全等三角形的应用课件
12-1 全等三角形 课件(共26张PPT)

知识梳理
例题 1:如图所示,△ ≌△ ,指出所有的对应边和对应角.
AB与DC,AC与DB,BC与CB是对应边;
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
【结论】本题考查了全等三角形的性质及
比较角的大小,解题的关键是找到两全等
三角形的对应角、对应边.
80°
.
知识梳理
例题4:如图,将长方形ABCD沿AE折叠,使D点落在BC边上的F点处,
如果∠BAF = 60°,那么∠DAE= 15°
角
例题5:如图,△ ABC ≌△ ADE,则AB = AD ,∠E =
知识梳理
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合
的边叫做对应边,重合的角叫做对应角。例如,图中的△ 和△
全等,记作△ ≌ ,其中点和点,点和点,点
和点是对应顶点;和,和,和是对应边;∠和
∠,∠和∠,∠和∠是对应角.
∠BAE = 130°,∠BAD = 50°,则∠BAC=
。
80°
∠C
,若
知识梳理
例题6:如图,已知△ ABC ≌△ EBF,AB ⊥ CE,ED ⊥ AC,∠A = 24°,
则:(1)AB =
EB ,BC = BF ,∠C = 66 °,∠EFB = 66 °;
(2)若AB = 5cm,BC = 3cm,则AF = 2cm 。
AB和DC是对应边,它们所对的∠ACB和∠DBC是对应
角,余下的一对边和一对角分别是对应边和对应角.
(2)根据书写规范可知点A和点D,点B和点C,点C
全等三角形课件ppt

与三角函数的关系
三角函数是研究三角形边和角之间关系的数学工具。在全等 三角形中,可以利用三角函数来证明两个三角形全等。例如 ,在直角三角形中,可以利用勾股定理和三角函数来证明两 个直角三角形全等。
三角函数还可以用于计算三角形的角度、边长等几何量,这 些计算在证明两个三角形全等时也是非常有用的。
与四边形的联系
全等三角形的性质
全等三角形的对应边相等,对应角相 等。
全等三角形的周长、面积和角度和相 等。
全等三角形的分类
根据全等三角形的边长关系,可以分为SSS(三边全等)、SAS(两边和夹角全 等)、ASA(两角和夹边全等)和AAS(两角和非夹边全等)四种类型。
根据全等三角形的形状,可以分为直角三角形、等腰三角形、等边三角形等类型 。
详细描述
利用全等三角形的性质证明线段相等或 角相等。
综合练习题
详细描述
总结词:结合其他数学知识 ,考察学生综合运用全等三
角形的能力
01
02
03
将全等三角形与其他几何知 识结合,如平行线、角平分
线等。
在实际问题中应用全等三角 形的知识,如测量、构造等
。
04
05
结合其他数学知识,解决涉 及全等三角形的综合问题。
04
CHAPTER
练习题与解析
基础练习题
总结词:考察全等三角形 的基本性质和判定方法
详细描述
给出两个三角形,判断它 们是否全等。
根据给定的条件,判断能 否证明两个三角形全等。
进阶练习题
总结词:深化全等三角形的性质和判定 方法的应用
在复杂的图形中识别和构造全等三角形 。
利用全等三角形的判定方法证明两个三 角形全等。
全等三角形ppt课件

斜边直角边定理
总结词
斜边和一条直角边对应相等的两个直角三角形全等
详细描述
斜边直角边定理是全等三角形的基本定理之一,它表明如果两个直角三角形的斜边和一条直角边相等 ,则这两个直角三角形全等。这个定理可以用于证明两个直角三角形全等,也可以用于构造全等直角 三角形。
03
全等三角形的证明方法
利用全等三角形的性质和判定方法证明
两线垂直等。
在几何中,全等三角形可用于解 决角度、长度等问题,为许多几
何定理的证明提供了工具。
通过全等三角形,我们可以证明 两个平面图形是否全等,这对于 研究几何形状的性质和面积、体
积的计算非常重要。
在代数中的应用
全等三角形在代数中也有广泛的 应用,主要体现在因式分解、解
方程等方面。
利用全等三角形的性质,可以将 一个复杂的式子通过恒等变形转 化为一个更易于处理的式子,从
02
全等三角形的基本定理和 推论
边边边定理
01
总结词
三边对应相等的两个三角形全等
02
详细描述
边边边定理是全等三角形的基本定理之一,它表明如果两个三角形的 三条对应边相等,则这两个三角形全等。这个定理可以用于证明两个 三角形全等,也可以用于构造全等三角形。
边角边定理
总结词
两边和它们的夹角对应相等的两个三角形全等
全等三角形在三角函数的应用中,可以帮助我们理解如何用三角函数解决实际问题 ,如测量不可直接测量的角度或长度。
05
全等三角形的拓展知识
勾股定理的证明与应用
勾股定理的证明 欧几里得证法:利用相似三角形的性质证明勾股定理。 毕达哥拉斯证法:利用正方形的性质证明勾股定理。
勾股定理的证明与应用
《全等三角形》数学教学PPT课件(6篇)

E A
F
B
C
∆ABC ≌ ∆FDE
对应顶点 对应顶点 对应顶点 对应角 对应角 对应角 对应边 对应边 对应边
41
课堂测试 1.如果∆ABC≌ ∆ADC,AB=AD,∠B=70°, BC=3cm,那么∠D=___7_0,D°C=____3cm
D
课堂测试
2、若△AOC≌△BOD,对应边是 应角是 ;
小组讨论完成
解:∵ △ABD ≌ △EBC,∴AB=EB,BD=BC, ∵BD=ED+EB ∴DE=BD-EB=BC-AB=5-3=2cm.
三、巩固练习
基础练习(教材第三十二页练习1-2题)
四、课堂小结,请大家回顾一下:
这节课你学到了什么?还有哪些疑惑?学生充分讨论回答。
点评梳理:
(1)全等三角形的概念及表示方法; (2)全等三角形的性质及应用。
思考
将两个全等三角形重合在一起,
重合的顶点叫对应顶点
A
D
重合的边叫对应边
重合的角叫对应角
根据动画效果,你能说出
这两个全等三角形的对应顶点、
B
CE
F 对应边、对应角各是什么吗?
36
全等三角形表示
如果两个三角形全等,那么该如何表示吗?
A
D
右图中的∆ABC和∆DEF全等
记作: ∆ABC ≌ ∆DEF
五、课后练习
1、教材第33-34页,1-6题。
第十二章 全等三角形
12.1 全等三角形
人教版 数学(初中) (八年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
全等三角形PPT课件

在计算机图形学中,全等三角形被用于三维模型的构建和渲染。通过组合和变换全等三角形, 可以创建出复杂的三维物体和场景。
05
全等三角形拓展知识
相似三角形概念及性质
相似三角形定义
两个三角形如果它们的对应角相等, 则称这两个三角形相似。
相似比
相似三角形的对应边之间的比例称 为相似比。
相似三角形概念及性质
全等三角形PPT课件
目录
• 全等三角形基本概念 • 全等三角形证明方法 • 全等三角形在几何中的应用 • 全等三角形在生活中的应用 • 全等三角形拓展知识 • 课程总结与回顾
01
全等三角形基本概念
定义与性质
01
定义
能够完全重合的两个三角形叫 做全等三角形。
全等三角形的对应边相等,对应 角相等。
06
课程总结与回顾
关键知识点总结
全等三角形的定义与 性质
掌握全等三角形的基 本性质,如对应边相 等、对应角相等。
能够准确描述全等三 角形的定义。
关键知识点总结
全等三角形的判定方法 掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。
能够灵活运用判定方法解决相关问题。
关键知识点总结
段的中点、角的平分线等。
结合其他几何知识(如中心对称、 旋转对称等)来进一步探讨图形
的对称性质。
04
全等三角形在生活中的应 用
建筑设计中的应用
01
建筑设计中的对称美
全等三角形在建筑设计中常被用来创造对称美,如古希腊神庙的立面设
计,通过全等三角形的排列组合,形成和谐而富有节奏感的视觉效果。
02 03
地形测量
在工程测量中,全等三角形原理 被用于地形测量。通过观测两个 已知点和一个未知点构成的全等 三角形,可以计算出未知点的坐
初二数学《全等三角形》PPT课件

02
全等三角形判定方法
SSS判定法
定义
三边对应相等的两个三角 形全等。
符号语言
在△ABC和△A'B'C'中, AB=A'B',AC=A'C', BC=B'C' ⟹ △ABC≌△A'B'C' (SSS)
注意事项
在应用SSS判定法时,需 要确保三个边分别对应相 等,不能只满足其中两个 边相等。
SAS判定法
注意事项
在应用AAS判定法时,需要确保两个角和其中一个角的对边分别对应相等。同时,需要注意 的是,AAS判定法和ASA判定法的区别在于,AAS判定法中的两个角不是夹边所对的角,而 是任意两个角。
03
全等三角形证明技巧
已知条件梳理与分析
已知条件分类
01
边、角、高、中线、角平分线等。
已知条件之间的关系
能够灵活运用这些判定方法解决相关问题。
关键知识点回顾与总结
全等三角形的应用 了解全等三角形在几何证明和实际问题中的应用。
能够运用全等三角形的知识解决一些实际问题。
拓展延伸:相似三角形简介
相似三角形的定义与性质 了解相似三角形的定义,即两个三角形对应角相等、对应边成比例。
掌握相似三角形的性质,如相似比、面积比等。
符号语言
在△ABC和△A'B'C'中,∠A=∠A', AB=A'B',∠B=∠B' ⟹ △ABC≌△A'B'C'(ASA)
注意事项
在应用ASA判定法时,需要确保 两个角和它们之间的夹边分别对
应相等。
AAS判定法
定义
《全等三角形》ppt课件

《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。
注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。
利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。
构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。
典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。
例如,可以先构造角平分线,再利用中线或高线的性质进行证明。
在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。
这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。
通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。
相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。
定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。
周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。
人教版八年级上册第十二章 12.1全等三角形 课件(共18张PPT)

今日任务—— 课堂作业:课本P31-32习题1、2 家庭作业:3、4
寻找对应边对应角的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边与最大边(最小边与最小边) 为
对应边;最大角与最大角(最小角与最小角)为对 应角;
(5)对应角所对的边为对应边;对应边所对 的角为对应角;
(6)根据书写规范,按照对应顶点找对应边 或对应角.
△ABC≌△BAD的对应边和
角∴
AB∠-BAACE= ∠=AEBFD-EA AF∠=ABEB=C_=_6_-2∠_=_B4AD
对应角
角 ∠C= ∠D
等式的性质1
谈谈你这节课的收获
全等三角形
(1)能够完全重合的两个三角形叫做全等三角形; (2)全等三角形的性质:对应边相等、对应角相等; (3)全等三角形用符号“≌”表示,且一般对应顶点写在对应位置上.
人教版八年级数学上册
12.1全等三角形
教学目标
知识与能力
1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.
观察 (1)
(2)
(3)
每组的两个图形有什么特点? 重合
思 考 能够完全重合的两个图形叫做 全等形
2021年8月12日星期四
F
如图:∵△ABC≌△DEF ∴AB=DE,BC=EF,AC=DF ( 全等三角形的对应边相等 )
∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等 )
A
D
随堂练习:
B
CE
F
第二题图
1、若△ ABC≌ △ DEF,则∠B= ∠E , ∠BAC= ∠EDF ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
堡的方向站好,然后调整帽子,使视线 通过帽沿正好落在碉堡的底部,然后, 他转过一个角度,保持刚才的姿势,这 时视线落在了自己所在岸的某一点上, 接着,他用步测量出自己与那个点的距 离,这个距离就是他与碉堡之间的距离。
你可以把我们的战士的想法 用图示表示出来吗?和同伴 交流你的看法。
看看这幅图,你想到了吗?
1、按着这个战士的方法,找出 教室或操场上与你距离相等的两 个点,并通过测量加以验证。
2、你可以解释其中的道理
吗?把你的想法说给你的同 伴听。
如图,A,B两点分别位于一个池塘 的两端,小明想用绳子测量A,B间 的距离,但是绳子不够长,你可以 帮助小明解决这个问题吗?
开动你的大脑,解决 这个与实际生活相联系的数 学问题吧!
利用三角形全等测距离
让我们来帮助想个办法吧!
在一次战役中。,我军阵地与敌军碉堡隔
河相望,为了炸掉这个碉堡,需要知道碉 堡与我军阵地的距离。在不能过河测量又 没有任何测量工具的情况下,你可以帮助 我军战士想一个办法吗?
利用你的聪明才智和你的朋友交流一下吧!
我们的战士想了这样的方法:他面向碉
把你的收获说与你的同伴听听
数学是来源于现实又反作用
于现实的,用我们的数学知 识可以解决许多的实际问题, 今天我们就用数学知识解决 了一个看似很难的问题,其 实他就是我们数学的三角形 全等的知识,简单吗?
/ 健康煲汤网 情景创设
脸面,是她自己别要,咎由自取,那就休要怪他别客气!随着最后壹道防线の解除,他就差拿着壹各放大镜,壹寸壹寸地毯式搜索婉然身上任何壹各可能存有箭伤の地方。可 是,令他极度失望の是,没什么找到任何壹各箭伤,连“疑似”箭伤都没什么,连壹各红点都没什么!望着壹丝别挂却是壹点点箭伤都没什么の婉然,二十三小格直到现在才 明白,原来婉然刚刚那样拼命与他顽抗,就是为咯狠狠地激怒他,以求壹死!猜透咯婉然の心思,他气急败坏地留下壹句意味深长の话:“想死?没什么那么容易!爷别会让 您死,爷只会让您生别如死!”第壹卷 第578章 感谢送走咯皇上壹行,王爷总算如释重负地长长出咯壹口。此时左臂の箭伤痛得他汗水出咯壹身又壹身,即使是萧瑟の秋风 中,竟湿透咯里三层外三层の衣裳。幸好当时出咯松露亭之后,他迅速更换咯新の外袍,所以从外面根本看别出任何异样,但是,当他回到房间,秦顺儿替他脱下湿透の衣服 之后,两人那才发现,他の胳膊早已经肿得老高,留下壹片紫得已经发黑の箭痕,而直接参与咯对抗那枚小箭の地方,皮肤被生生地震裂,肌肉都有些外翻出来。即使受咯那 么重の伤,王爷仍是别敢请太医,否则今晚の壹切就要前功尽弃。好在创伤药是园子里常备の药品,秦顺儿赶快就取咯过来,仔细地给他上咯药,又将伤处用绷带缠上,以便 于伤口尽快愈合。药膏敷在伤处,凉丝丝の,随着药力渐渐渗入皮肤,有效地缓解咯胳膊の疼痛,虽然伤口处仍是突突地跳着痛,但已经是可以忍受范围内の事情咯。包扎好 伤口,他の第壹各想法就是派秦顺儿去跟水清传各话,表达对她の谢意。但是想咯想,他又变咯主意,让秦顺儿给他披上披风,亲自来到咯水清院子。来到水清の住处,他并 没什么派秦顺儿先过去,而是直接进咯院子,刚好见到月影从水清の房间里出来。月影没想到那各时候王爷会亲自过来,于是赶快俯身请安。他急于见到水清,就壹边直接进 咯门,壹边问月影:“您家主子呢?”“回爷,仆役在里间刚歇下咯。”他万没什么料到水清已经歇下咯,因为按照惯例,他若是在园子里,她是需要前来向他请安の。今天 她还没什么过来请安,怎么就歇下咯?那各意外情况让他进退两难。进去吧,她已经歇下咯,他晓得她の睡眠极为别好,壹旦被惊搅,那壹夜都别想再睡咯。别进去吧,他可 是特意来感谢她の,无功而返让他很别甘心。犹豫半响,他只得稍微提高咯些声音对月影说道:“告诉您家主子,爷过来谢谢她。”其实,他那句话就是想亲自对水清说,别 管她是否睡着咯,他都亲自来向她表示咯最真诚の谢意。半天也没什么得到里屋有任何回音,想来她是已经睡着咯,那各结果也是意料之中の事情。累咯整整壹天,原本就是 弱别禁风の身子,如此高强度の操劳,又加上松露亭那惊心动魄の壹幕,精神遭受极度惊吓,别给累坏咯才怪呢。可是他又有些失落与惆怅,他多么希望她能亲耳听到他亲口 说出来の那句感谢の话!他对她尽善尽美の接驾无比赞美,他对她の机智勇敢心生敬佩,她从来都别会辜负咯他の期望,别但别会辜负他の期望,而且永远都会给他带来意料 之外の惊喜。四十三天の王府管家已经做得十分完美,而今日の迎接圣驾则是将那份完美发挥到咯极致,更逞论松露亭那化险为夷の壹幕,她真の是仙女吗?点石成金,化腐 朽为神奇,难道她就是老天爷派给她の仙女,救他于危难?第壹卷 第579章 解释仙女没什么睡着,仙女听到咯他の真心感谢,但是仙女再次假装睡着咯,因为仙女早就预料 到他会前来对她进行壹番感谢,而仙女根本就别想听他の那些所谓感谢の话!她今天之所以会那么做,只是尽壹各诸人の本分而已,她是他の诸人,壹荣俱荣,壹损俱损,她 最天然の职责就是为他排忧解难,尽自己最大の力量协助他。所以她今天の所作所为完全是她份内之事,有啥啊需要他来感谢の呢?假设那件事情也需要感谢,那她岂别是天 天都要感谢他?她要感谢他给咯她那么尊贵体面の地位,那么奢华无忧の生活?而那些也全是他作为壹各王爷,作为壹各男人,理所当然应该给予他の侧福晋应有の生活,是 理所当然の事情。既然他为她做の那壹切都是理所当然,为啥啊她为他做の事情就要接受他の感谢?等咯壹段时间,仍
你能说出这 是为什么吗?
继 续
小明是这样想的
BC=DC ∠B=∠EDC ∠ACB=∠ECD
你知道每一步 的理由吗?
△ ABC ≌△ EDC
AB=EDຫໍສະໝຸດ 发挥你的合 作意识完成 此题吧!
如图,把两根钢条
AB,CD的中点连 接在一起,可以做 成一个测量工件内 曹宽的工具(卡 钳)。只要量得AC 的长度,就可知工 件的内径BD是否符 合标准。你明白其 中的道理吗?
你可以说出
为什么吗?
如图,A,B两点分别位于一个池塘的两端,小明 想用绳子测量A,B间的距离,但是绳子不够长, 他的同学帮助他也想了一个办法:可以在AB的垂 线办法BF上取两点C,D,使CD=BC,再过D点做 出BF的垂线DG,并在DG上找一点E。使A,C,E 在一条直线上,这时测得的DE的长就是A,B间的 距离。
自主探究 问题思考
合作交流
归纳总结
你可以说出其中的道吗?
继 续
小颖将条件标注在图中, 小明是这样想的:
你可以说出其中每步的道 理吗?
并得出了结论。
AC=DE BC=EC ∠ACB=∠DEC
△ABC≌△DEC
AB=DE
因为有两边及其夹 角对应相等,所以△ABC与 △DEC全等,这样AB就等 于DE
你理解她的意思吗?
如图,A,B两点分别位于一个池塘的两端,小明 想用绳子测量A,B间的距离,但是绳子不够长, 一个阿姨,也给他出了这样的一个方法:加一个 尺子或是量角器,先在地上取一点C,使AC⊥BC 再用尺子量出AC和BC的长度,再用 AB2=AC2+BC2即可以得出A,B距离。
如图,A,B两点分别位于一个池塘的两端,小明 想用绳子测量A,B间的距离,但是绳子不够长, 一个叔叔帮相他想了这样的一个主意:先在地上 取一个直接到达A点和B点的C点,连接AC并延长 到D,使CD=AC;连接BC并延长到E,使CE=CB, 连接DE并测量出它的长度,DE的长度就是A,B 间的距离。