结构动力学心得汇总
结构力学感想

结构力学感想篇一:结构力学感想感悟结构力学这学期开设土木工程专业基础课结构力学,给我第一印象是:难并且复杂,但是实用。
结构力学(S truct uralMecha nics)是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科,它是土木工程专业和机械类专业学生必修的学科。
我以后专业方向可能选择结构方向,那么未来的工作和学习很可能一直需要学习结构力学并且研究它。
下面谈谈对结构力学初步的感悟。
结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。
结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。
这三种分析方法实用而且能把复杂的问题简单化,也就是简化实际工程中的问题。
在实际生活中,结构无处不在,结构体系是整个工程核心,结构一旦出问题,那么整个工程体系将会出现问题。
土建、水利等建筑工程首先考虑的就是建筑工程的结构,结构就是组成工程的灵魂。
任何复杂的工程体系都可以简化成一个个简单的结构体系来分析,进而强化改进整个建筑,使它们能够更安全、更经济、更耐久,满足工程需要。
结构力学在当前的实际中要靠建筑设计作为基础,在满足该设计的前提下进行结构分析与设计,单纯的从结构方面进行的建筑必定难以满足美观的要求,而在现在的建筑中,没有好的外观,纵使你的结构固若金汤也很难被接受。
对结构动力学的认识

结构动力学是一种研究结构在外部载荷下的动态响应和振动特性的学科。
它主要关注
的是结构在受到外部激励(如风、地震、交通等)时的振动响应,分析结构的稳定性、自然频率、振型和振幅等参数。
结构动力学的研究对于工程实践和安全评估具有重要
意义。
结构动力学研究的对象可以是各种类型的结构,如房屋、桥梁、塔楼、船舶、飞行器等。
在研究中,结构动力学通常采用数学模型来描述结构的振动响应,包括质点模型、连续体模型、有限元方法等。
在工程实践中,结构动力学的应用十分广泛。
例如,在建筑结构设计中,需要考虑地震、风荷载等外部载荷对结构的影响,通过结构动力学分析可以确定结构的合理构造
和材料选型;在航空航天领域,需要对飞行器结构进行动力学分析,以保证其安全性
和可靠性。
总之,结构动力学是一门研究结构在外部载荷下的动态响应和振动特性的重要学科,
对于工程实践和安全评估具有重要意义。
结构动力学学习总结

) t
2) 当 时,为临界阻尼系统,微分方程(1-9)的通解为
x(t ) e t (c1 +c2t )
(1-15)
由初始条件 x(t )
t 0
x0 , x(t )
t 0
0 ,可得
(1-16)
x(t ) e t [ x0 + ( 0 x0 )t ]
(1-7)
1.1.2 有阻尼的自由振动 单自由度系统考虑阻尼作用的自由振动方程为
mx(t )+cx(t )+kx(t )=0
(1-8)
或写为
x(t )+2 x(t )+ 2 x(t )=0
(1-9)
其中
c 2m
(1-10)
称为阻尼特性系数。常微分方程(1-9)的特征方程为
s 2 +2 s+ 2 =0
不难发现,式(1-14)和式(1-16)所表示的运动都没有振动的特征。 3) 当 时,为低阻尼临界系统,这时特征方程的根为
s1,2 i
(1-17)
其中 2 2 微分方程(1-9)的通解为
x(t ) e t ( B1 sin t + B2 cos t )
mx(t ) cx(t ) kx(t ) Pcos t
(1-25)
可知上式的通解为
x(t ) e t ( B1 sin t B2 cos t ) A sin( t )
(1-26)
将初始条件代入上式,可得到
x(t ) e t (
0 x0 sin t x0 cos t ) sin cos Ae t (sin cos t sin t ) A sin( t )
结构动力学

高等结构动力学学习心得体会1.这门课程独特的授课方式随着科学技术的进步,结构动力学越来越广泛地应用于建筑结构工程中的防震抗震,海洋平台设计,桥梁结构的抗震设计、桥梁结构故障诊断及桥梁结构健康状态监测等工程技术领域。
而工程界对结构系统进行动力分析的要求日益提高,我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是结构工程专业人员的基本任务,由于工程实际中大部分问题与动载荷有关,因此高等结构动力学无疑是一门十分重要的学科。
其实高等结构动力学对我们来说并不陌生,总的来说它是结构力学的基础上来研究动载荷的作用效果,并且与我们在大四时期所接触机械振动这门课程很相似。
它研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。
它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的一门课程。
若不结合工程实例,是很难理解这门课程的理论知识的,在大四时我学完机械振动这门课程后仍旧理解的不甚透彻。
针对这一现象老师开设的让同学们上台讲课这一环节无疑让我们受益匪浅,一方面来说对于上台讲课的同学,他们在积极准备的同时必然会去详细了解结构动力学在这一工程领域的应用,无形中促使了他们去学习这门课程,而对于台下听的同学,也这让我们对这门课程的工程应用有了更广泛和更深刻的理解,不再仅限于学习理论知识,这对深刻,学习这门课程也有很大的帮助。
老师的这种授课方式是极好的,讲主动权掌握在同学自己手中,无疑是让我们学会如何自主的学习,当各位同学讲述完自己准备的东西之后还开设了讨论环节,可以提出你自己不懂的问题,做进一步讨论,进一步加深对这一块知识的理解,除此以外你还可以提出自己的见解或者讲课同学的不足之处,大家互帮互助,共同进步。
2.对于这门课程的学习收获这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算等问题。
结构动力学 总结

结构动力学 动力特性(天生就有的,爹妈给的,不随外界任何事物改变)自振频率ω:初速度或初位移引起自由振动的圆频率振型:结构按照某自振频率振动的位移形态阻尼:振动过程中的能量耗散(主要由结构内部的特征决定的)动力作用:周期荷载、冲击荷载、随机荷载(地震)动力反应(响应):动内力、动荷载、速度、加速度结构动力学是研究动力反应的规律的学问,一般思路是先研究自由振动(目的是搞清该结构的动力特性)再研究强迫振动(动力特性+动力作用)利用振型分解反应谱法,可以将每个基本振型的参与系数求出来,这样的最大好处是可以将耦联微分方程解耦。
刚度法通式:()()()()mY t cY t kY t F t ++=1、 单自由度无阻尼自由振动(分析自由振动的目的是确定体系的动力特性:周期、自振频率)()()0my t ky t += (()[()]y t my t δ=-) (令k m ω=) 解为:00()cos sin v y t y t t ωωω=+=sin()A t ωϕ+ (22002v A y ω=+,00tan y v ωϕ=) 重要结论:由微分方程的解可以知道,无阻尼振动是一个简谐振动,其周期和自振频率为2T πω=,k mω=周期和自振频率之和自己质量与刚度有关和外界因素无关。
2、单自由度有阻尼自由振动()()()0my t cy t ky t ++= (令=22c c mw mkξ=) 即微分方程为2()2()()0y t wy t w y t ξ++=(实际建筑结构的阻尼比1ξ<)解为000()[sin cos ]t d d dv y y t e t y t ξωξωωωω-+=+=sin()t d Ae t ξωωϕ-+(21d ωωξ=-) 221000000(),d d v y y A y tg v y ξωωϕωξω-+=+=+其中 重要结论:1)由方程的解看出弱阻尼情况下的自由振动是一种衰减振动,阻尼使振幅按指数规律衰减。
高等结构动力学总结

结构动力学课程总结与进展综述首先谈一下我对高等结构动力学课程的认识。
结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。
它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。
这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。
既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算。
我们是航空院校,当然我们所修的高等结构动力学主要针对的是飞行器结构。
这门课程很难,我通过课程和考试学到了不少东西,当然,也有很多东西不懂,我的研究方向是动力学结构优化设计,其中我对于目前的灵敏度分析研究比较感兴趣,这门课程是我以后学习的基础。
二十世纪中叶,计算机科学发展迅速,有限元方法得到长足进步,使得力学,特别是结构力学的研究方向发生了重大变化,研究范围也得以拓宽。
长期处于被动状态的结构分析,转化到主动的结构优化设计,早期的结构优化设计,考虑的是静强度问题。
但实践指出,许多工程结构,例如飞行器,其重大事故大多与动强度有关。
同理,在航天、土木、桥梁等具有结构设计业务的工作部门,运用结构动力学优化设计技术,必将带来巨大的经济效益。
20世纪60年代,动力学设计也称动态设计(dynamic design)开始兴起,但真正的发展则在八、九十年代,现正处于方兴未艾之际。
“动态设计”一词常易引起误解,逐被“动力学设计”所取代。
进入90年代以来,结构动力学优化设计的研究呈现出加速发展的态势,在许多方面取得了令人耳目一新的成果。
尽管如此,它的理论和方法尚有待系统和完善,其软件开发和应用与工程实际还存在着较大的距离,迄今尚存在着许多未能很好解决甚至尚未涉足的问题。
结构动力学总结(总1)

结构动力学总结
清华大学土木工程系 刘晶波 2005年秋
第1章 概 述
第1章 概述
结构动力分析的目的: ☼ 确定动力荷载作用下结构的内力和变形; ☼ 确定结构的动力特性。 动力荷载:确定性,非确定(随机) ☼ ☼ ☼ ☼ 简谐荷载; 非简谐周期荷载; 冲击荷载; 任意非周期荷载。
自由振动试验确定结构阻尼比ζ:对数衰减率法。 振动中的能量:
无阻尼体系能量守恒; 有阻尼体系能量被阻尼消耗,而在整个振动过程中, 阻尼始终在耗能。
第3章 单自由度体系—对简谐荷载的反应
运动方程的解法:
全解=齐次的通解(瞬态反应)+特解(稳态反应)
u0 1 R 动力放大系数: d = = ust [1 − (ω / ωn )2 ]2 + [2ζ (ω / ωn )]2
第4章 多自由度体系(续)
Rayleigh阻尼及其性质
[C ] = a0 [M ] + a1 [K ]
⎧a 0 ⎫ 2ζ ⎧ωiω j ⎫ ⎨ ⎬ , ζi = ζ j = ζ ⎨ ⎬= ⎩ a1 ⎭ ωi + ω j ⎩ 1 ⎭
第4章 多自由度体系(续)
非经典阻尼阵的构造:
可以分别采用Rayleigh阻尼构造各子结构的阻尼 矩阵,再组合形成体系的总体阻尼阵。
第4章 多自由度体系(续)
静力修正法(Static Correction Procedure)
{u(t )} = ∑{φ}n qn (t ) =∑{φ}n qn + ∑{φ}n Pn (t )
n =1
结构动力学读书报告

《结构动力学》读书报告结构动力学读书报告学习完本门课程和结合自身所学专业,我对本门课程内容的理解和在各方面的应用总结如下:1.(1)结构动力学及其研究内容:结构动力学是研究结构系统在动力荷载作用下的振动特性的一门科学技术,它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。
本书的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。
(2)主要理论分析结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。
对于绝大多数实际结构,在工程分析中主要采用数值方法。
作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。
(3)数学模型将结构离散化的方法主要有以下三种:①集聚质量法:把结构的分布质量集聚于一系列离散的质点或块,而把结构本身看作是仅具有弹性性能的无质量系统。
由于仅是这些质点或块才产生惯性力,故离散系统的运动方程只以这些质点的位移或块的位移和转动作为自由度。
对于大部分质量集中在若干离散点上的结构,这种方法特别有效。
②广义位移法:假定结构在振动时的位形(偏离平衡位置的位移形态)可用一系列事先规定的容许位移函数fi(它们必须满足支承处的约束条件以及结构内部位移的连续性条件)之和来表示,例如,对于一维结构,它的位形u(x)可以近似地表为:结构动力学(1) 式中的qj称为广义坐标,它表示相应位移函数的幅值。
这样,离散系统的运动方程就以广义坐标作为自由度。
对于质量分布比较均匀,形状规则且边界条件易于处理的结构,这种方法很有效。
③有限元法:可以看作是分区的瑞利-里兹法,其要点是先把结构划分成适当数量的区域(称为单元),然后对每一单元施行瑞利-里兹法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构动力学学习总结通过对本课程的学习,感受颇深。
我谈一下自己对这门课的理解:一.结构动力学的基本概念和研究内容随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。
我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。
结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。
它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。
高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。
这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。
既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。
二.动力分析及荷载计算1.动力计算的特点动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。
如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。
但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。
如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。
荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。
在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。
另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。
结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。
而且,除了需要知道结构质量分布、几何形态外,还应知道反应其动力性能的参数,如动弹性模量E、动切边模量G等。
2.动力荷载的分类动力荷载按其是否具有随机性,可分为确定性和非确定性两类。
确定性动力荷载系指当时间给定后其量值是唯一确定的,故亦称为数定的动力荷载。
常见的确定性动力荷载,其方向、作用点位置不变,其大小随时间变化。
例如,周期荷载,其中以简谐荷载最为常见;集度大,作用时间短暂的冲击荷载;持续时间长的非周期一般荷载。
非确定性动力荷载的量值随时间的变化规律不是唯一确定的,而是一个随机过程,故亦称为随机荷载,也称非数定的动力荷载。
虽然非确定性动力荷载不能用时间t的确定性函数来描述,但它受概率统计规律所制约。
地震荷载、海浪荷载和风荷载都可视为具有随机性质的非确定性动力荷载。
3.动力分析的目的和方法结构动力分析的目的是确定结构在动力荷载下的响应,为结构设计、保证结构的经济与安全提供科学依据。
研究结构的受迫振动是结构动力分析的基本任务。
动力分析的研究方法有:理论计算法、试验量测法和计算、试验混合法三种。
随着计算技术的发展,结构动力系统的数值模拟显得越来越越重要,尤其是复杂结构,如水坝、地基和水库系统的三维动力分析、核电站结构系统的地震响应和振动控制等。
结构试验时检验数学模型的正确性,为理论计算提供可靠地重要途径。
试验量测的方法已由最初的机测和电测发展到光测,大大提高了试验量测的范围和精度。
重要结构的动力研究常常需要将数值计算和试验结合起来,一方面利用数值计算为结构试验提供依据,另一方面,根据试验结果,不断修正模型,以使数学模型能更好地反映实际情况。
高老师主要介绍确定荷载作用下结构动力响应计算的基本理论和方法,最后介绍系统参数识别、动态子结构法、随机振动主控制等问题。
三.运动方程式的建立建立运动方程式的原理和方法有很多种,高老师主要给我们介绍了以下三种。
1.达朗贝尔原理——直接平衡法利用达朗贝尔原理引进惯性力,根据作用在体系或其微元体上全部力的平衡条件,按静力平衡计算,直接写出运动方程。
2.虚位移原理根据作用在体系上全部力在虚位移上所作虚功总和为零的条件,即根据虚功原理导出以广义坐标表示的运动方程。
对于复杂系统,应用最广的是第二种方法。
3.哈密顿原理利用广义坐标写出系统的动能、势能、阻尼耗散函数及广义力表达式,根据哈密顿原理或其等价形式的拉格朗日方程导出以广义坐标表示的运动方程。
通常,结构的运动方程是一个二阶常微分方程组,写成矩阵形式为:Μ(t)+D(t)+Kq(t)=Q(t),式中q(t)为广义坐标矢量,是时间t 的函数,其上的点表示对时间的导数;Μ、D、K分别为对应于q (t)的结构质量矩阵、阻尼矩阵和刚度矩阵;Q (t)是广义力矢量。
以上三种方法中,直接平衡法应用最为广泛,因为它的物理概念清楚,而且简便,只要熟悉静力计算中建立方程的方法就不难写出运动方程。
虚位移原理本身等价于力的平衡条件,这是静力计算中已为大家所熟悉,所不同的是要引入惯性力和阻尼力。
哈密顿原理计算能量的变分,不需要引入惯性力,适用于连续质量分布系统,但计算较为麻烦,在工程结构中应用很少。
四.结构动力学在抗震设计中的应用1.序言:地震时地面运动是一个复杂的时间-空间过程。
结构地震响应应取决于地震动特性和结构特性,特别是结构的动力特性。
结构地震响应分析的水平也是随着人们对这两方面认识的逐步深入而提高的。
近几十年来,人们对地震动的谱成分和各类结构的动力特征有了深入认识。
因此,结构的分析也随之有了相应的进展。
结构地震反应分析的发展经过了静力法、反应谱法、动力法三个阶段。
反应谱法根据单自由度系统的地震响应,既考虑了结构动力特性与地震动特性之间的动力关系,又保持了静力法的形式,在各国结构抗震设计规范中已被广泛采用。
现行的抗震设计方法包括反应谱法和时程分析法。
2.方法比较:根据《建筑结构抗震规范》,对单自由度体系,给定场地条件以及结构的自振周期和阻尼比,便可以从反应谱中获得结构的最大地震响应(位移、速度和加速度),进而可求出结构的地震力。
对于多自由度体系,首先采用多自由度体系的反应谱理论,即先利用模态分析法将多自由度体系分解为一系列广义单自由度体系,最后将各振型的最大值用一定的振型组合方法组合出结构的最大地震反应[。
由于反应谱方法基本正确地反映了地震动特性,并考虑了结构的动力特性,所以对于一般的结构而言,具有良好的精度,且概念明确,计算方便。
静力法(static method)假设结构各部分水平加速度与地面运动水平加速度完全一样。
因此,若以W表示结构某一部分的重力,则由于地震作用使这一部分重力产生的最大水平惯性力的绝对值为==KW式中:为地震时地面运动最大水平加速度;g为重力加速度;K=,称为地震系数或震度。
这一公式的物理意义是:结构为绝对刚体,其最大加速度就等于地震最大加速度。
由地震作用引起的惯性力,可以当做静力作用于结构上,然后按静力学方法计算结构的响应。
上式表示的惯性力通常称为惯性力。
用这样的公式计算地震荷载的方法对于刚性结构是适用的。
但对于柔性结构,如烟囱、多层钢架、高桥墩、工业与民用建筑物以及高而薄的挡水坝等,就会产生较大的误差。
因为该方法将结构当做绝对刚体,忽略了结构弹性性质的动力性能,所以称它为静力理论。
地震地面运动是一个非平稳随机过程,而随机振动法充分考虑了地震发生的概率特性,所以普遍认为随机振动法是一种合理的分析方法。
但是,随机振动法的缺点是它的计算量庞大而且对于非线性问题可能引起较大的误差,在处理罕遇地震下的强非线性问题时有其局限性。
时程分析法是确定性动力分析方法的一种,是发展较为成熟、应用较多的一种方法。
由于这种分析方法是在离散时间点上一步一步地求响应的数值解,所以该法可以在任一时间点上随时修改结构参数,很适合于处理参数随时间变化的非线性问题。
它既可虑地震波的多维多点输入,还可以考虑结构几何非线性、物理非线性、非比例阻尼和桩土-结构相互作用等的地震反应。
常用的积分方法有线性加速度法。
3.这里主要介绍比较先进的时程分析法:逐步积分数值方法特别适用于计算大型结构在地震作用下的动力响应,其无需像振型叠加法那样要预先花费很多的工作量计算频率和振型。
此外,由于计算中考虑几何非线性大变形的影响,本文中采用Newmark 逐步积分方法求解。
时间步内增量形式的振动平衡方程为:++=f (1) 式中为质量;为比例阻尼矩阵;为刚度矩阵;分别为时间内加速度向量、速度向量和位移向量;f为地面运动向量。
时间内位移、速度与加速度向量增量关系可表示为:++=f(2)假定在内微小时段内加速度均为线性变化,则式(1)与(2)相减得动力方程的增量形式++=f (3)时程分析法就是将简谐力作用划分为一系列微小时段,利用(3)求解在0、、2······等各个时刻的近似解。
Wilson-法由于计算精度高、稳定性好而在时程分析中广泛采用。
4.注意:(1)在进行时程分析过程中,利用上述方法计算结构反应关键的是地震动的描述,即恰当地输入地震波。
(2)分析和结果存在一定的局限性,即计算结果仅仅是选择地震波的反应,若选择另外一条地震波,计算结果差别很大。
(3)为得到结构反应的统计结果,必须对多条地震波进行分析,工作量较大。
五.学后感言通过本课程的学习,我了解到:结构的动力计算与静力计算有很大的区别。
静力计算是研究静荷载作用下的平衡问题。
这时结构的质量不随时间快速移动,因而无惯性力。
动力计算研究的是动荷载作用下的运动问题,这时结构的质量随时间快速运动,惯性力的作用成为必须考虑的重要问题。
根据达朗贝尔原理,动力计算可以转化为静力平衡问题来处理。
但是,这是一种形式上的平衡。
也就是说,动力计算中,虽然形式仍是是在列平衡方程,但是这里要注意两个问题:所考虑的力系中要包括惯性力这个新力,考虑的是瞬间的平衡,荷载、内力等都是时间的函数。
我们首先学习了单自由度系统自由振动和受迫振动的概念,所以在学习多自由度系统和弹性体的振动分析时,则重点学习后者的振动特点以及前者的联系和区别,这样既节省了时间,又抓住了重点。
由于多自由度系统振动分析的公式推导是以矩阵形式表达为基础的,我们开始学习时感到有点不适应,但是随着课程的进展,加上学过矩阵论这门课后,我们自觉地体会到矩阵形式表达非常有利于数值计算时的编程,从中也感受到数学知识的魅力和现代技术的优越性,这样就大大增强了我们学习的兴趣。
但是,我在学习过程中也遇到了许多问题:傅里叶变换和常微分方程的求解等,很多知识在大一学习的《高等数学》中就因为是难点而对我们不作过高要求,所以也没有深入的学习,现在学习《结构动力学》时我们普遍感到数学知识的生疏与不足。