细菌冶金的原理
微生物冶金的原理及工艺

利用微生物能够把金矿、银矿、铜矿和铁矿中的某些金属选择性地溶解出来,称为微生物冶金。具有资源利用充分、成本低、投资小、设备要求简单、流程灵活、过程易于控制、无环境污染的特点。
例如
2、浸矿微生物种群
大多为化能自养型细菌,耐酸性、以氧化硫磺以及硫化物获得能量的细菌最常用。
(1)氧化亚铁硫杆菌
革兰氏阴性菌,杆状、严格好氧、严格无机化能自养;
可氧化铁、还原硫、硫化铜以及硫化矿பைடு நூலகம்
温度5-40摄氏度,最适合温度28-35摄氏度
pH=1.2-6.0,最适合pH2.5-2.8
氧化亚铁、元素硫、还原态硫化物获得能量,以二氧化碳为碳源,以铵盐或氮源。
(2)氧化亚铁钩端螺旋菌
革兰氏阴性菌,螺旋状、严格好氧、严格无机化能自养;
可氧化铁和黄铁矿,但不能氧化硫
温度5-40摄氏度,最适合温度30摄氏度
pH=0.5-4.0,最适合pH2.5-3.0
氧化亚铁黄铜矿获得能量,以二氧化碳为碳源,以铵盐或氮源。
(3)氧化硫硫杆菌
革兰氏阴性菌,杆状、严格好氧、严格无机化能自养;
可氧化还原态硫,但不能氧化铁和金属硫化矿
温度5-40摄氏度,最适合温度30摄氏度
pH=1.5-4.0,最适合pH2.5-3.0
氧化还原态硫获得能量,以二氧化碳为碳源,以铵盐或氮源。
3、影响矿物浸出速度
(1)pH
(2)温度
(3)铵盐浓度、二氧化碳浓度等营养物情况、氧浓度、氧化还原电位
(4)铁浓度(0+1+2+3)、硫浓度、还原态硫化物浓度、硫酸盐浓度
(5)矿石粒度、比表面积
(6)微生物种群数量
4、工艺过程
如下图:
微生物冶金

充满含菌浸提液,再加以机械搅拌以增大冶炼速度。这种 方法虽然只能处理少量的矿石,但却易于控制。
• 地下浸提法:这是一种直接在矿床内浸提金属的方法。
这种方法大多用于难以开采的矿石、富矿开采后的尾矿、 露天开采后的废矿坑、矿床相当集中的矿石等
细菌冶金的优点
火山硫玻璃微生物发现
生物冶金的原理
• 生物冶金是指在相关微生物存在时, 由于微生物的催化氧化作用,将矿物 中有价金属以离子形式溶解到浸出液 中加以回收,或将矿物中有害元素溶 解并除去的方法。许多微生物可以通 过多种途径对矿物作用,将矿物中的 有价元素转化为溶液中的离子。利用 微生物的这种性质,结合湿法冶金等 相关工艺,形成了生物冶金技术
• 生物分解:铝土矿存在许多细菌,该类微生 物可分解碳酸盐和磷酸盐矿物。
生物浸出分类
• 堆浸法:通常有矿山附近的山坡、盘地、斜坡等地上,
铺上混凝土、沥清等防渗材料,将矿石堆集其上,然后将 事先准备好的含菌溶浸液用泵自矿堆顶面上浇注或喷淋矿 石的表面,使之在矿堆上自上而下浸润,经过一段时间后 浸提出有用金属。
• 提高金和贱金属的回收率;
• 从商业角度证实下游技术如溶剂萃取、电积法可用 于经生物技术处理过的溶液现物生产贱金属;
• 生产过程的简单化降低了前期投入和运营费用,缩 短了建设时间,维修简单方便;
• 生产在常压和室温(约为25摄氏度)条件下进行, 不用冷却设备,节约了投资和运营资本;
• 生物浸出的废弃物为环境所接受,节约了处理废弃 物的成本,生物浸出的废弃物的预防措施也很少;
黄铁矿
铜铀云母
黄铜矿
砷黄铁矿
微生物冶金的现状
国内:
目前,以中南大学邱冠周教授为首席科 学家已正式启动“微生物冶金的基础研 究”,该项目以教育部为依托、由中南大 学为第一承担单位,北京有色金属研究总 院、山东大学、中国科学院过程工程研究 所、北京矿冶研究总院和长春环境研究院 等单位协作承担,这标志着我国有色金属 矿产选冶领域的基础研究进入了与国际一 流水平同步的发展阶段。
生物冶金技术的原理与方法

生物冶金技术的原理与方法
生物冶金技术的原理与方法主要包括:
1. 微生物提高法:利用微生物的氧化作用,从低品位矿石中提高和富集金属元素。
2. 微生物堆浸法:利用微生物的作用溶解金属,然后用溶液萃取金属。
3. 微生物还原法:微生物代谢产生能溶解金属氧化物的还原剂,将金属还原为元素态。
4. 固定化细胞技术:将微生物固定在载体上,提高微生物的稳定性和可重复使用性。
5. 生物电化学技术:利用微生物的电化学活性,通过电化学反应回收金属。
6. 生物水解技术:使用酶促反应,通过水解提高金属的回收效率。
7. 生物吸附技术:利用微生物表面组分吸附金属,然后进行脱附富集。
8. 基因工程菌株:构建高效的金属回收与富集的基因工程微生物。
9. 生物淋滤技术:利用微生物的作用,从矿石中淋滤出可溶金属。
10. 生物合成技术:使用合成生物学手段,生产特异性金属结合蛋白等。
这些方法可以提高金属回收率,实现绿色环保的资源利用。
微生物冶金技术及其应用12.18

• 美国用细菌浸矿所得的铜已占该国铜产量 的10%以上。全世界用此法生产的铜达20 万吨(占20%),还将继续增长。 • 南非的Mintek矿业公司和澳大利亚Bactech 公司已具有成熟的细菌氧化技术,近年来 不断将其技术推向发展中国家。
国内外微生物浸铀技术发展现状
• 加拿大、印度、南非、法国等国已广泛应用细菌法溶 浸铀矿,并取得良好的经济效益。上世纪八十年代末 期,加拿大率先建起了两座生物浸铀工厂,在微生物 浸铀领域具有先进独到的技术;2002年瑞士建了一 座生物浸铀工厂,同时还回收其它伴生金属,现已进 入试运行阶段。细菌浸矿成本低,可以从常规水冶工 艺无法利用的低品位铀矿石中回收铀。
微生物冶金技术及其应用
李 江 刘亚洁 饶 军 王剑锋 白 涛
东华理工大学
• 微生物冶金技术是利用细菌或其代谢产物所 引起的生物化学氧化过程对矿物(尤其是硫 化矿)进行的氧化等化学作用,从而自矿石 中溶浸目的矿物的技术。 • 该技术是近几十年来兴起的以湿法冶金和微 生物学为基础的一门新兴交叉学科。 • 优势:反应条件温和 ,低能耗,环境友好。
微生物冶金技术研究及应用现状
国外生物冶金技术发展现状 • 1958年,美国利用氧化铁硫杆菌渗滤浸出由他矿的 硫化铜获得成功并取得专利。 • 生物冶金技术在细菌浸铜基础上已发展到浸出多种 贵重、放射性、稀有金属的技术,包括金、镍、铀、 钴、钼、铋、锌、锰、铅、硒、镉等。 • 目前世界上已有五十多家微生物浸出的生产装置, 主要分布在加拿大、法国、南非、美国、澳大利亚、 秘鲁、墨西哥等国。
2 FeS 2 + 7O2 + 2 H 2 O Th. ferrooxidans → 2 FeSO4 + 2 H 2 SO4 CuFeS 2 + 3O2 + 2 H 2 O Th. ferrooxidans → FeSO4 + CuSO4 + 2 H 2 FeAsS 2 + O2 + H 2 O Th. ferrooxidans → FeSO4 + H 3 AsO4 ( H 3 AsO3 )
微生物湿法冶金

微生物培养基制备与优化
培养基成分:包括碳源、氮源、无机盐等 培养基配比:根据微生物种类和生长需求进行优化 培养基灭菌:采用高压蒸汽灭菌等方法确保无菌环境 培养条件控制:温度、pH值、氧气等条件对微生物生长的影响
微生物接种与培养条件控制
微生物种类选择: 根据冶金需求选择 合适的微生物种类
接种量控制:确定 合适的接种量,提 高冶金效率
微生物湿法冶金应用案例
第五章
铜矿微生物湿法冶金应用案例
铜矿资源分布与开 采现状
微生物湿法冶金技 术原理
铜矿微生物湿法冶 金应用流程
实际案例分析:某 铜矿微生物湿法冶 金项目介绍
锌矿微生物湿法冶金应用案例
锌矿资源分布与特点
微生物湿法冶金技术原理
锌矿微生物湿法冶金工艺 流程
锌矿微生物湿法冶金应用 效果与优势
未来市场需求与增长趋势 技术应用拓展与跨界合作
微生物湿法冶金实践经验分 享
第七章
实验室研究经验分享
实验设计:确定合适的实 验方案,包括实验目的、 材料和方法
实验操作:按照实验方案 进行实验操作,注意实验 细节和规范
数据记录:详细记录实验 数据,包括实验结果和异 常情况
结果分析:对实验结果进 行分析和解释,得出科学 结论
未来发展前景与挑战
铀矿微生物湿法冶金应用案例
铀矿微生物湿法冶 金技术原理
铀矿微生物湿法冶 金应用案例背景
铀矿微生物湿法冶 金应用案例过程
铀矿微生物湿法冶 金应用案例结果与 效益
ቤተ መጻሕፍቲ ባይዱ
微生物湿法冶金优势与挑战
第六章
微生物湿法冶金优势分析
资源利用率高:微生物湿法冶金能够充分利用矿石中的有价金属,提高资源利用率。 环保性:微生物湿法冶金采用生物方法提取金属,避免了传统冶金的污染问题,具有环保性。 高效性:微生物湿法冶金具有较高的金属提取率和较短的周期,提高了生产效率。 灵活性:微生物湿法冶金适用于不同类型矿石的处理,具有较强的适应性。
细菌冶金知识总结

细菌冶金细菌冶金是指利用微生物 (细菌、古菌和真菌) 将矿石中有价金属以离子形式溶解到浸出液的过程。
它主要是应用细菌法溶浸低贫矿、难处理矿等。
细菌冶金的原理关于细菌从矿石中把金属溶浸出来的原理,至今仍在探讨之中。
(1)直接作用机理,所谓直接作用就是酶腐蚀金属矿物,即浸矿微生物附着于到矿石表面与矿石中的硫化矿物发生作用,使矿物氧化溶解。
(2)间接作用机理,所谓间接作用机理是浸矿过程中有 Fe3+ 的参与。
间接作用指的是细菌不需与矿物直接接触,由细菌氧化产生的Fe3+对其它元素进行氧化,而不是细菌直接与矿物作用, Fe3+相应被还原为 Fe2+ ,而 Fe2+又在细菌的作用下被氧化为 Fe3+ 。
(3)复合作用机理,所谓复合作用机理就是指在细菌浸出当中,既有细菌的直接作用,又有通过 Fe3+氧化的间接作用。
有些情况下以直接作用为主,有时则以间接作用为主,但两种作用都不可排除。
细菌冶金的工业化技术(1)堆浸法:通常在矿山附近的山坡、盆地、斜坡等地上,铺上混凝土、沥清等防渗材料,将矿石堆集其上,然后将事先准备好的含菌溶浸液用泵自矿堆顶面上浇注或喷淋矿石的表面 (在此过程中随之带入细菌生长所必须的空气) ,使之在矿堆上自上而下浸润,经过一段时间后浸出有用金属。
含金属的浸出液积聚在矿堆底部,集中送入收集池中,而后根据不同金属性质采取适当方法回收有用金属。
回收金属之后的含菌溶浸液经用硫酸调节 pH 后,可再次循环使用。
其特点是规模大、浸出时间长、生产成本低。
(2)槽浸法:矿石槽浸是一种渗滤浸出作业,通常在渗滤池或槽中进行。
矿石粒度比堆浸小,一般为 -3 到-5mm。
槽浸一次装矿数十到数百吨、周期为数十到数百天,浸出率也比较高。
槽浸的工作方式分为连续式与半连续式两种,一般用于大型冶炼厂,矿石需进行预加工,此法的成本比堆浸高,但反应速度快,金属回收率高,控制比较容易。
槽浸的浸出设备是搅拌反应器,反应器的搅拌可通过机械或空气搅拌方式达到。
细菌炼铜的原理化学式

细菌炼铜的原理化学式细菌炼铜是一种利用微生物中的特定菌株,以及其代谢产物对铜矿石进行提取和浸出的技术。
这种技术在金属提取领域中被广泛应用,因为它相对于传统的化学方法来说,具有操作简单、成本低、对环境友好等优点。
首先,细菌炼铜过程中使用的菌株主要属于氧化亚铁菌(Fe(II)-oxidizing bacteria)和硫氧化菌(sulfur-oxidizing bacteria)。
这些菌株在特定的环境条件下,可以利用铁离子和硫化物为能源,将其转化为能被细菌利用的氧化铁和硫酸。
细菌炼铜的过程可以分为以下几个步骤:1. 矿石粉碎和浸出:将含有铜的矿石经过机械粉碎,使其粒径适当缩小,然后通过水浸出,得到含有铜的浸出液。
2. 细菌培养和适应:将上述浸出液中的细菌菌种引进到发酵罐中,通过加入适当的培养基和维生素,提供细菌生长所需的营养物质,使细菌能快速繁殖和适应环境。
3. 氧化铁生成和铜离子溶解:细菌通过代谢将铁离子(Fe2+)氧化为氧化铁(Fe3+),这一过程既为细菌提供能量,也使得铜离子(Cu2+)溶解在溶液中。
4. 氧化铁重生:铜离子溶解后,可通过添加另一种细菌菌株,如硫氧化菌,将氧化铁还原为可再次被氧化铁菌氧化的亚铁离子(Fe2+),这个过程称为铁离子循环。
5. 铜沉淀和回收:最终,铜以氧化铜的形式沉淀在浸出液中,然后通过离心沉淀、滤纸过滤等手段,将其从溶液中分离出来。
整个细菌炼铜过程的化学反应可以用以下化学式表示:1. 铜离子溶解:Cu2S + 4Fe3+ + 8H2O →Cu2+ + 4Fe(OH)3 + H2SO42. 氧化铁生成:4Fe2+ + O2 + 4H+ →4Fe3+ + 2H2O3. 氧化铁重生:4Fe3+ + 4e- →4Fe2+4. 铜沉淀:2Cu2+ + 4OH- →Cu2O + H2O细菌炼铜过程中的关键步骤是细菌的代谢和氧化还原反应。
这些菌株通过吸附、氧化和还原等过程,将铜从矿石中提取出来,并将其溶解在溶液中,最终以氧化铜的形式沉淀下来。
微生物冶金概述

生物冶金细菌学研究进展
最初是由Colmer与Hinkel,分离
a
b
c
得到了氧化亚铁硫杆菌(T.f),拉
开了生物冶金细菌学的研究。现在
已经发现Acidithiobacillus
ferrooxidans、Leptospirillum
ferrooxidans和Acidiphilium spp
等几十个种属普遍存在于浸矿废水
• 1958年美国用细菌在铜矿中浸出了金属铜,之 后有20多个国家的学者开展了微生物冶金工业 的应用的研究。
• 1966年加拿大细菌浸出铀的研究和工业应用获 得成功,使得应用微生物技术在低品位金属矿、 难浸金矿、矿冶废料、矿冶废料处理等方面的应 用呈现较好的前景。已经实现了铜矿、铀矿、金 矿等一系列矿种的微生物浸出生产。南非、加拿 大、美国、英国先后有工厂投入生产应用。
缩短了建设时间,维修简单方便; • 生产在常压和室温(约为25摄氏度)条件下进行,
不用冷却设备,节约了投资和运营资本; • 生物浸出的废弃物为环境所接受,节约了处理废
弃物的成本,生物浸出的废弃物的预防措施也很 少; • 细菌易于培养,可承受生产条件的变化,对水的 要求也很低,每百万水溶液中可溶解固体物2万份。
中的。
d
e
嗜酸氧化亚铁硫杆菌是目 前生物冶金最有应用价值 的一个种。属革兰氏阴性, 化能自养菌,好氧嗜酸, 主要生长在pH1-3的环境
中。
几种浸矿细菌SEM照片
a:Acidithiobacillus ferrooxidans;b:Acidithiobacillus caldus;c: Acidithiobacillus albertensis;d:Leptospirillum ferrophilium;e: Acidiphilium spp.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细菌冶金的原理
细菌冶金是一种利用微生物的代谢活动来提取金属的新技术。
通过细菌的生物化学过程,可以将金属从矿石中溶解出来,并使其转化为可利用的形式。
这种方法相对于传统的冶金方法来说,具有环保、高效、低成本等优势。
细菌冶金的原理主要包括两个方面:细菌的代谢活动和金属的溶解与沉淀。
细菌的代谢活动对金属的溶解起着关键作用。
细菌通过吸收周围环境中的阳离子金属离子,并通过细胞内的代谢活动将其还原成为金属离子。
这种还原反应是通过细菌体内的特定酶催化完成的。
这些酶可以与金属离子中的氧化态进行还原反应,使金属离子转化为金属原子或金属离子。
金属的溶解与沉淀是细菌冶金中另一个重要的过程。
细菌通过产生特定的有机酸或氧化剂来溶解金属矿石中的金属。
这些有机酸或氧化剂可以与金属矿石中的金属形成络合物或氧化物,使金属离子从矿石中溶解出来。
同时,细菌还能通过产生特定的沉淀剂来沉淀金属离子。
这些沉淀剂可以与金属离子发生反应,使金属离子转化为金属沉淀物,从而实现金属的提取与回收。
细菌冶金的过程可以分为两个阶段:生物浸出和生物沉淀。
生物浸出是指通过细菌的代谢活动将金属从矿石中溶解出来的过程。
在这个过程中,细菌通过产生特定的酸或氧化剂来溶解金属矿石中的金属。
这些酸或氧化剂可以与金属矿石中的金属形成络合物或氧化物,使金属离子从矿石中溶解出来。
生物浸出的优势在于其反应速度快、温度低、环境友好,并且可以处理含金属的低品位矿石。
生物沉淀是指通过细菌的代谢活动将金属离子转化为金属沉淀物的过程。
在这个过程中,细菌通过产生特定的沉淀剂来沉淀金属离子。
这些沉淀剂可以与金属离子发生反应,使金属离子转化为金属沉淀物,从而实现金属的提取与回收。
生物沉淀的优势在于其反应选择性高、产物纯度高、操作简单,并且可以处理含有多种金属的废水或溶液。
细菌冶金技术在金属提取领域具有广阔的应用前景。
目前,已经有多种金属如铜、镍、锌、铅等通过细菌冶金技术成功地进行了提取。
细菌冶金不仅可以降低金属提取的成本,减少对自然资源的依赖,还可以减少对环境的污染。
因此,细菌冶金被认为是一种可持续发展的绿色冶金技术。
细菌冶金的原理是通过细菌的代谢活动将金属从矿石中溶解出来,并使其转化为可利用的形式。
这种技术具有环保、高效、低成本等优势,并且在金属提取领域具有广泛的应用前景。
随着对可持续发展的需求不断增加,细菌冶金技术有望成为未来金属冶金领域的重
要发展方向。