明△BMR ≌△RNC (AAS )可求出点R (1,-1),即点R 在函数对称轴上,即可求解.【详解】解:(1)∵抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0),∴抛物线的表达式为:y =12(x ﹣4)(x+2)=12x 2﹣x ﹣4;(2)设点D (m ,12m 2﹣m ﹣4),可求点C 坐标为(0,-4),∴S =S △OBC +S △OCD +S △ODA =211112444[(4)]2222m m m ⨯⨯+⨯+⨯---=﹣(m ﹣2)2+16,当m =2时,S 有最大值为16;(3)∠BPC =45°,则BC 对应的圆心角为90°,如图作圆R ,则∠BRC =90°,圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点R (m ,n ).∵∠BMR+∠MRB =90°,∠MRB+∠CRN =90°,∴∠CRN =∠MBR ,∠BMR =∠RNC =90°,BR =RC ,∴△BMR ≌△RNC (AAS ),∴CN =RM ,RN =BM ,即m+2=n+4,﹣n =m ,解得:m =1,n =﹣1,即点R (1,﹣1),即点R 在函数对称轴上,,则点P的坐标为:(1,﹣)或(1,﹣1).【点睛】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.。

2023_2024学年浙江省杭州市上城区九年级上册期末数学模拟测试卷(附答案)

2023_2024学年浙江省杭州市上城区九年级上册期末数学模拟测试卷(附答案)

2023_2024学年浙江省杭州市上城区九年级上册期末数学模拟测试卷考生须知∶1.本试卷分试题卷和答题卷两部分.满分120分,考试时间100 分钟.2.答题前,请在答题卡指定位置内填写校名,姓名和班级,填涂考生号.3.答题时,所必须做在答题卡标定的位置上,请务必注意试题序号和答题序号相对应.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.一、选择题(本大题共10小题,每小题3分,每小题仅有一个正确选项,共30分)1.若,则的值等于( )2.⊙O的半径为4cm,若点P到圆心的距离为3cm,点P在( )A.圆内B.圆上C.圆外D.无法确定3.二次函数y=x2﹣1的图象与y轴的交点坐标是( )A.(0,1)B.(1,0)C.(﹣1,0)D.(0,﹣1)4.如图,在Rt△ABC中,∠ACB=90°,∠A=26°,以点C为圆心,BC为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为()A.52°B.26°C.64°D.128°4题图5题图5.如图,在ABC中,点D在AB边上,若AD:AB=2:3,BC=3,∠ADC=∠ACB,则线段CD的长为( )A B C D.6.已知抛物线y =ax 2+bx +c (a >0)与直线,无论k 取任何实数,此抛物线()214k y k x =--与直线都只有一个公共点.那么,2a +3b +4c 的值是( )A .0B .1C .2D .37.如图,四边形ABCD 内接于半径为6的⊙O ,BD =6,连AC 交BD 于E ,若E 为AC 3的中点,且,则四边形ABCD 的面积是( )AB =2AEA .B .C .D .63123183938.如图所示,二次函数y =ax 2+bx +c 的图象开口向上,且对称轴在(﹣1,0)的左边,下列结论一定正确的是( )A .abc >0B .2a ﹣b <0C .b 2﹣4ac <0D .a ﹣b +c >﹣19.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:m 3)与旋钮的旋转角度x (单位:度)(0°<x ≤90°)近似满足函数关系y =ax 2+bx +c (a ≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18°B .36°C .41°D .58°10.如图一段抛物线y =x 2﹣3x (0≤x ≤3),记为C 1,它与x 轴于点O 和A 1:将C 1绕旋转180°得到C 2,交x 轴于A 2;将C 2绕旋转180°得到C 3,交x 轴于A 3,如此进行下去,若点P (2020,m )在某段抛物线上,则m 的值为( )A .0B .﹣C .2D .﹣2二、填空题(本大题共6 小题,共 24 分)11.某商场举办抽奖活动,每张奖券获奖的可能性相同,以10000奖券为一个开奖单位,设特等奖10个,一等奖100个,二等奖500个,则1张奖券中奖的概率是________.12.一个球从地面竖直向上弹起时的速度为10m/s ,经过t (s )时球的高度为h (m ).已知物体竖直运动中,(v 0表示物体运动上弹开始时的速度,g 表示重力系数,取2012h v t gt =-g =10m/s 2).则球从弹起至回到地面的过程中,前后两次高度达到3.75m 的时间间隔为____s .13 如图,四边形ABCD 内接于⊙O ,连结AC ,BD ,若,∠CAD=50°,则∠ABD 等于 度。

人教版九年级上册数学期末考试试卷及答案

人教版九年级上册数学期末考试试卷及答案

人教版九年级上册数学期末考试试题一、单选题1.下列方程是关于x 的一元二次方程的是()A .2120x x +-=B .226x x =C .230x +=D .220x y -=2.点P (2,﹣1)关于原点对称的点P′的坐标是()A .(﹣2,1)B .(﹣2,﹣1)C .(﹣1,2)D .(1,﹣2)3.下列方程没有实数根的是()A .x 2﹣x ﹣1=0B .x 2﹣6x+5=0C .x 2﹣=0D .x 2+2x+2=04.不透明袋子中有1个红球和2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,恰好是红球的概率为()A .13B .12C .23D .15.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的侧面积是()A .260cm πB .265cm πC .2120cm πD .2130cm π6.将抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A .y =2x 2+1B .y =2x 2﹣3C .y =2(x ﹣8)2+1D .y =2(x ﹣8)2﹣37.如图,将△AOB 绕着点O 顺时针旋转,得△COD ,若∠AOB=45°,∠AOD=110°,则旋转角度数是()A .45°B .55°C .65°D .110°8.目前某电影票房已突破57亿元.第一天票房约4.1亿元,三天后票房累计总收入达8.22亿元,如果第二天,第三天票房收入按相同的增长率增长,增长率设为x .则可列方程为A .4.1(1+x )=8.22B .4.1(1+x )2=8.22C .4.1+4.1(1+x )2=8.22D .4.1+4.1(1+x )+4.1(1+x )2=8.229.关于抛物线22y x x =-++,下列结论:①抛物线开口向下;②当x >1时,y 随x 的增大而减小;③抛物线的对称轴是直线12x =;④函数22y x x =-++的最大值为2.其中正确的结论个数为()A .1个B .2个C .3个D .4个10.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是()A .50°B .60°C .80°D .100°二、填空题11.如果一元二次方程x 2﹣9=0的两根分别是a ,b ,且a >b ,那么a 的值是___.12.如图,在⊙O 中,点A ,B ,C 是⊙O 上的点,∠AOB=40°,则∠C 的度数为_____.13.在平面直角坐标系中,点()3,1A -绕原点逆时针旋转90︒得到的点A '的坐标是______.14.边长为2的正六边形的面积为_____________.15.在一个不透明的盒子中,装有除颜色不同外其余均相同的6个小球,进行摸球实验,实验数据如下表,则可估计盒子中红球有_________个.摸球的次数50100150摸到红球的次数20334716.在平面直角坐标系xoy 中,矩形四个顶点坐标分别为(1,1),(1,2),(3,1),(3,2),若抛物2y ax =的图象与矩形的边有公共点,则实数a 的取值范围是____________.17.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E.如果∠B =60°,AC =6,那么CD 的长为______.18.如图,在平面直角坐标系中,点A和B的坐标分别为(2,0),(0,-4),若将线段AB 绕点A顺时针旋转90°得到线段AC,则点C的坐标为______.三、解答题19.解方程:(1)x2+2x﹣24=0(2)2x2﹣4x﹣3=020.已知关于x的一元二次方程2++-=,求证:不论m为什么实数,这个方x mx m2210程总有两个不相等实数根.21.如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣4,1),B(﹣2,2),C(﹣3,4)(每个方格的边长均为1个单位长度).(1)将△ABC平移,使点B移动到点B1,请画出△A1B1C1;(2)作出△ABC 关于O 点成中心对称的△A 2B 2C 2,并直接写出A 2,B 2,C 2的坐标;(3)△A 1B 1C 1与△A 2B 2C 2是否成中心对称?若是,请直接写出称中心的坐标;若不是,请说明理由.22.如图,已知抛物线()21y x m x m =+-+的对称轴为1x =,请你解答下列问题:(1)求m 的值;(2)求出抛物线与x 轴的交点;(3)当y 随x 的增大而减小时x 的取值范围是____________;(4)当0y <时,x 的取值范围是____________23.如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 是AB 延长线上一点,∠BCD =∠A ,CA =CD.(1)求证:CD 是⊙O 的切线;(2)若BD=2,求图中阴影部分面积.24.某劳动保护商店出售冬季劳动保护套装,进货价为30元/套.经市场销售发现:售价为40元/套时,每周可以售出100套,若每套涨价2元,就会少售出4套.供货厂家规定市场售价不得低于40元/套,且商店每周销售数量不得少于70套.(1)确定商店每周销售这种套装所得的利润w (元)与售价x (元/套)之间的函数关系式;(2)当售价x (元/套)定为多少时,商店每周销售这种套装所得的利润w (元)最大?最大利润是多少?25.如图,抛物线:y =ax 2+bx+c 与x 轴交于A (1,0)、B (-3,0)两点,与y 轴交于点C (0,-2).(1)求抛物线的解析式;(2)动点P 在抛物线:y =ax 2+bx+c 上移动,点Q 在直线l :x =﹣4上移动,在运动过程中,是否存在△PAQ 是以点P 为直角顶点的等腰直角三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.26.如图,AB 是⊙O 的直径,AP 是⊙O 的切线,点A 为切点,BP 与⊙O 交于点C ,点D 是AP 的中点,连结CD .(1)求证:CD 是⊙O 的切线;(2)若2AB =,030P ∠=,求阴影部分的面积.27.如图,已知D 为等边△ABC 内一点,将△DBC 绕点C 旋转成△EAC .试判断△CDE 的形状,并证明你的结论.参考答案1.B2.A3.D4.A5.B6.A7.C8.D9.C10.D11.3【分析】用直接开平方法解方程即可.【详解】解:解方程290x -=,移项得:29x =,解得:13x =,23x =-因为a >b ,所以a =3,故答案为:3.12.20°【分析】根据圆周角定理即可直接求解.【详解】解:∵∠AOB =40°,∠C 12=∠AOB ,∴∠C 12=⨯40°=20°.故答案为:20°.13.(-1,-3)【分析】根据题意画出图形解决问题即可.【详解】解:如图,A′(-1,-3).故答案为(-1,-3).14.63【分析】根据题意画出图形,由正六边形的特点求出∠AOB 的度数及OG 的长,再由△OAB 的面积即可求解.【详解】解:∵此多边形为正六边形,∴∠AOB 3606︒==60°;∵OA =OB ,∴△OAB 是等边三角形,∴OA =AB =2,∴OG =32233=∴S △OAB 12=⨯AB×OG 12=⨯233⨯=∴S 六边形=6S △OAB =63⨯=3故答案为:315.2【分析】用球的总个数乘以摸到红球的总次数占摸球的总次数即可.【详解】解:估计盒子中的红球有:2033476215010050++⨯=++(个),故答案为:2.16.12 9a≤≤【分析】根据a值对抛物线开口的作用进行判断即可.【详解】解:根据题意得:抛物线过点(1,2)时开口最小,过点(3,1)时,开口最大.当抛物线过点(1,2)时,2=a×1,解得:a=2.当抛物线过点(3,1)时,1=9a,解得:19 a=,∴实数a的取值范围是12 9a≤≤.故答案为:12 9a≤≤17.6【分析】由AB是⊙O的直径,根据由垂径定理得出AD=AC,进而利用等边三角形的判定和性质求得答案.【详解】解:连接AD,∵⊙O的直径AB垂直于弦CD,垂足为E,∴AD=AC,∵∠B=60°,∴△ACD是等边三角形,∵AC=6,∴CD=AC=6.故答案为:6.18.(−2,2)【详解】解:如图,过点C作CH⊥x轴于H.∵A(2,0),B(0,4),∴OA=2,OB=4,∵∠AHC =∠AOB =∠BCA =90°,∴∠CAH +∠BAO =90°,∠ABO +∠BAO =90°,∴∠CAH =∠ABO ,在△AOB 和△CHA 中,AHC AOBCAH ABO AC AB∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOB ≌△CHA (AAS ),∴CH =OA =2,AH =OB =4,∴OH =AH−OA =2,∴C (−2,2).故答案为:(−2,2).19.(1)x 1=4,x 2=-6(2)1x ,22102x =【分析】(1)解:∵x 2+2x ﹣24=0.∴(x ﹣4)(x+6)=0,则x ﹣4=0或x+6=0,解得:x 1=4,x 2=﹣6;(2)∵2x 2﹣4x ﹣3=0,∴2x 2﹣4x =3,则2322x x -=,∴25212x x -+=,∴25(1)2x -=,则12x -=±,∴122x =,222x =.20.见解析【详解】证明:△=()()()222242421488414b ac m m m m m -=-⨯⨯-=-+=-+,∵24(1)0m -≥,∴()24140m -+>,即△>0,∴不论m 为什么实数,这个方程总有两个不相等的实数根.21.(1)见解析(2)见解析,(4,-1),(2,-2),(3,-4);(3)是,对称中心T 的坐标为(3,12).【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;(2)利用中心对称变换的性质分别作出A ,B ,C 的对应点A 2,B 2,C 2即可;(3)根据中心对称变换的性质判断即可.(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求,点A 2,B 2,C 2的坐标分别为(4,-1),(2,-2),(3,-4);(3)△A 1B 1C 1与△A 2B 2C 2是成中心对称图形,如图,对称中心T 的坐标为(3,12).22.(1)-1(2)抛物线与x轴交点坐标为(10),(10)(3)1x <(4)11x <<【分析】(1)利用抛物线的对称轴方程求得m 的值即可;(2)令y=0,然后解方程x 2-2x-1=0得抛物线与x 轴的交点;(3)根据二次函数的性质求解;(4)结合函数图象,写出抛物线在x 轴下方所对应的自变量的范围即可.(1)解:∵抛物线的对称轴为直线112m x -=-=,∴1m =-.(2)由1m =-得抛物线解析式为221y x x =--,令0y =,得2210x x --=,解得:11x =+,21x =-.∴抛物线与x 轴交点坐标为(1+0),(10).(3)如图所示,当y 随x 的增大而减小时x 的取值范围是x <1,故答案是:x <1.(4)如图所示,∵抛物线与x 轴交点坐标为(10),,0),抛物线开口向上,∴当y<0时,x 的取值范围是抛物线与x 轴交点坐标为(10),0).∴当0y <时,x 的取值范围是:故答案是:.23.(1)见解析(2)23S π=-阴影【分析】(1)根据切线的判断方法,利用等腰三角形的性质以及圆周角定理求出∠OCD =90°即可;(2)求出三角形OCD 的面积和扇形BOC 的面积即可.(1)证明:连接OC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∵AO =OC ,∴∠A =∠ACO ,又∵∠BCD =∠A ,∴∠OCD =∠OCB+∠BCD =∠OCB+∠ACO =∠ACB =90°,∴OC ⊥CD ,∵OC 是⊙O 半径,∴CD 是⊙O 的切线;(2)连接OC ,设∠D =x ,∵CA =CD ,∴∠A =∠D =x ,∵∠BCD =∠A ,∴∠BCD =∠D =x ,∴CB =BD ,∠OCB =∠BCD+∠D =x+x =2x .∵OC =OB ,∴∠OBC =∠OCB =2x .由(1)可得CD 是⊙O 的切线,OC 是⊙O 半径,∴∠OCD =90°,∵∠OCD =∠OBC+∠BCD =2x+x =3x ,∴3x =90°,即x =30°∴∠OBC =∠OCB =2x =60°,∴∠COB =180°﹣∠OCB ﹣∠OBC =180°﹣60°﹣60°=60°,∴∠COB =∠OBC ,∴OB =BC =BD =2.∴OC =OB =2,OD =OB+BD =2+2=4.在Rt △OCD 中,CD 2=OD 2﹣OC 2,∴CD ==,∴2260223603603COB n R S πππ⨯===扇形,11222OCD S OC CD =⋅=⨯⨯= 23OCD OCB S S S π=-=- 阴影扇形.24.(1)()222405400,4055w x x x =-+-≤≤(2)当售价x (元/套)定为55元/套时,商店每周销售这种套装所得的利润w (元)最大,最大利润是1750元【分析】(1)先求出售价为x 元/套时的销售量,再根据利润=(售价-进价)⨯销售量即可得,解不等式组求出x 的取值范围,;(2)先根据供货厂家规定市场售价不得低于40元/套,且商店每周的销售数量不得少于70套建立不等式组,再利用二次函数的性质求解即可得.(1)解:由题意得:当售价为x 元/套时,销售量为4100(40)18022x x --=-套,则2(30)(1802)22405400w x x x x =--=-+-,即w 与x 之间的函数关系式为222405400w x x =-+-.由题意得:40180270x x ≥⎧⎨-≥⎩,解得4055x ≤≤,即ω与x 之间的函数关系式为()222405400,4055w x x x =-+-≤≤(2)解:因为22224054002(60)1800w x x x =-+-=--+,所以在4055x ≤≤内,w 随x 的增大而增大,所以当55x =时,w 取得最大值,最大值为22(5560)18001750-⨯-+=,答:当售价x (元/套)定为55元/套时,商店每周销售这种套装所得的利润w (元)最大,最大利润是1750元.25.(1)224233y x x =+-(2)符合条件的点P ),,(-2,-2),(32-,52-)【分析】(1)先由点C 得到c 的值,然后代入点A 和点B 求得a 和b 的值,即可得到抛物线的解析式;(2)分情况讨论,①点P 在x 轴下方抛物线上时,过点P 作MN ∥x 轴,交直线l 于点M ,过点A 作AN ⊥MN 于点N ,则由△APQ 是等腰直角三角形证明△ANP ≌△PMQ ,进而利用全等三角形的性质得到点P 的坐标;②当点P 在x 轴上方且在对称轴右侧抛物线上时,过点P 作M'N'⊥x 轴于点N',过点Q 作QM'⊥M'N'于点M',然后证明△QM'P ≌△PN'A ,进而由全等三角形的性质得到点P 的坐标;③当点P 在x 轴上方且在对称轴左侧抛物线上时,过点P 作MN ⊥l 于点M ,过点A 作AN ⊥MN 于点N ,然后证明△QMP ≌△PNA ,进而由全等三角形的性质得到点P 的坐标.(1)∵抛物线y =ax 2+bx+c 过点C (0,-2)∴当x =0,2y =-时,c =-2.又∵抛物线y =ax 2+bx+c 过点A (1,0),B (-3,0)∴209320a b a b +-=⎧⎨--=⎩,∴2343a b ⎧=⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为:224233y x x =+-;(2)设P (m ,224233m m +-),Q (-4,n ),①当P 点在x 轴上方移动时,过P 点作PM 垂直于直线l 于点M ,过A 点作AN 垂直于MP 的延长线于点N ,如图1所示:∵A (1,0),∵△PAQ 是以点P 为直角顶点的等腰直角三角形,∴∠APQ =90°,AP =PQ ,则∠PMQ =∠ANP =90°,∠MPQ =∠NAP ,在△PQM 和△APN 中,PMQ ANP MPQ NAP PQ AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△APN ,∴PM =AN ,∵PM =AN =224233m m +-,根据A 点坐标可得PN =1-m ,且PM+PN =1-(-4)=5,∴224233m m +-+1-m =5,解得:1m (舍),2m∴P 154).当P 点在x 轴上方移动时,过P 点作PM 垂直于直线l 于点M ,过A 点作AN 垂直于MP 的延长线于点N ,如图2所示:同理可得△PQM ≌△APN ,∵PM =AN =224233m m +-,根据A 点坐标可得PN =m -1,∴224233m m +-=5+m -1,解得:1m =-14,2m =14-(舍),∴P ,154).②当P 点在x 轴下方移动时,如图3,过P 点作PM 垂直于直线l 于点M ,过A 点作AN 垂直于MP 的延长线于点N ,同理可得△PQM ≌△APN ,∴PM =AN ,∴PM =()44m m --=+,AN =-(224233m m +-),则4+m =-(224233m m +-),解得12m =-,232m =-.∴P (-2,-2)或(32-,52-).综上可得,符合条件的点P 的坐标是(-11454,151454),(11454-,151454),(-2,-2),(32-,52-).26.(1)见解析;(2)=33S π阴影.【分析】(1)连结OC ,AC ,由切线性质知Rt △ACP 中DC=DA ,即∠DAC=∠DCA ,再结合∠OAC=∠OCA 知∠OCD=∠OCA+∠DCA=∠OAC+∠DAC=90°,据此即可得证;(2)先求出OA=1,BP=2AB=4,AD =12223BP AB -=再根据S 阴影=S 四边形OADC -S 扇形AOC即可得.【详解】(1)连结,OC AC ,如图所示:∵AB 是⊙O 的直径,AP 是切线,∴090BAP ∠=,090ACP ∠=,∵点D 是AP 的中点,∴12DC AP DA ==,∴DAC DCA ∠=∠,又∵OA OC =,∴OAC OCA ∠=∠,∴090OCD OCA DCA OAC DAC ∠=∠+∠=∠+∠=,即OC CD ⊥,∴CD 是⊙O 的切线;(2)∵在Rt ABP ∆中,030P ∠=,∴060B ∠=,∴0120AOC ∠=,∴1OA =,24BP AB ==,AD ==∴21201=13603OADC AOC S S S ππ⨯⨯-=--阴影四边形扇形.27.△CDE 为等边三角形,证明见解析【分析】根据旋转的性质可得∠ACE =∠BCD ,CD =CE ,从而得到∠ACB =∠DCE =60°,,即可求解.【详解】解:△CDE 为等边三角形,证明如下∶∵△EAC 是由△DBC 绕点C 旋转而成,∴∠ACE =∠BCD ,CD =CE ,∴∠DCE =∠BCA ,∵△ABC 为等边三角形,∴∠ACB =∠DCE =60°,∵CE =CD ,∴∠CED =∠CDE =60°,∴△CDE 为等边三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册数学试卷
九年级上册数学试卷
一、选择题(每小题3分,共30分)
在每小题的括号内选出一个能够完成或解答题目要求的正确答案。

1. 下列选项中,哪一个是一个正整数?
A. -5
B. 0
C. 2/3
D. √9
2. 在下列几个数中,不能化成小数的是:
A. 1/4
B. 2/5
C. 1/3
D. 1/7
3. 下列哪个数与-9/7相等?
A. -9/7
B. 9/7
C. 1/7
D. 7/9
4. 对于数a与b来说,下列哪个式子是成立的?
A. a + b = b + a
B. a - b = b - a
C. a × b =
b × a D. a ÷ b = b ÷ a
5. 根号2与根号3的大小关系是:
A. 根号2 < 根号3
B. 根号2 > 根号3
C. 根号2 = 根号3
D. 无法比较
6. 一个圆的直径是10厘米,那么它的半径是:
A. 10厘米
B. 15厘米
C. 5厘米
D. 20厘米
7. 一辆车以每小时80千米的速度行驶,那么这辆车行驶了多少千米,才用时2小时?
A. 160千米
B. 40千米
C. 80千米
D. 120千米
8. 一块矩形地面的长为8米,宽为5米,那么它的面积
是多少平方米?
A. 40平方米
B. 13平方米
C. 45平方米
D.
64平方米
9. 如果一辆车每小时行驶75千米,那么它在3小时内
行驶了多少千米?
A. 225千米
B. 75千米
C. 150千米
D. 325千米
10. 若三角形的三边长分别为7厘米、8厘米和9厘米,那么这个三角形周长为多少厘米?
A. 24厘米
B. 22厘米
C. 21厘米
D.
25厘米
二、填空题(每小题4分,共40分)
根据题目的要求,将答案填入括号内。

11. 3 × 4 + 7 ________ ( )
12. 半径为5厘米的圆的面积是________平方厘米
( )
13. 三角形有________个角 ( )
14. 在数轴上右移两个单位的点的坐标是________ ( )
15. 右边的等式中,x应该取________ ( )
三、解答题(每小题10分,共40分)
根据题目的要求,写出完整的解答步骤和答案。

16. 某商场举办了一次打折促销活动,某件商品原价为120元,打了8折,问打完折后的价格是多少元?
17. 计算:(6 + 3) × 4 - 5 ÷ 5
18. 小波在8000米的比赛中跑了5圈,每圈的距离相同。

如果小波每圈用时12分钟,那么他用时多少小时?
19. 若三角形的两个边长分别是5厘米和8厘米,且它们的夹角为90度,那么请计算出这个三角形的面积。

四、应用题(每小题20分,共60分)
根据题目的要求,利用所学的数学知识进行解答。

20. 某次数学竞赛中,五位参赛选手分别得了94分、86分、98分、90分和92分,这五位选手的平均成绩是多少?
21. 甲、乙、丙三个人一起做家务。

甲一个小时能做1/3的家务,乙一个小时能做1/4的家务,丙一个小时能做1/6的家务。

如果三个人一起做4小时,那么他们能完成多少家务?
22. 解决方程:5x - 8 = 2x + 7
23. 解决问题:一个矩形的长比宽多3米,如果它的面积是60平方米,那么它的长和宽各是多少米?
根据以上试题,完成你的考卷。

祝你好运!。

相关文档
最新文档