湖北职业高中数学对口升学高考复习模拟试题六(含答案)

合集下载

职高对口高考模拟数学试卷

职高对口高考模拟数学试卷

#### 一、填空题(每空2分,共20分)1. 若函数 \( f(x) = ax^2 + bx + c \) 在 \( x = 1 \) 处取得极值,则 \( a + b + c = \) ________。

2. 在等差数列 \(\{a_n\}\) 中,若 \( a_1 = 3 \),公差 \( d = 2 \),则\( a_5 = \) ________。

3. 已知圆的方程为 \( x^2 + y^2 - 4x - 6y + 9 = 0 \),则该圆的半径为________。

4. 若 \( \cos \alpha = \frac{1}{3} \),则 \( \sin \alpha \) 的值为________。

5. 函数 \( y = \frac{1}{x} \) 的图像关于 ________ 对称。

6. 若 \( \sqrt{a^2 + b^2} = 5 \),\( a = 3 \),则 \( b \) 的值为________。

7. 三个数的和为 12,其中两个数分别为 3 和 5,则第三个数为 ________。

8. 若 \( \triangle ABC \) 中,\( a = 5 \),\( b = 6 \),\( c = 7 \),则\( \cos A \) 的值为 ________。

9. 下列不等式中,正确的是 ________(选项:A. \( 2x > 4 \);B. \( 3x \leq 9 \);C. \( x^2 \geq 4 \);D. \( \frac{1}{x} < 1 \))10. 已知 \( \log_2 8 = 3 \),则 \( \log_2 32 = \) ________。

#### 二、选择题(每题3分,共30分)1. 函数 \( y = x^3 - 3x \) 的图像在 \( x = 0 \) 处的切线斜率为:A. 0;B. -3;C. 3;D. 不存在。

(完整word版)对口升学数学模拟试题(word文档良心出品)

(完整word版)对口升学数学模拟试题(word文档良心出品)

对口升学数学模拟试题班级姓名一、选择题(50分)1.设U={2,3,a 2+2a-3},A={|a+1|,2},U A ð={5},则 a= ( ) A .2B .-3或1C .-4D .-4或22.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件. 其中真命题的个数是( )A .1B .2C .3D .43.四个数241,,3,a a 中,若前三个数成等差数列,后三个数成等比,则( )A .29,242=-=a aB .29,242==a aC .29,242-==a aD .29,242-=-=a a4.函数1()102x f x -=-,则1(8)f -= ( ) A .1 B .-2 C .1/2 D .25.ABC ∆中,若22tan tan ba B A =,则ABC ∆形状是 ( ) A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形1.设全集是R ,M ={1,2,3,4},N ={x |x ≤1+2,x ∈R },则M ∩U N ð=( ) (A ){4} (B ){3,4} (C ){2,3,4} (D ){1,2,3,4} 2.函数y =2x -x 2lg (2x -1) +32x -1的定义域是 ( )(A )(12 ,1) (B )(1,2) (C )(12 ,2) (D )(12 ,1)∪(1,2) 3、如果函数y=f(x)的图象过点(0,1),则y=f -1(x)+2的图象必过点( ) (A ) (1,2) (B )(2,1) (C ) (0,1) (D )(2,0)4.若△ABC 中tan A 、tan B 是方程3x 2+8x -1=0的两个根,则tan C =( ) (A )2 (B )-2 (C )4 (D )-4( )1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4}则(C I A)∪(C I B)= ( ) (A){0} (B){0,1} (C){0,1,4} (D){0,1,2,3,4} 2.已知y=()x f 是奇函数,当x>0时,()x f =x(x+1),当x<0时,()x f = ( ) (A)-x (1-x ) (B)x (1-x ) (C)-x (1+x ) (D)x (1+x ) 3.若πθπ<<2,且cos ()3253sin ππθθ⎛⎫-=-+ ⎪⎝⎭,则= ( )(A)10334-- (B)10334- (C)10334+- (D)10334+ 4..已知a>b>1,那么下列不等式中成立的是 ( )(A)ba22log log < (B)ba ⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛2121 (C)0.3a <0.3b (D)b a 2.02.0log log >7.在等比数列{a n }中,a 1、a 5是方程2x 2-15x+4=0的两根,则a 1·a 3·a 5=( ) (A)22 (B)-22 (C)445(D)22± 1.已知A={1,2,a 2-3a-1},B={1,3},A =⋂B {3,1}则a 等于 ( ) A 、4-或1 B 、1-或4 C 、1- D 、4 2.不等式xx 42-≥1的解集为( )A 、{x|0<x≤2}B 、{x|x ≥2或x<0}C 、{x|x ≥4或x<0}D 、{x|x ≥4或x≤0} 3.函数1()102(01)x f x a -=-<<,则1(8)f -=() A 、1 B 、0 C 、1/2 D 、24.22cos 75cos 15cos75cos15︒+︒+︒︒等于 ( )A 、14+B C 、54 D 、345.已知)32()1(i i a z +-+=为纯虚数,a 为实数,则a 的取值为 ( ) A 、32≠≠a a 或 B 、2=a C 、32≠≠a a 且 D 、3=a1.设集合{}3,2,1=A ,则满足A B A = 的集合B 的个数是 ( )A.3B.4C.6D.82.三个数20.620.6,2,log 0.6的大小关系是 ( ) A.20.620.62log 0.6<< B.20.62log 0.60.62<< C.0.622log 0.620.6<< D.20.620.6log 0.62<<3.已知向量()1,1a =与()2,3b =-,若2ka b -与a 垂直,则实数k 等于 ( ) A.-1 B. -10 C. 2 D. 0 4.已知等比数列{a n }中,a 9=2-,则此数列前17项的积等于( ) A.216 B.-216 C.217 D.-2175.已知cos α=,且sin 0α>,则tan α为 ( ) A.2 B. -2 C.12 D.12- 8.0a >且b>0是ab>0的 ( ) A.充要条件 B. 必要而非充分条件 C.充分而非必要条件 D. 以上均不对10.已知3tan =θ,θθθ22cos 2sin sin 2-+= ( ) A.71 B.94 C.25 D.1023二 填空题11.若a x f x x lg 22)(--=为奇函数,则a=__________。

中职对口升学数学综合题六套

中职对口升学数学综合题六套

中职生对口升学考试模拟《数学》试卷(一)一、单项选择题(每小题3分,共21分)1.一元二次方程09)2(2=+-+x k x 有两个不相等的实数解的条件是)(∈k )8,4.(-A )8,4.[-B ),8[]4.(+∞--∞ C ),8()4.(+∞--∞ D2.设集合)3,1(),1,5(-=-=B A ,则)(=B A )3,5.(-A )1,1.(-B )1,5.(--C )3,1.(D3.下列各函数中,在区间),0(+∞上为减函数的是( )x y A 2.= x y B 3log .= 1.--=x y C xy D 21log .=4. )(54cos 53cos 52cos5cos =+++ππππA.-1B.0C.1D.2 5. )(=++BD CB AC AB A . BC B . AD C . DA D .6.已知平面γβα,,和直线l ,则下列可以推出βα//的是( )γβγα//,//.A βα//,//.l l B βα//.l l C 内,在 βγα//.l l D ,相交于直线和7.圆6)7()2(22=-++y x 的圆心和半径分别为( )6),7,2(.-A 6),7,2(.-B 6),7,2(.-C 6),7,2(.-D二、填空题(每空3分,共12分)1.设集合)7,4[],4,2(=-=B A ,则._______________=B A2.在等差数列}{n a 中,,827,81,835-=-==n S d a 则._____________=n 3.设向量)1,4(),,2(-==b m a ,且b a ⊥,则m 的值为__________________. 4.一个玩具下半部分是半径为3的半球,上半部分是圆锥,如果圆锥母线长为5,圆锥底面与半球截面密合,则该玩具的全面积是_________. 三、解答题(第1题5分,第2、第3小题各6分,共17分)1.已知54sin -=α,且α是第四象限的角,求αcos 和αtan .2.一个直径为32cm 的圆柱形水桶,将一个球全部放入水中,水桶的水面升高9cm ,求这个球的半径.3.为了参加国际马拉松比赛,某同学给自己制订了10天的训练计划.第一天跑2000米,以后每天比前一天多跑500米,这位同学第7天跑了多少米?10天共跑了多长的距离?中职生对口升学考试模拟《数学》试卷(二)一、单项选择题(每小题3分,共21分)1.若A ,B 为互斥事件,则( )1)()(.<+B P A P A 1)()(.≤+B P A P B 1)()(.=+B P A P C 1)()(.>+B P A P D2.不等式0)4)(2(<-+x x 的解集为( ))4,2.(-A ),4()2,.(+∞--∞ B )8,1.(-C )4,2.(-D3.下列各函数中,图像经过点)1,2(-π的是( )x y A sin .= x y B cos .= x y C sin .-= x y D cos .-=4.已知函数 ⎪⎩⎪⎨⎧<=>=0,20,10,0)(x x x x x f ,则)6(f 的值等于( ) A.0 B.1 C.-1 D.115. 已知数列}{n a 中,,3,111+==+n n a a a 则这个数列的一个通项公式为( ) 23.-=n a A n 12.-=n a B n 2.+=n a C n 34.-=n a D n6.平行于同一平面的两条直线的位置关系,以下说法正确的是( ) A.平行 B.相交 C.异面 D.以上都有可能7.房间有5本不同的科幻书,4本不同的故事书,从中任取一本的取法共有( )A.5种B.4种C.9种D.20种 二、填空题(每空3分,共12分)1.与01360-角终边相同的角的集合为_____________.2.若,043log <a则a 的取值范围是_____________. 3.已知点M(3,b)到直线0927=+-y x 的距离为4,则b=_____________.4. ._________________=++AB BC CD三、解答题(第1题5分,第2、第3小题各6分,共17分)1.已知)8,(x P 是角α终边上的点,且53cos =α,求点P 的横坐标x 和αtan 的值.2.设有按顺序排好的四个数,前三个数成等差数列,后三个数成等比数列,第一、四两个数的和为16,第二、三两个数的和为8,求这四个数.3.已知点M (2,7),N (3,-4),现将线段MN 分成四等份,试求出各分点的坐标.中职生对口升学考试模拟《数学》试卷(三)一、单项选择题(每小题3分,共21分)1.设全集为R ,集合}72|{<≤-=x x A ,则=A C ( )}2|{.-<x x A }7|{.≥x x B }72|{.≥-<x x x C 或 }72|{.>-<x x x D 或2.已知0>a ,且1≠a ,直列式子中错误的是( )3443243431.21log .01log ..aaD aC B aa A a a =-===-3.若函数)(x f y =的图像关于原点O 中心对称,且5)3(=f ,则=-)3(f ( )3.5.3.5.--D C B A4.若)1320cos(0-的值为( )23.23.21.21.D C B A --5.已知点)3,1(),3,1(-B A ,则下列各式正确的是( )||||..)6,0(..OA AB D OAAB C AB B OBOA A ==-==6.将正方形ABCD 沿对角线BD 折起,使平面ABD ⊥平面CBD ,E 是CD 的中点,则∠AED 的大小为( )0090.60.30.45.D C B A7.从1,2,3,4这四个数中任取两个数,则取到的数都是奇数的概率为( )65.61.51.41.D C B A 二、填空题(每空3分,共12分)1.已知集合}2{},2,0{},9,1{==-+B A B a A =,则=a _____________.2..______________)271(125)21(31322=-+--3.在等差数列}{n a 中,,207-=S 则.______________71=+a a4.用数字2,4,5,8可以组成________个没有重复数字的三位数. 三、解答题(第1题5分,第2、第3小题各6分,共17分)1.已知α终边上点P(3,-4),求.tan ,cos ,sin ααα2. 如图所示,有一个倾角为030的山坡(即山坡与地面所成的二面角为030),山坡上有一条和斜坡底线AB 成060角的直路EF.如果沿EF 上行,行走100米,问约升高多少米?3.设直线l 平行于直线0523=+-y x ,并经过点P(1,2),求直线的一般式方程.1 E中职生对口升学考试模拟《数学》试卷(四)一、单项选择题(每小题3分,共21分)1.不等式0122<--x x 的解集为( )}43|{.<<-x x A }43|{.>-<x x x B 或 }34|{.<<-x x C }34|{.>-<x x x D 或2.一元二次方程有实数解的条件是∈m ( )),10[]10,(.),10()10,(.]10,10[.)10,10(.+∞--∞+∞--∞-- D C B A3.下列计算正确的是( ))0()(.01ln .42.0)2(.53220>====-a a a D C B A4.下列函数既是奇函数又是增函数的是( )x y D x y C xy B xy A 31.2.1.3.2-====5.下列函数中,为偶函数的是( )1.1.4.2.2-=-=+==y D xy C xx y B xy A6.已知||||OB OA =,且060=∠AOB ,则下列各式中正确的是( )||||....OA AB D OAAB C OBAB B OBOA A ====7.某校关注学生的用眼健康,从八年级400名学生中随机抽取了20名学生进行视力检查,发现有10名学生近视眼,据此估计这400名学生中,近视的学生人数约是( )300.200.150.100.D C B A二、填空题(每空3分,共12分) 1. ._____________55563=÷⨯2.已知正四棱柱底面边长为3cm ,高为4cm ,则其体积为_________.3cm3. 互斥事件的加法概率公式为____________.4. 在如图4-1所示的长方体中,AB 与1CC 所在 直线的位置关系为________.三、解答题(第1题5分,第2、第3小题各6分, 共17分)1.讨论函数xx y 1+=在区间),1(+∞上的单调性.2. 在等差数列}{n a 中,,20,271==a a 求.13S3.已知)3,4(),5,7(==b a ,求).42()3(),()(b a b a b a b a +•-+•-中职生对口升学考试模拟《数学》试卷(五)一、单项选择题(每小题3分,共21分) 1.函数0122<--x x 的定义域为( )R D C B A .),1()1,(.]2,1()1,2[.]22[.+∞--∞ ,-2.若3log 2=a ,则=-6log 29log 22( )2.2.22.2.D a C a B A ---3.已知向量n m NK n m MN -=+=2,23,则KM 等于( )n m D n m C nm B nm A 3.3.5.5.--+--+4.数列的通项公式为4cos πn a n =,则数列的第四项为( )22.1.0.1.-=-y D C B A 5.在空间中,下列哪些命题是正确的( ) ①平行于同一条直线的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③平行于同一个平面的两条直线互相平行; ④垂直于同一个平面的两条直线互相平行.A.仅①正确B.仅②正确C.仅③正确D.四个命题都正确 6.直线052=+-y x 的斜率和y 轴上的截距分别是( )25,21.2,5.5,2.52.D C B A --, 7.已知向量)5,(x a =的模为13,则x 等于( )5.12.12.21.D C B A ±-二、填空题(每空3分,共12分)1.方程组⎩⎨⎧=-=+46723y x y x 的解集可用列举法表示为 _____________.2.若a x =-1sin 3,则a 的取值范围是 _________.3. ._____________)2()(34=+--+-c b a b a a4.某校电子商务班有男生16人,女生10人,若要选男、女生各1人作为代表参加学校的拔河比赛,共有_______种不同的选法.三、解答题(第1题5分,第2、第3小题各6分,共17分) 1.如图5-1所示,正四面体(四个面是全等的等边三角形)P -ABC 的棱长为a,求相邻两个面所成二面角的余弦值.2.化简:.sin 1cos sin )2(;100sin 1)1(202ααα--3.空间四边形ABCD 中,对角线AC 与BD 所成的角为030,H G F E cm BD cm AC ,,,,4,2==分别为AB ,BC ,CD ,DA 的中点,求四边形EFGH的面积.CABD中职生对口升学考试模拟《数学》试卷(六)一、单项选择题(每小题3分,共21分)1.设全集U ={0,1,2,3,4,5,6,7,8},集合A ={2,3,4,5},则A 补集为( )A.{0,1,2,6,7,8}B.{0,1,6,7,8}C.{1,6,7,8}D.{6,7,8}2.不等式x x -≤+122的解集为( )}0{....D Z C B R A φ3.使得函数x y sin =为增函数,且值为负数的区间是( ))2,23(.)23,(.),2(.)2,0(.πππππππD C B A 4.若3271log -=a,底数=a ( ) 31.3.3.31.D C B A -- 5.下列函数中,图像经过点(1,1)和点(-1,1)的是( )32..1.||.x y D x y C x y B x y A ====6.已知数列1)2(-=n n a ,则此数列的第8项8a 等于( )A.4B.7C.15D.107.书架上层有4本不同的数学书,中层有5本不同的英语书,下层有3本不同物理书,若要从中任取3本,数学、英语、物理各一本,则不同取法的种数是( )A.3B.60C.12D.9二、填空题(每空3分,共12分)1.函数12+=x y 的定义域为(用区间表示)________________.2.函数122+-=x y 在区间),0(+∞上的单调性为________________.3.向量b a ,的坐标分别为(2,-1),(-1,2),则b a 32+的坐标为_____________.4.一圆锥的轴截面是边长等于2的等边三角形,则圆锥的体积为______________.三、解答题(第1题5分,第2、第3小题各6分,共17分)1.求等差数列-1,2,5,……的第8项.2.求过直线0434=++y x 与065=-+y x 的交点,且与直线052=+-y x 垂直的直线方程.3.已知A (4,3),B (6,1),求以AB 为直径的圆的方程.。

职高高考模拟数学试卷答案

职高高考模拟数学试卷答案

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. πC. √9D. 无理数答案:C2. 已知 a < b,下列不等式中正确的是()A. a - b < 0B. a + b > 0C. a - b > 0D. a + b < 0答案:A3. 下列函数中,定义域为全体实数的是()A. y = √(x - 1)B. y = 1/xC. y = x^2D. y = log2x答案:C4. 已知等差数列 {an} 的前n项和为 Sn,若 S5 = 25,S10 = 75,则 a1 = ()A. 1B. 2C. 3D. 4答案:A5. 下列命题中,正确的是()A. 若 a > b,则 a^2 > b^2B. 若 a > b,则 a - b > 0C. 若 a > b,则 ac > bcD. 若 a > b,则 a/c > b/c答案:B6. 已知等比数列 {an} 的前三项为 a1, a2, a3,若 a1 + a2 + a3 = 12,a1 a2 a3 = 64,则 a1 = ()A. 1B. 2C. 4D. 8答案:C7. 已知函数 y = ax^2 + bx + c,若 a ≠ 0,且函数图象开口向上,则()A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b > 0, c >0 D. a < 0, b < 0, c > 0答案:B8. 已知正方形的对角线长为2√2,则其面积是()A. 4B. 6C. 8D. 10答案:A9. 下列各数中,绝对值最小的是()A. -1/2B. -1C. 1/2D. 1答案:C10. 已知函数 y = x^3 - 3x,求该函数的极值点。

职高高三复习数学试题卷附答案

职高高三复习数学试题卷附答案

职高高三复习数学试题卷姓名________________ 准考证号________________ 本试题卷共3大题,共X 页。

满分0分,考试时间X 分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔填写在答题卡和试卷上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

非选择题用0.5毫米黑色字迹的签字笔将答案写在答题卡规定位置上。

3.所有试题均需在答题卡上作答,在试卷和草稿纸上作答无效。

4.考试结束后,将试卷和答题卡一并交回。

一、单项选择题(本大题共16小题,每小题0分,共0分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错选、多选或未选均无分。

1.分别与两条异面直线平行的两条直线的位置关系是( ) A .平行 B .相交 C .异面D .相交或异面2.若x =!3!n ,则x 等于( ) A .3A nB .3A n n -C .3A nD .3A n n -3.6名同学排成一排,其中甲、乙两人不站在一起的不同排法有( ) A .720种 B .480种 C .360种D .240种4.在△ABC 中,若sin A =35,∠C =120°,BC =23,则AB 等于 ( ) A .3 B .4 C .5 D .65.α,β是两个不同的平面,a ⊆α,b ⊆β,且α∥β,则直线a ,b 的位置关系是 ( )A .相交B .平行C .异面D .不相交6.在下列双曲线中,以y =12x 为渐近线的双由线是 ( )A .216x -24y =1 B .24x -216y =1C .22x -21y =1D .21x -22y =17.终边落在直线x -y =0上的角的集合可表示为 ( )A .π=2πZ 4k k αα⎧⎫+∈⎨⎬⎩⎭,B .π=πZ 4k k αα⎧⎫+∈⎨⎬⎩⎭,C .π=-2πZ 4k k αα⎧⎫+∈⎨⎬⎩⎭,D .116y =-8.在△ABC 中,下列表示不一定成立的是( )A .∠A +∠B +∠C =πB .sin A sin B sinC >0 C .a +b >cD .cos A cos B cos C >09.sin320°cos (-110°)tan (-700°)的最后结果为( )A .正数B .负数C .正数或负数D .零10.若圆柱的底面半径为2,轴截面的面积是8,则该圆柱的体积为( )A .8πB .16πC .32πD .16π311.下列各式中,值为12的是________.( )A .sin15cos15︒︒B .22cos 151︒-C .2tan 22.51tan 22.5︒-︒D12.抛物线y =-4x 2的准线方程是________. ( )A .x =1B .x =-1C .116y =-D .116y =13.若双曲线22189x y k -+=+的离心率为2,则k 的值为________.( )A .-19B .9C .19D .-914.用0,1,2,3,4,5这6个数字可以组成被2整除的无重复数字的两位数共________. ( )A .12个B .13个,C .14个D .15个15.终边落在直线x +y =0上的角的集合可表示为________.( )A .{α|α=π4+2k π,k ∈Z } B .{α|α=π4+k π,k ∈Z } C .{α|α=-π4+2k π,k ∈Z }D .{α|α=3π4+k π,k ∈Z } 16.在△ABC 中,∠A =60°,b =9,S =c =________.( )A .36B .C .84D .42二、填空题(本大题共8小题,每小题0分,共0分)17.6本不同的文艺书平均分给3个学生,不同的分配方法有_________种. 18.同角三角函数的两个基本关系式,sin 2α+cos 2α=________,tan α=________.19.求值:cos π=2πZ 4k k αα⎧⎫+∈⎨⎬⎩⎭,= ,tan 163π= .20.0.9963的近似值为 (精确到0.001).21.若角α的顶点在直角坐标系的原点,始边重合于x 轴的正方向,在终边上取点Pcos 3π⎛⎫ ⎪⎝⎭,可得α的正弦函数值为 . 22.从1,2,3,4,5五个数字中每次取两个,分别作为对数的底数和真数,用此五个数字总共可以得到 种不同的对数值.23.在△ABC 中,已知a =4,b =5,∠C =30°,则S △ABC =________.24.双曲线221916x y -=的顶点坐标是________. 三、解答题(本大题共8小题,共0分。

职高高三数学模拟试卷答案

职高高三数学模拟试卷答案

一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 1答案:C2. 若a,b是方程x² - 3x + m = 0的两个实数根,则m的取值范围是()A. m > 3B. m ≤ 3C. m ≥ 3D. m < 3答案:B3. 函数f(x) = x² - 4x + 3的图像与x轴的交点坐标是()A. (1, 0), (3, 0)B. (0, 1), (3, 1)C. (1, 3), (3, 3)D. (0, 3), (3, 3)答案:A4. 在直角坐标系中,点A(2, 3),点B(-2, -3),则线段AB的中点坐标是()A. (0, 0)B. (1, 1)C. (2, 2)D. (-1, -1)答案:A5. 已知数列{an}的通项公式为an = 2n - 1,则数列的前10项和S10等于()A. 90B. 100C. 110D. 120答案:A6. 若等差数列{an}的第一项为a₁,公差为d,则第n项an的表达式是()A. an = a₁ + (n - 1)dB. an = a₁ - (n - 1)dC. an = a₁ + ndD. an = a₁ - nd答案:A7. 下列函数中,是偶函数的是()A. f(x) = x² - 3x + 2B. f(x) = x³ + 2x² - 3xC. f(x) = 2x + 3D. f(x) = x² + 2答案:D8. 若sinθ = 1/2,则cos(2θ)的值是()A. 3/4B. 1/4C. -1/4D. -3/4答案:B9. 在△ABC中,若∠A = 60°,∠B = 45°,则sinC的值是()A. √3/2B. 1/2C. √2/2D. √6/4答案:C10. 下列不等式中,恒成立的是()A. x² + 1 > 0B. x² - 1 > 0C. x² + 1 < 0D. x² - 1 < 0答案:A二、填空题(每题5分,共25分)11. 若函数f(x) = 3x² - 2x + 1在x = 1时取得极值,则该极值为______。

2020年中职数学对口升学考前冲刺模拟试题含答案

2020年中职数学对口升学考前冲刺模拟试题含答案

2020年中职数学对口升学模拟试题一.选择题(本大题10小题,每小题3分,共30分) 1.集合M={x |x ≤4},15a =,那么正解的关系是( )A.M ⊆aB.M ∉aC. M ∈}a {D.M ⊆}a {2.“三角形一个内角是︒60”是“三角形三个内角成等差数列”的( )A.充分条件B.必要条件C.充要条件D.以上都不对3.12log x 3=,则x4=( )A.6B.9C.2l 34og D.44.已知向量→→→→→→+--==b -a b a ),1,8(b ),,1(a 与且x 相互垂直,则x=( )A.-8B.8±C.8D.不存在5.函数212)52()(f +-=x x x 的值域是( );A.),0[+∞B.),2[+∞C.),4[+∞D.),-[+∞∞6.直线ax+2y-8=0与直线x+(a+1)y+4=0平行,则a=( )A.1B.1或-2C.-2或-1D.-17.=︒︒-︒15cos 15sin 415cos 32( )A.2-B.22C.22-D.28.抛物线px 2y 2=与直线ax+y-4=0交于A,B 两点,其中点A(1,2),设抛物线焦点为F ,则|FA|+|FB|=( )A.4B.5C.6D.7 9.52)1(xx +的展开式中的系数之和是( )A.32B.12C.10D.1610.如果偶函数f(x)在区间[-6,-2]上是减函数且最大值为5,则函数f(x)在[2,6]上是( ) A.增函数且最小值为-5 B.增函数且最大值为5 C.减函数且最小值为-5 D.减函数且最大值为5二.填空题(本大题共8小题,每小题4分,共32分) 1.已知=<<<=-=βπαββαα则若,20,1413)cos(,71c os . 2.若实数x,y 满足=+==y1x 1,217,213则yx. 3.圆4x 22=+y 上的点到直线4x+3y+c=0的最小距离为5,则圆上的点到直线的最大距离为 4.用1,2,3,4,5五个数组成没有重复数字的四位数,从这四位数中任取一个数,不是5的倍数的概率是5.圆锥的侧面积是其底面积的2倍,则其母线与底面所有的角为 .6.过圆4x 22=+y 上一点P (1,-3)的切线方程是 .7.等比数列}{n a 中,173a a 和是方程016102=+-x x 的两根,则=10a .8.已知双曲线19y 16x 22=-,过右焦点2F 交双曲线右支的弦AB ,|AB |=5,双曲线另一个焦点为F 1, 则1ABF ∆点的周长是 . 三.解答题(本大题共6小题,共38分)1.求函数)352(log )(f 22--=x x x 的定义域,单调区间和值域.(6分)2.已知等差数列}{n a 中,14,5a 52==a (1)求}{n a 的通项公式(2)设}{n a 的前n 项和为n S =155,求n 的值.(6分)3.一个袋中有6个球,编号分别为1,2,3,4,5,6,现从中任取3只,求3只球中号码最大的编号X 的概率分布及其期望.(6分)4.已知→→→→→→→→→→-=+=︒>=<==bamdbacbaba3,53,60,,2,3,问(6分)(1)当m取何值时,→→dc与垂直;(2)当m为何值时→→dc与平行。

湖北中职对口升学高考数学冲刺模拟试题:选择题06

湖北中职对口升学高考数学冲刺模拟试题:选择题06

对口升学高考数学冲刺模拟试题选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合2{|230},{|1}A x x x B x x =--<=>,则B A =A .{|1}x x >B .{|3}x x <C .{|13}x x <<D .{|11}x x -<<2、函数()f x =3)42tan(π-x ,x R ∈的最小正周期为A .2π B .π C .2πD .4π3、如果偶函数)(x f 在]7,3[上是增函数且最小值是2,那么)(x f 在]3,7[--上是 A. 减函数且最小值是2 B.. 减函数且最大值是2 C. 增函数且最小值是2 D. 增函数且最大值是2.4、 函数()2tan f x x x =-在(,)22ππ-上的图像大致为5、已知3sin()35x π-=,则cos()6x π+=A .35B .45C .35-D .45-6、 函数y=sin(2x+25π)图象的一条对称轴方程是:A .2π-=x B . 4π-=x C . 8π=x D .45π=x7、在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于A .1B .725- C .257 D .2524-8、函数)2||,0,0)(sin()(πφωφω<>>+=A x A x f 的部分图象如图示,则将()y f x =的图象向右平移6π个单位后,得到的图象解析为 A .x y 2sin = B. x y 2cos = C. )322sin(π+=x y D. )62sin(π-=x y9、某商场对顾客实行购物优惠活动,规定一次购物付款总额: (1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是A .413.7元 B. 513.7元 C. 546.6元 D .548.7元10、给出以下命题:①若α、β均为第一象限角,且βα>,且βαsin sin >;②若函数⎪⎭⎫⎝⎛-=3cos 2πax y 的最小正周期是π4,则21=a ; ③函数1sin sin sin 2--=x xx y 是奇函数;④函数1|sin |2y x =-的周期是π ⑤函数||sin sin x x y +=的值域是]2,0[其中正确命题的个数为:A . 3B . 2C . 1D . 0选择题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试题一、选择题:(本大题共10小题,每小题5分,共50分;在每小题给出的四个选项中,只有一个选项是符合题目要求的.) 1、已知全集U= {}1,2,3,4,5,集合A= {}3,4,B= {}1,2,3,则()U C A B 等于( )A .{}3B .{}1,3C .{}1,2D .{}1,2,3 2、已知a 是实数,iia -+1是纯虚数,则a 等于( ) A .1- B .1 C .2 D .2-3、已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A .13cmB .23cmC .33cmD .63cm4、已知{}n a 是各项为正数的等比数列,12341,4,a a a a +=+=则5678a a a a +++=( )A .80B .20C .32D .25535、若a= 3(,sin )2α,b= 1(cos ,)3α,且a // b ,则锐角α=( )A .015B .030C .045D .060 6、已知 1.224log 3,log ,0.7x y z π-===,则( )A .x y z <<B .z y x <<C .y z x <<D . y x z << 7、设函数()sin()(0,)2f x x πωϕωϕ=+><的图象关于直线23x π=对称,且它的最小正周期为π,则 ( )A. ()f x 在区间53,124ππ⎡⎤⎢⎥⎣⎦上是减函数 B. ()f x 的图象经过点30,2⎛ ⎝⎭C.()f x 的图象沿着x 轴向右平移6π个单位后所得图象关于y 轴对称 D. ()f x 在30,4π⎡⎤⎢⎥⎣⎦上的最小值为1-8、已知直二面角l αβ--,点A ∈α,B ∈β,A 、B 到棱l 的距离相等,直线AB 与平面β所成的角为030,则AB 与棱l 所成的角的余弦是( )A .2 B .2 C .12D .49、已知点(,0)(0)F c c >是双曲线12222=-by a x 的右焦点,F 关于直线3y x =的对称点A 恰在该双曲线的右支上,则该双曲线的离心率是( )A 1B 1 D .251+ 10、已知()ln 2f x x x =+-,()ln 2g x x x x =+-在()1,+∞上都有且只有一个零点,()f x 的零点为1x ,()g x 的零点为2x ,则( )A .2112x x <<<B .1212x x <<<C .1212x x <<<D .212x x << 二、填空题:(本大题共7小题,每小题5分,共35分) 11.若4cos()5πα+=,则sin(2)2πα-=__________.12.不等式lg(1)0x +≤的解集是__________. 13.已知a 、b 为实数,0a >,则ba b b a++的最小值为__________. 14.ABC ∆中,过点A 作AH BC ⊥,垂足为H ,3,2BH HC ==,则()32AB ACBC +=__________. 15.由直线2y x =+上的点向圆22(4)(2)1x y -++=引切线,则切线长的最小值为__________.16.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按40个工时计算)生产空调器、彩电、冰箱共120台、且冰箱至少生产20台。

已__________17.集合A= {}222(1),0x x a x a -<>,(1)判断1与集合A 的关系:1___ A(填∈或∉);(2)若AZ 中有且只有两个元素(Z 为整数集),则a 的取值范围是B 1BD __________. 三、解答题:(本大题共5小题,共65分,解题应写出文字说明、证明过程或演算步骤)18、(本题满分12分)已知函数()xx x x f sin sin cos 2cos sin 22-+=ϕϕ(πϕ<<0)在π=x 处取最小值.(1)求ϕ的值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知a =1,b =2,f (A )=32,求角C .19、(本题满分13分)已知四边形ABCD是矩形,AB=1,ABC ∆沿着对角线AC 折起来得到1AB C ∆且顶点1B 在平面ACD 上射影O 恰落在边AD 上,如图所示.(1)求证:平面1AB C ⊥平面1B CD ; (2)求三棱锥1B ABC -的体积1B ABC V -.20、(本题满分13分)已知数列{}n a 满足1123n n n a a -+=,1,2,3n =⋅⋅⋅,11a =, (1)求证:2n ≥ 时,总有113n n a a +-=; (2)数列{}n b 满足⎩⎨⎧=为偶数,为奇数,n a log n 3n a b n n ,求{}n b 的前2n 项和2n S .21、(本题满分13分)已知函数322()13f x x x ax =+++在()1,0-上有两个极值点12,x x ,且12x x <(1)求实数a 的取值范围;(2)证明:211()12f x >.22、(本题满分14分)已知曲线C :221(0)3y x x -=>,A (1,0)-,F (2,0) (1) 设M 为曲线C 上x 轴上方任一点,求证:2MFA MAF ∠=∠;(2) 若曲线C 上存在两点C ,D 关于直线l :12y x b =-+对称,求实数b 的取值范围;(3) 在(2)的条件下,是否存在过C 、A 、D 、F 的圆,且该圆的半径为32.如果存在,求出这个圆的方程;如果不存在,说明理由.参考答案选择题:1.C 2.B 3.A 4.A 5.C 6.A 7.D 8.B 9.A 10.A 二、填空题:11.725 12.(]1,0- 13.1 14.0 15 16.20 17.∈;12,23⎛⎤ ⎥⎝⎦三、解答题:18、(1)2()sin (2cos1)cos sin sin cos cos sin 2f x x x x x ϕϕϕϕ=-+=+sin()x ϕ=+x π=处取得最小值,322x k πϕπ∴+=+,22k πϕπ∴=+ 又()0,ϕπ∈,2πϕ∴=..........................................(6分)(2)()cos ,()22f x x f A A ===,由于()0,A π∈,所以6A π=在ABC ∆中由正弦定理得sin sin a bA B=,即10.5sin B =,sin 2B ∴=,.......(9分) ()0,B π∈,4B π∴=或34B π=,当4B π=时,712C π=;当34B π=时,12C π= ∴7,12C π=或12C π= ...........................................(12分) 19、(1)1B O ⊥平面ABCD ,CD ⊂平面ABCD ,∴1B O CD ⊥,又CD ⊥AD ,AD1B O =O∴CD ⊥平面1AB D ,又1AB ⊂平面1AB D ∴1AB CD ⊥,又11AB B C ⊥,且1B CCD C =1AB ∴⊥平面1B CD ,又1AB ⊂平面1AB C∴ 平面1AB C ⊥平面1B CD ................................(7分)(2)由于1AB ⊥平面1B CD ,1B D ⊂平面ABCD ,所以11AB B D ⊥在1Rt AB D ∆中,1B D ==,又由111B O AD AB B D ⋅=⋅得111AB B DB O AD⋅=3=,所以11111133236B ABC ABC V S B O -∆=⋅=⨯⨯=....................................................(13分)20、(1)由1123n n n a a -+⋅=⋅ (1) 对一切正整数n 都成立,得 212,23n n n n a a --≥⋅=⋅ (2)(1)除以(2)得2n ≥,13n na a += .............................(6分) (2)由(1)中的结论知{}n a 的奇数项和偶数项分别从小到大构成公比为3的等比数列,其中1121213,23n n n n a a ---=⋅=⋅由已知有,21121322log 1,23n a n n n n b n b a ---==-==⋅∴{}n b 的前2n 项和21321242()()n n n S b b b b b b -=++⋅⋅⋅++++⋅⋅⋅+=01132213n n n +--⨯+⋅-(1)312nn n -=+- ...............................(13分) 21、(1)2()22f x x x a '=++,由题意知方程2220x x a ++=在()1,0-上有两不等实根,设2()22g x x x a =++,其图象的对称轴为直线12x =-,故有 (1)0(0)011()(1)022g a g a g a ⎧⎪-=>⎪=>⎨⎪⎪-=+-+<⎩,解得102a <<...............................(6分) (222a x x =-- 构造2()22g x x x =--利用图象解照样给分)(2)由题意知2x 是方程2220x x a ++=的大根,从而21,02x ⎛⎫∈-⎪⎝⎭且有222220x x a ++=,即22222a x x =--,这样3222222()13f x x x ax =+++ 32232222222224(22)1133x x x x x x x =++--+=--+ 设324()13x x x ϕ=--+,2()42x x x ϕ'=--=0,解得121,02x x =-=,由1,2x ⎛⎫∈-∞- ⎪⎝⎭,()0x ϕ'<;1,02x ⎛⎫∈- ⎪⎝⎭,()0x ϕ'>;()0,x ∈+∞,()0x ϕ'<知,324()13x x x ϕ=--+在1(,0)2-单调递增,又2102x -<<,从而2111()()212x ϕϕ>-=, 即211()12f x >成立。

...............................(13分) (2)另解:由题意知2x 是方程2220x x a ++=的大根,从而21,02x ⎛⎫∈-⎪⎝⎭,由于102a <<2212ax x >,32322222222221()11332f x x x ax x x x =+++>+++, 设3221()132h x x x x =+++,1,02x ⎛⎫∈- ⎪⎝⎭,2211()2212()022h x x x x '=++=++> h(x)在1,02⎛⎫-⎪⎝⎭递增,111()()212h x h >-=,即211()12f x >成立。

相关文档
最新文档