2017届中考数学压轴题专项汇编专题9费马点
中考数学常见几何模型最值模型-费马点问题

专题12 最值模型-费马点问题最值问题在中考数学常以压轴题的形式考查,费马点问题是由全等三角形中的手拉手模型衍生而来,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的费马点问题进行梳理及对应试题分析,方便掌握。
【模型背景】皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.费马点:三角形内的点到三个顶点距离之和最小的点。
【模型解读】结论1:如图,点M 为△ABC 内任意一点,连接AM 、BM 、CM ,当M 与三个顶点连线的夹角为120°时,MA +MB +MC 的值最小。
注意:上述结论成立的条件是△ABC 的最大的角要小于120º,若最大的角大于或等于120º,此时费马点就是最大角的顶点A 。
(这种情况一般不考,通常三角形的最大顶角都小于120°)【模型证明】以AB 为一边向外作等边三角形△ABE ,将BM 绕点B 逆时针旋转60°得到BN ,连接EN .△△ABE 为等边三角形,△AB =BE ,△ABE =60°.而△MBN =60°,△△ABM =△EBN . 在△AMB 与△ENB 中,△AB BEABM EBN BM BN =⎧⎪∠=∠⎨⎪=⎩,△△AMB △△ENB (SAS ). 连接MN .由△AMB △△ENB 知,AM =EN .△△MBN =60°,BM =BN ,△△BMN 为等边三角形.△BM =MN .△AM +BM +CM =EN +MN +CM .△当E 、N 、M 、C 四点共线时,AM +BM+CM的值最小.此时,△BMC =180°﹣△NMB =120°;△AMB =△ENB =180°﹣△BNM =120°;△AMC =360°﹣△BMC ﹣△AMB =120°.费马点的作法:如图3,分别以△ABC 的AB 、AC 为一边向外作等边△ABE 和等边△ACF ,连接CE 、BF ,设交点为M ,则点M 即为△ABC 的费马点。
最值模型之费马点模型(解析版)

最值模型之费马点模型费马点问题是由全等三角形中的手拉手模型衍生而来,主要考查转化与化归等的数学思想,在各类考试中都以中高档题为主。
本专题就最值模型中的费马点问题进行梳理及对应试题分析,方便掌握。
【模型背景】皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.费马点:三角形内的点到三个顶点距离之和最小的点。
【模型解读】结论1:如图,点M为△ABC内任意一点,连接AM、BM、CM,当M与三个顶点连线的夹角为120°时,MA+MB+MC的值最小。
注意:上述结论成立的条件是△ABC的最大的角要小于120º,若最大的角大于或等于120º,此时费马点就是最大角的顶点A。
(这种情况一般不考,通常三角形的最大顶角都小于120°)【模型证明】以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.∵△ABE为等边三角形,∴AB=BE,∠ABE=60°.而∠MBN=60°,∴∠ABM=∠EBN.在△AMB与△ENB中,∵AB=BE∠ABM=∠EBNBM=BN,∴△AMB≌△ENB(SAS).连接MN.由△AMB≌△ENB知,AM=EN.∵∠MBN=60°,BM=BN,∴△BMN为等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.∴当E、N、M、C四点共线时,AM+BM+CM 的值最小.此时,∠BMC=180°-∠NMB=120°;∠AMB=∠ENB=180°-∠BNM=120°;∠AMC=360°-∠BMC-∠AMB=120°.费马点的作法:如图3,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点。
[全]中考数压轴题之费马点模型详解
![[全]中考数压轴题之费马点模型详解](https://img.taocdn.com/s3/m/a15ddf7202d276a201292e64.png)
中考数压轴题之费马点模型详解如图,在四边形ABCD中,ZB=60°,AD=30°,AB=BC.(1)求Z4+ZC的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=l i点E在四边形ABCD内部运动,且满足?IE?=BE2*CE2)求点E运动路径的长度.这期这道题并不是中考真题,我也没找到是哪里的模考题,但是不影响这道题的重要性,这种类型的题目,同学们如果做过总结,会发现很简单,如果不做总结,考试时间都给你想你也想不出来,下面我们就来看看这道题吧第一问,求匕A+zC的度数,这个很简单,就是270。
第二问让我们连接BD,探究一下三条边之间的关系A这关系看不出来,我们能够拿尺子量一下,发现不是加和关系,那么考虑勾股定理关系,发现就是它。
这里要注意一下,有的题目会让我们猜测关系,但是关系往往不是那么容易看出来的,所以我们有必要借助一些工具,比如刻度尺,量角器这些来进行辅助猜测。
既然判断出是勾股定理关系,那么我们该怎么证明呢?首先想到是要把它们放到一个三角形当中去,不过这个三角形在哪里呢?这边就需要同学们积累一下了,遇到这种边相等,且存在勾股定理关系的,我们要想到旋转。
A我们将红色的三角形绕点B顺时针旋转60。
到蓝色的三角形的位置,因为BA=BC,所以旋转过来刚好能重合,我去居然这么巧!其实就是因为相等才想到旋转的,这种技巧需要大家记忆,否则你考试很难考自己想出来的。
之后我们就发现,AD=CD',BD=BD',不过好像还是没有把这三条边放到一个三角形当中去,不急,我们还要连接DD,,这样^DD,就是等边三角形,怎么突然它就是等边三角形了?因为我旋转了60°,而且BD=BD',所以它自然是等边三角形。
那么后面就简单了,BD与DD'是相等的,所以三条边都转化到了A CDD'当中,那么问题就转化为证明/DCD'=90°了。
中考中的费马点详解加练习

皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。
之所以称业余,是由于皮耶·德·费马具有律师的全职工作。
他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。
费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。
著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王。
“贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的明星。
费马点问题最早是由法国数学家皮埃尔·德·费马在一封写给意大利数学家埃万杰利斯塔·托里拆利(气压计的发明者)的信中提出的。
托里拆利最早解决了这个问题,而19世纪的数学家斯坦纳重新发现了这个问题,并系统地进行了推广,因此这个点也称为托里拆利点或斯坦纳点,相关的问题也被称作费马-托里拆利-斯坦纳问题。
这一问题的解决极大推动了联合数学的发展,在近代数学史上具有里程碑式的意义。
“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。
若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点算起的都要小。
这个特殊点对于每个给定的三角形都只有一个。
1.若三角形3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的X角相等,均为120°。
所以三角形的费马点也称为三角形的等角中心。
2.若三角形有一内角大于等于120°,则此钝角的顶点就是距离和最小的点。
中考专题费马点讲义与练习

中考专题费马点讲义与练习从“费马点”说起前言在解题的过程中,我们常常会遇到一些有趣并且有意义的性质。
而其中一个被广泛应用的概念就是费马点。
在本文中,我们将从探究费马点的历史背景开始,逐步深入了解费马点的性质和应用。
一、走近费马点1.设计题费马点是一个有趣的概念。
如图4—11所示,P为△ABC 所在平面上的一点。
当∠APB=∠XXX∠CPA=12°时,点P就被称为费马点。
费马点有许多有趣并且有意义的性质,例如,平面内一点P到△ABC三顶点的距离之和为PA+PB+PC,当点P为费马点时,距离之和最小。
假设A、B、C分别表示三个村庄,我们要选一处建车站,使车站到三个村庄的公路路程的和最短。
如果不考虑其他因素,那么车站应该建在费马点上。
A。
探究费马点1) 历史背景在探究费马点之前,我们需要了解费马点被发现的历史背景。
2) 特殊三角形中的费马点我们可以在特殊三角形中寻找并验证费马点的性质。
例如,当△ABC是等边三角形、等腰三角形或直角三角形时,费马点有哪些性质?3) 小论文我们可以把探究结果写成一篇小论文,并通过与同学交流来修改完善。
2.实例分析如图4—112所示,若P为△ABC所在平面上的一点,且∠APB=∠BPC=∠CPA=120°,则点P被称为△XXX的费马点。
1) 锐角△XXX的费马点如果点P为锐角△XXX的费马点,且∠ABC=60°,那么PB的值为什么?已知PA=3,PC=4.2) 求证如图所示,在锐角△ABC外侧作等边△ACB′,连结BB′。
证明:BB′过△ABC的费马点P,且BB′=PA+PB+PC。
3.探究问题1) 阅读理解如图(1),在已知△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△XXX的费马距离。
如图(2),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD,此为托勒密定理。
初中费马点例题

中考数学几何模型:费马点最值模型费马尔问题思考:如何找一点P 使它到△ABC 三个顶点的距离之和PA+PB+PC 最小?当B 、P 、Q 、E 四点共线时取得最小值典题探究=BP AP CP BP PQ QE BE++++≥例题1.已知:△ABC 是锐角三角形,G 是三角形内一点。
∠AGC=∠AGB=∠BGC=120°.求证:GA+GB+GC 的值最小.证明:将△BGC 逆时针旋转60°,连GP,DB.则△CGB ≌△CPD ;∴∠CPD=∠CGB=120°,CG=CP,GB=PD,BC=DC,∠GCB=∠PCD.∵∠GCP=60°,∴∠BCD=60°,∴△GCP 和△BCD 都是等边三角形。
∵∠AGC=120°,∠CGP=60°.∴A 、G 、P 三点一线。
∵∠CPD=120°,∠CPG=60°.∴G 、P 、D 三点一线。
∴AG 、GP 、PD 三条线段同在一条直线上。
∵GA+GC+GB=GA+GP+PD=AD.∴G 点是等腰三角形内到三个顶点的距离之和最小的那一点变式练习>>>1.如图,P 是边长为1的等边ABC ∆内的任意一点,求t PA PB PC =++的取值范围.解:将BPC ∆绕点B 顺时针旋转60°得到''BP C ∆,易知'BPP ∆为等边三角形.从而''''PA PB PC PA PP P C AC ++=++≥(两点之间线段最短),从而3t ≥.过P 作BC 的平行线分别交AB AC 、于点M N 、,易知MN AN AM ==.因为在BMP ∆和PNC ∆中,PB MP BM <+①,PC PN NC <+②。
又APM ANM AMN ∠>∠=∠,所以PA AM <③.①+②+③可得()()()12t AM BM MP NP NC AB MN NC AN NC <++++=++=++=,即2t <.综上,t PA PB PC =++32t ≤<.例题2.已知正方形ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为26解如图2,连接AC,把△AEC绕点C顺时针旋转60°,得到△GFC,连接EF、BG、A G,可知△EFC、△AGC都是等边三角形,则EF=CE.又FG=AE,∴AE+BE+CE=BE+EF+FG.∵点B、点G为定点(G为点A绕C点顺时针旋转60°所得).∴线段BG即为点E到A、B、C三点的距离之和的最小值,此时E、F两点都在BG上.设正方形的边长为a,那么BO=CO=22a,GC2a,GO=62a.∴BG=BO+GO=22a+62a.∵点E到A、B、C三点的距离之和的最小值为26+∴22a+62a26a=2.注本题旋转△AEB、△BEC也都可以,但都必须绕着定点旋转,读者不妨一试.变式练习>>>2.若P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4,求PB的值.例题3.如图,矩形ABCD是一个长为1000米,宽为600米的货场,A、D是入口,现拟在货场内建一个收费站P,在铁路线BC段上建一个发货站台H,设铺设公路AP、DP以及PH之长度和为l,求l的最小值.【解答】3500600 ,线段A 1E 为最短.变式练习>>>3.如图,某货运场为一个矩形场地ABCD ,其中AB =500米,AD =800米,顶点A ,D 为两个出口,现在想在货运广场内建一个货物堆放平台P ,在BC 边上(含B ,C 两点)开一个货物入口M ,并修建三条专用车道PA ,PD ,PM .若修建每米专用车道的费用为10000元,当M ,P 建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留整数)连接AM ,DM ,将△ADP 绕点A 逆时针旋转60°,得△AP ′D ′,由(2)知,当M ,P ,P ′,D ′在同一条直线上时,AP +PM +DP 最小,最小值为D ′N ,∵M 在BC 上,∴当D ′M ⊥BC 时,D ′M 取最小值,设D ′M 交AD 于E ,∵△ADD ′是等边三角形,∴EM =AB =500,∴BM =400,PM =EM ﹣PE =500﹣,∴D ′E =AD =400,∴D ′M =400+500,∴最少费用为10000×(400+500)=1000000(4+5)元;∴M 建在BC 中点(BM =400米)处,点P 在过M 且垂直于BC 的直线上,且在M 上方(500﹣)米处,最少费用为1000000(4+5)元.例题4.如图,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为A (﹣6,0),B (6,0),C (0,4),延长AC到点D,使CD=AC,过点D作DE∥AB交BC的延长线于点E.(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连接DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)在第二问的条件下,设G为y轴上一点,点P从直线y=kx+b与y轴的交点出发,先沿y轴到达G 点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.(要求:简述确定G点位置的方法,但不要求证明)【解答】解:(1)∵A(﹣6,0),C(0,4)∴OA=6,OC=4,设DE与y轴交于点M由DE∥AB可得△DMC∽△AOC,又∵CD=AC∴,∴CM=2,MD=3,同理可得EM=3∴OM=6,∴D点的坐标为(3,6);(2)由(1)可得点M的坐标为(0,6)由DE∥AB,EM=MD,可得y轴所在直线是线段ED的垂直平分线∴点C关于直线DE的对称点F在y轴上,∴ED与CF互相垂直平分∴CD=DF=FE=EC,∴四边形CDFE为菱形,且点M为其对称中心作直线BM,设BM与CD、EF分别交于点S、点T,可证△FTM≌△CSM,∴FT=CS,∵FE=CD,∴TE=SD,∵EC=DF,∴TE+EC+CS+ST=SD+DF+FT+TS,∴直线BM将四边形CDFE分成周长相等的两个四边形,由点B(6,0),点M(0,6)在直线y=kx+b上,可得直线BM的解析式为y=﹣x+6.(3)解法1∵BQ=AQ,∴MQ+2AQ最小就是MQ+AQ+BQ最小,就是在直线MO上找点G使他到A、B、M三点的距离和最小.至此,再次发现这又是一个费尔马问题的变形,注意到题目中等边三角形的信息,考虑作旋转变换.把△MQB绕点B顺时针旋转60°,得到△M′Q′B,连接QQ′、MM′(图5),可知△QQ′B、△MM′B 都是等边三角形,则QQ′=BQ.又M′Q′=MQ,∴MQ+AQ+BQ=M′Q′+QQ′+AQ.∵点A 、M ′为定点,所以当Q 、Q ′两点在线段A M ′上时,MQ +AQ +BQ 最小.由条件可证明Q ′点总在AM ′上,所以A M ′与OM 的交点就是所要的G 点(图6).可证OG =12MG .图5图6图7解法2考虑12MQ +AQ 最小,过Q 作BM 的垂线交BM 于K ,由OB =6,OM =,可得∠BMO =30°,所以QK =12MQ .要使12MQ +AQ 最小,只需使AQ +QK 最小,根据“垂线段最短”,可推出当点A 、Q 、K 在一条直线上时,AQ +QK 最小,并且此时的QK 垂直于BM ,此时的点Q 即为所求的点G (图7).过A 点作AH ⊥BM 于H ,则AH 与y 轴的交点为所求的G 点.由OB =6,OM =OBM =60°,∴∠BAH =30°在Rt △OAG 中,OG =AO ·tan ∠BAH =∴G 点的坐标为(0,G 点为线段OC 的中点).例题5.如图1,已知一次函数y =x +3的图象与x 轴、y 轴分别交于A 、B 两点,抛物线y =﹣x 2+bx +c 过A 、B 两点,且与x 轴交于另一点C .(1)求b 、c 的值;(2)如图1,点D 为AC 的中点,点E 在线段BD 上,且BE =2ED ,连接CE 并延长交抛物线于点M ,求点M 的坐标;(3)将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,如图2,P 为△ACG 内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在他们的左侧作等边△APR ,等边△AGQ ,连接QR①求证:PG =RQ ;②求PA +PC +PG 的最小值,并求出当PA +PC +PG 取得最小值时点P 的坐标.【解答】解:(1)∵一次函数y =x +3的图象与x 轴、y 轴分别交于A 、B 两点,∴A (﹣3,0),B (0,3),∵抛物线y=﹣x2+bx+c过A、B两点,∴解得,∴b=﹣2,c=3.(2),对于抛物线y=﹣x2﹣2x+3,令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,∴点C坐标(1,0),∵AD=DC=2,∴点D坐标(﹣1,0),∵BE=2ED,∴点E坐标(﹣,1),设直线CE为y=kx+b,把E、C代入得到解得,∴直线CE为y=﹣x+,由解得或,∴点M坐标(﹣,).(3)①∵△AGQ,△APR是等边三角形,∴AP=AR,AQ=AG,∠QAC=∠RAP=60°,∴∠QAR=∠GAP,在△QAR和△GAP中,,∴△QAR≌△GAP,∴QR=PG.②如图3中,∵PA+PG+PC=QR+PR+PC=QC,∴当Q、R、P、C共线时,PA+PG+PC最小,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K.∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q坐标(﹣6,3),在RT△QCN中,QN=3,CN=7,∠QNC=90°,∴QC==2,∵sin∠ACM==,∴AM=,∵△APR是等边三角形,∴∠APM=60°,∵PM=PR,cos30°=,∴AP=,PM=RM=,∴MC==,∴PC=CM﹣PM=,∵==,∴CK=,PK=,∴OK=CK﹣CO=,∴点P坐标(﹣,).∴PA+PC+PG的最小值为2,此时点P的坐标(﹣,).达标检测领悟提升强化落实1.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME 的最小值为______.【分析】依然构造60°旋转,将三条折线段转化为一条直线段.分别以AD、AM为边构造等边△ADF、等边△AMG,连接FG,易证△AMD≌△AGF,∴MD=GF∴ME+MA+MD=ME+EG+GF过F作FH⊥BC交BC于H点,线段FH的长即为所求的最小值42.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则AP+BP+CP的最小值为()A.+B.+C.4D.3【解答】解:如图将△ABP绕点A顺时针旋转60°得到△AEF,当E、F、P、C共线时,PA+PB+PC最小.理由:∵AP=AF,∠PAF=60°,∴△PAF是等边三角形,∴PA=PF=AF,EF=PB,∴PA+PB+PC=EF+PF+PC,∴当E、F、P、C共线时,PA+PB+PC最小,作EM⊥DA交DA的延长线于M,ME的延长线交CB的延长线于N,则四边形ABNM是矩形,在RT△AME中,∵∠M=90°,∠MAE=30°,AE=2,∴ME=1,AM=BN=,MN=AB=2,EN=1,∴EC======+.∴PA+PB+PC的最小值为+.故选:B.3.如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为4.【解答】解:如图,连接MN,∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN﹣∠ABN=∠ABE﹣∠ABN.即∠MBA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS),∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.根据“两点之间线段最短”,得EN+MN+CM=EC最短∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长,过E点作EF⊥BC交CB的延长线于F,∴∠EBF=180°﹣120°=60°,∵BC=4,∴BF=2,EF=2,在Rt△EFC中,∵EF2+FC2=EC2,EC=4.故答案为:44.将△ABC放在每个小正方形的边长为1的网格中,点B、C落在格点上,点A在BC的垂直平分线上,∠ABC=30°,点P为平面内一点.(1)∠ACB=30度;(2)如图,将△APC绕点C顺时针旋转60°,画出旋转后的图形(尺规作图,保留痕迹);(3)AP+BP+CP的最小值为.【解答】解(1)∵点A在BC的垂直平分线上.∴AB=AC,∴∠ABC=∠ACB,∵∠ABC=30°,∴∠ACB=30°.故答案为30°.(2)如图△CA′P′就是所求的三角形.(3)如图当B、P、P′、A′共线时,PA+PB+PC=PB+PP′+P′A的值最小,此时BC=5,AC=CA′=,BA′==.故答案为.5.如图,四个村庄坐落在矩形ABCD的四个顶点上,AB=10公里,BC=15公里,现在要设立两个车站E,F,则EA+EB+EF+FC+FD的最小值为(15+10)公里.【解答】解:如图1,将△AEB绕A顺时针旋转60°得△AGH,连接BH、EG,将△DFC绕点D逆时针旋转60°得到△DF'M,连接CM、FF',由旋转得:AB=AH,AE=AG,∠EAG=∠BAH=60°,BE=GH,∴△AEG和△ABH是等边三角形,∴AE=EG,同理得:△DFF'和△DCM是等边三角形,DF=FF',FC=F'M,∴当H、G、E、F、F'、M在同一条直线上时,EA+EB+EF+FC+FD有最小值,如图2,∵AH=BH,DM=CM,∴HM是AB和CD的垂直平分线,∴HM⊥AB,HM⊥CD,∵AB=10,∴△ABH的高为5,∴EA+EB+EF+FC+FD=EG+GH+EF+FF'+F'M=HM=15+5+5=15+10,则EA+EB+EF+FC+FD的最小值是(15+10)公理.故答案为:(15+10).6.已知,在△ABC中,∠ACB=30°(1)如图1,当AB=AC=2,求BC的值;(2)如图2,当AB=AC,点P是△ABC内一点,且PA=2,PB=,PC=3,求∠APC的度数;(3)如图3,当AC=4,AB=(CB>CA),点P是△ABC内一动点,则PA+PB+PC的最小值为.【解答】解:(1)如图1中,作AP⊥BC于P.∵AB=AC,AP⊥BC,∴BP=PC,在Rt△ACP中,∵AC=2,∠C=30°,∴PC=AC•cos30°=,∴BC=2PC=2.(2)如图2中,将△APB绕点A逆时针旋转120°得到△QAC.∵AB=AC,∠C=30°,∴∠BAC=120°,∴PA=AQ=2,PB=QC=,∵∠PAQ=120°,∴PQ=2,∴PQ2+PC2=QC2,∴∠QPC=90°,∵∠APQ=30°,∴∠APC=30°+90°=120°.(3)如图3中,将△BCP绕点C逆时针旋转60°得到△CB′P′,连接PP′,AB′,则∠ACB′=90°.∵PA+PB+PC=PA+PP′+P′B′,∴当A,P,P′,B′共线时,PA+PB+PC的值最小,最小值=AB′的长,由AB=,AC=4,∠C=30°,可得BC=CB′=3,∴AB′==.故答案为.7.如图l,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长(2)如图3,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.【解答】解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,CE===3;(2)证明:如图所示,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN.由旋转可得,△AMN≌△ABP,∴MN=BP,PA=AM,∠PAM=60°=∠BAN,AB=AN,∴△PAM、△ABN都是等边三角形,∴PA=PM,∴PA+PB+PC=CP+PM+MN,当AC=3,AB=6时,BC=3,∴sin∠ABC=,∴∠ABC=30°,∵∠ABN=60°,∴∠CBN=90°当C、P、M、N四点共线时,PA+PB+PC的值最小,最小值=CN===3.8.(1)阅读证明①如图1,在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.②如图2,已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=PA.(2)知识迁移根据(1)的结论,我们有如下探寻△ABC(其中∠A,∠B,∠C均小于120°)的费马点和费马距离的方法:第一步:如图3,在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在上取一点P0,连接P0A,P0B,P0C,P0D.易知P0A+P0B+P0C=P0A+(P0B+P0C)=P0A+P0D;第三步:根据(1)①中定义,在图3中找出△ABC的费马点P,线段AD的长度即为△ABC的费马距离.(3)知识应用已知三村庄A,B,C构成了如图4所示的△ABC(其中∠A,∠B,∠C均小于120°),现选取一点P打水井,使水井P到三村庄A,B,C所铺设的输水管总长度最小.求输水管总长度的最小值.【解答】解:(1)如图2,延长BP至E,使PE=PC.∵在等边△ABC中,∴∠EPC=∠BAC=60°,∵PC=PE,∴△PCE为等边三角形,∴PC=PE,∠PCE=60°,∴∠BCP+∠PCE=∠ACB+∠BCP,∴∠ACP=∠BCE,∵在△ACP和△BCE中,,∴△ACP≌△BCE(SAS).∴AP=BE=BP+PE=BP+PC;(2)由(1)得出:第一步:如图3,在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在上取一点P0,连接P0A,P0B,P0C,P0D.易知P0A+P0B+P0C=P0A+(P0B+P0C)=P0A+P0D;第三步:根据(1)①中定义,在图3中找出△ABC的费马点P,线段AD的长度即为△ABC的费马距离.故答案为:P0D;AD.(3)如图4,以BC为边在△ABC的外部作等边△BCD,连接AD.∴AD的长就是△ABC的费马距离.可得∠ABD=90°∴AD==5(km).∴输水管总长度的最小值为5千米.。
中考数学专题复习最值问题费马点
中考数学专题复最值问题费马点学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、单选题1.如图,四边形ABCD 是菱形,AB=4,且∠ABC=∠ABE=60°,G 为对角线BD (不含B 点)上任意一点,将△ABG 绕点B 逆时针旋转60°得到△EBF ,当AG+BG+CG 取最小值时EF 的长( )A .33 2B .23 3C .33 3D .43 3评卷人 得分二、填空题 2.如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.3.问题背景:如图,将ABC ∆绕点A 逆时针旋转60°得到ADE ∆,DE 与BC 交于点P ,可推出结论:PA PC PE +=问题解决:如图,在MNG ∆中,6MN =,75M ∠=︒,42MG =.点O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是___________4.如图,∠ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为22,则BC=_____.5.如图,四边形ABCD是菱形,A B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为________.评卷人得分三、解答题6.如图,∠ABC中,∠BAC=45°,AB=6,AC=4,P为平面内一点,求2253BP AP PC++最小值7.如图,在∠ABC中,∠BAC=90°,AB=AC=1,P是∠ABC内一点,求P A+PB+PC的最小值.8.【问题提出】(1)如图1,四边形ABCD 是正方形,ABE △是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60︒得到BN ,连接EN 、AM ,CM .若连接MN ,则BMN △的形状是________.(2)如图2,在Rt ABC 中,90BAC ∠=︒,10AB AC +=,求BC 的最小值. 【问题解决】(3)如图3,某高新技术开发区有一个平行四边形的公园ABCD ,6AB BC +=千米,60ABC ∠=︒,公园内有一个儿童游乐场E ,分别从A 、B 、C 向游乐场E 修三条,,AE BE CE ,求三条路的长度和(即AE BE CE ++)最小时,平行四边形公园ABCD的面积.9.在正方形ABCD 中,点E 为对角线AC (不含点A )上任意一点,AB=22; (1)如图1,将△ADE 绕点D 逆时针旋转90°得到△DCF ,连接EF ; ∠把图形补充完整(无需写画法); ∠求2EF 的取值范围; (2)如图2,求BE+AE+DE 的最小值.10.如图,在平面直角坐标系xoy中,点B的坐标为(0,2),点D在x轴的正半轴上,30ODB∠=︒,OE为∠BOD的中线,过B、E两点的抛物线236y ax x c=++与x 轴相交于A、F两点(A在F的左侧).(1)求抛物线的解析式;(2)等边∠OMN的顶点M、N在线段AE上,求AE及AM的长;(3)点P为∠ABO内的一个动点,设m PA PB PO=++,请直接写出m的最小值,以及m取得最小值时,线段AP的长.11.背景资料:在已知ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当ABC三个内角均小于120°时,费马点P 在ABC内部,当120APB APC CPB∠=∠=∠=︒时,则PA PB PC++取得最小值.(1)如图2,等边ABC 内有一点P ,若点P 到顶点A 、B 、C 的距离分别为3,4,5,求APB ∠的度数,为了解决本题,我们可以将ABP △绕顶点A 旋转到ACP '△处,此时ACP ABP '≌这样就可以利用旋转变换,将三条线段PA 、PB 、PC 转化到一个三角形中,从而求出APB ∠=_______;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与ABC 的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,ABC 三个内角均小于120°,在ABC 外侧作等边三角形ABB ',连接CB ',求证:CB '过ABC 的费马点.(3)如图4,在RT ABC 中,90C ∠=︒,1AC =,30ABC ∠=︒,点P 为ABC 的费马点,连接AP 、BP 、CP ,求PA PB PC ++的值.(4)如图5,在正方形ABCD 中,点E 为内部任意一点,连接AE 、BE 、CE ,且边长2AB =;求AE BE CE ++的最小值.参考答案:1.D【解析】【分析】根据“两点之间线段最短”,当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长.【详解】解:如图,∠将△ABG绕点B逆时针旋转60°得到△EBF,∠BE=AB=BC,BF=BG,EF=AG,∠∠BFG是等边三角形.∠BF=BG=FG,.∠AG+BG+CG=FE+GF+CG.根据“两点之间线段最短”,∠当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长,过E点作EF∠BC交CB的延长线于F,∠∠EBF=180°-120°=60°,∠BC=4,∠BF=2,EF=23,在Rt△EFC中,∠EF2+FC2=EC2,∠EC=43.∠∠CBE=120°,∠∠BEF=30°,∠∠EBF=∠ABG=30°,∠EF=BF=FG,∠EF=13CE=433,故选:D.【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的性质,轴对称最短路线问题,正确的作出辅助线是解题的关键.2.4+33【解析】【分析】【详解】【分析】依然构造60°旋转,将三条折线段转化为一条直线段.分别以AD、AM为边构造等边∠ADF、等边∠AMG,连接FG,易证∠AMD∠∠AGF,∠MD=GF∠ME+MA+MD=ME+EG+GF过F作FH∠BC交BC于H点,线段FH的长即为所求的最小值.3.229【解析】【分析】如图,将∠MOG绕点M逆时针旋转60°,得到∠MPQ,易知∠MOP为等边三角形,继而得到点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,由此可以发现当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,此时,∠NMQ=75°+60°=135°,过Q 作QA∠NM交NM的延长线于A,利用勾股定理进行求解即可得.【详解】如图,将∠MOG绕点M逆时针旋转60°,得到∠MPQ,显然∠MOP为等边三角形,∠,OM+OG=OP+PQ,∠点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,∠当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,此时,∠NMQ=75°+60°=135°,过Q作QA∠NM交NM的延长线于A,则∠MAQ=90°,∠∠AMQ=180°-∠NMQ=45°,∠MQ=MG=42,∠AQ=AM=MQ•cos45°=4,∠NQ=2222AN AQ+=++=,(46)4229故答案为229.【点睛】本题考查了旋转的性质,最短路径问题,勾股定理,解直角三角形等知识,综合性较强,有一定的难度,正确添加辅助线是解题的关键.4.62-【解析】【分析】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.首先证明当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,想办法求出AC的长即可解决问题.【详解】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∠AB=AC,AH∠BC,∠∠BAP=∠CAP,∠PA=PA,∠∠BAP∠∠CAP(SAS),∠PC=PB,∠MG=PB,AG=AP,∠GAP=60°,∠∠GAP是等边三角形,∠PA=PG,∠PA+PB+PC=CP+PG+GM,∠当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,∠AP+BP+CP的最小值为22,∠CM=22,∠∠BAM=60°,∠BAC=30°,∠∠MAC=90°,∠AM=AC=2,作BN∠AC于N.则BN=12AB=1,AN=3,CN=2-3,∠BC=2222=1(23)=62BN CN++--.故答案为62.【点睛】本题考查轴对称-最短问题,等腰三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用两点之间线段最短解决问题5.63【解析】【分析】以BM为边作等边∠BMN,以BC为边作等边∠BCE,如图,则∠BCM∠∠BEN,由全等三角形的对应边相等得到CM=NE,进而得到AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.根据等腰三角形“三线合一”的性质得到BH∠AE,AH=EH,根据30°直角三角形三边的关系即可得出结论.【详解】以BM为边作等边∠BMN,以BC为边作等边∠BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∠∠MBC=∠NBE,∠∠BCM∠∠BEN,∠CM=NE,∠AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∠AB=BC=BE=6,∠ABH=∠EBH=60°,∠BH∠AE,AH=EH,∠BAH=30°,∠BH=1AB=3,2AH=3BH=33,∠AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.6.36【解析】【分析】将∠APC 绕点A 逆时针旋转45°,得到∠A P 'C ',将∠A P 'C '扩大324倍,得到∠AP C '''',当点B 、P 、P ''、C ''在同一直线上时,2253BP AP PC ++=()''''''22PB PP P C ++最短,利用勾股定理求出BC ''即可.【详解】解:如图,将∠APC 绕点A 逆时针旋转45°,得到∠A P 'C ',将∠A P 'C '扩大,相似比为324倍,得到∠AP C '''',则32=4AP AP ''',32=4P C P C '''''',32=4AC AC ''', 过点P 作PE ∠A P ''于E ,∠AE=22PE AP =, ∠P ''E=A P ''-AE=24AP , ∠P P ''=22104PE P E AP ''+=, 当点B 、P 、P ''、C ''在同一直线上时,2253BP AP PC ++=()''''''22PB PP P C ++最短,此时()''''''22PB PP P C ++=B C '',∠∠BA C ''=∠BAC +∠CA C ''=90°,AB =6,3232==43244AC AC '''⨯=,∠2222=6(32)36BC AB AC ''''+=+=.【点睛】此题考查旋转的性质,全等三角形的性质,勾股定理,正确理解费马点问题的造图方法:利用旋转及全等的性质构建等量的线段,利用三角形的三边关系及点共线的知识求解,有时根据系数将图形扩大或缩小构建图形.7.22+62 【解析】【分析】以点A 为旋转中心,将△ABP 顺时针旋转60°得到△AMN ,连接BN .根据△PAM 、△ABN 都是等边三角形,可得PA+PB+PC=CP+PM+MN ;根据当C 、P 、M 、N 四点共线时,由CA=CB ,NA=NB 可得CN 垂直平分AB ,进而求得PA+PB+PC 的最小值.【详解】证明:如图所示,以点A 为旋转中心,将△ABP 顺时针旋转60°得到△AMN ,连接BN .由旋转可得,△AMN∠∠ABP ,∠MN=BP ,PA=AM ,∠PAM=60°=∠BAN ,AB=AN ,∠∠PAM 、△ABN 都是等边三角形,∠PA=PM ,∠PA+PB+PC=PM+MN+PC ; (3)当AC=BC=1时,AB=22,当C 、P 、M 、N 四点共线时,由CA=CB ,NA=NB 可得CN 垂直平分AB ,∠AQ=12AB=22=CQ ,NQ=62, 此时CN=CP+PM+MN=PA+PB+PC=22+628.(1)等边三角形;(2)BC 的最小值为52;(3)平行四边形公园ABCD 的面积为932(平方米).【解析】【分析】(1)由旋转得BN =BM ,∠MBN =60°,可判断出△BMN 是等边三角形即可;(2)设AB =a ,则AC=10-a ,进而根据勾股定理得出()222550BC a =-+即可得出结论; (3)先判断出点A',E',E ,C 在同一条线上,设BF =x ,进而依次得出AB =2x ,BC =6-2x ,CF =6-x ,再利用勾股定理得出223'4()272A C x =-+,得出x =32是A'C 最小,进而求出A'F ,BC ,利用平行四边形面积公式计算即可.【详解】(1)证明:BMN △的形状是等边三角形,理由如下;由旋转知,BN =BM ,∠MBN =60°∠△BMN 为等边三角形故答案为:等边三角形;(2)解:设AB=a,∠AB+AC=10,∠AC=10-AB=10a-,在Rt△ABC中,根据勾股定理得,()2222210BC AB AC a a=+=+-2220100a a=-+()22550a=-+,∠()250a-≥,∠()2255050a-+≥,即250BC≥,∠52BC≥,即BC的最小值为52;(3)解:如图3,将△ABE绕点B逆时针旋转60°得到△A'BE',∠∠ABE∠∠A'BE',∠∠A'E'B=∠AEB,AB=A'B,A'E'=AE,BE'=BE,∠EBE'=60°,∠∠EBE'为等边三角形,∠∠BE'E=∠BEE'=60°,EE'=BE,∠AE+BE+CE=A'E'+EE'+CE,要AE+BE+CE最小,即点A',E',E,C在同一条线上,即最小值为A'C,过点A'作A'F∠CB,交CB的延长线于F,在Rt△A'FB中,∠A'BF=180°-∠ABA'-∠ABC=60°,设BF=x,则A'B=2x,根据勾股定理得,A'F=3x,∠AB=A'B,∠AB =2x ,∠AB +BC =6,∠BC =6-AB =6-2x ,∠CF =BF +BC =6-x ,在Rt △A'FC 中,根据勾股定理得,2222223''3(6)4()272A C A F CF x x x =+=+-=-+, ∠当x =32,即AB =2x =3时,2'A C 最小, 此时,BC =6-3=3,A'F =3332x =, ∠平行四边形公园ABCD 的面积为3393322⨯=(平方千米). 【点睛】本题是四边形综合题,主要考查了等边三角形的判定和性质,旋转的性质,勾股定理,用代数式表示线段,利用配方法确定极值问题,判断出AB =BC 时,AE +BE +CE 最小是解本题的关键.9.(1)∠补图见解析;∠2816EF ≤≤;(2)232+【解析】【分析】(1)∠根据要求画出图形即可;∠首先证明∠ECF =90°,设AE =CF =x ,EF 2=y ,则EC =4−x ,在Rt∠ECF 中,利用勾股定理即可解决问题;(2)如图2中,将∠ABE 绕点A 顺时针旋转60°得到∠AFG ,连接EG ,DF .作FH∠AD 于H .根据两点之间线段最短可得DF≤FG +EG +DE ,BE =FG ,推出AE +BE +DE 的最小值为线段DF 的长;【详解】(1)∠如图∠DCF 即为所求;∠∠四边形ABCD是正方形,∠BC=AB=22,∠B=90°,∠DAE=∠ADC=45°,∠AC=22AB BC=2AB=4,∠∠ADE绕点D逆时针旋转90°得到∠DCF,∠∠DCF=∠DAE=45°,AE=CF,∠∠ECF=∠ACD+∠DCF=90°,设AE=CF=x,EF2=y,则EC=4−x,∠y=(4−x)2+x2=2x2−8x+160(0<x≤4).即y=2(x−2)2+8,∠2>0,∠x=2时,y有最小值,最小值为8,当x=4时,y最大值=16,∠8≤EF2≤16.(2)如图中,将∠ABE绕点A顺时针旋转60°得到∠AFG,连接EG,DF.作FH∠AD于H.由旋转的性质可知,∠AEG是等边三角形,∠AE=EG,∠DF≤FG+EG+DE,BE=FG,∠AE+BE+DE的最小值为线段DF的长.在Rt∠AFH中,∠FAH=30°,AB=22=AF,∠FH =12AF =2,AH =22AF FH -=6, 在Rt∠DFH 中,DF =()2222(226)2FH DH +=++=232+,∠BE +AE +ED 的最小值为232+.【点睛】本题考查作图−旋转变换,正方形的性质,勾股定理,两点之间线段最短等知识,解题的关键是学会构建二次函数解决最值问题,学会利用旋转法添加辅助线,学会用转化的思想思考问题,属于中考常考题型.10.(1)213 226y x x =-++ (2) 13AE = ;71313AM =或51313AM = (3)m 可以取到的最小值为13.当m 取得最小值时,线段AP 的长为51313【解析】【分析】 (1)已知点B 的坐标,可求出OB 的长;在Rt △OBD 中,已知了∠ODB=30°,通过解直角三角形即可求得OD 的长,也就得到了点D 的坐标;由于E 是线段BD 的中点,根据B 、D 的坐标即可得到E 点的坐标;将B 、E 的坐标代入抛物线的解析式中,即可求得待定系数的值,由此确定抛物线的解析式;(2)过E 作EG∠x 轴于G ,根据A 、E 的坐标,即可用勾股定理求得AE 的长;过O 作AE 的垂线,设垂足为K ,易证得△AOK∠∠AEG ,通过相似三角形所得比例线段即可求得OK 的长;在Rt △OMK 中,通过解直角三角形,即可求得MK 的值,而AK 的长可在Rt △AOK 中由勾股定理求得,根据AM=AK-KM 或AM=AK+KM 即可求得AM 的长; (3)由于点P 到△ABO 三顶点的距离和最短,那么点P 是△ABO 的费马点,即∠APO=∠OPB=∠APB=120°;易证得△OBE 是等边三角形,那么PA+PO+PB 的最小值应为AE 的长;求AP 的长时,可作△OBE 的外接圆(设此圆为∠Q ),那么∠Q 与AE 的交点即为m 取最小值时P 点的位置;设∠Q 与x 轴的另一交点(O 点除外)为H ,易求得点Q 的坐标,即可得到点H 的坐标,也就得到了AH 的长,相对于∠Q 来说,AE 、AH 都是∠Q 的割线,根据割线定理(或用三角形的相似)即可求得AP 的长.【详解】(1)过E 作EG∠OD 于G∠∠BOD=∠EGD=90°,∠D=∠D ,∠∠BOD∠∠EGD ,∠点B (0,2),∠ODB=30°,可得OB=2,OD =23;∠E 为BD 中点,∠EG DE GD BO DB OD ===12∠EG=1,GD =3∠OG =3∠点E 的坐标为(3,1)∠抛物线236y ax x c =++经过()0,2B 、()3,1E 两点, ∠()2313326a =+⨯+. 可得12a =-. ∠抛物线的解析式为213226y x x =-++. (2)∠抛物线与x 轴相交于A 、F ,A 在F 的左侧,∠A 点的坐标为()3,0-.过E 作EG∠x 轴于G∠23,1AG EG ==,∠在△AGE 中,90AGE ∠=︒, ()2223113AE =+=. 过点O 作OK ∠AE 于K ,可得△AOK ∠∠AEG .∠OK EG AO AE=. ∠1313OK =. ∠39.13OK = ∠2261313AK AO OK =-=.∠∠OMN是等边三角形,∠60NMO∠=︒.∠391313tan133OKKMKMO===∠.∠71313AM AK KM=+=,或51313AM AK KM=-=(3)如图;以AB为边做等边三角形AO′B,以OA为边做等边三角形AOB′;易证OE=OB=2,∠OBE=60°,则△OBE是等边三角形;连接OO′、BB′、AE,它们的交点即为m最小时,P点的位置(即费马点);∠OA=OB′,∠B′OB=∠AOE=150°,OB=OE,∠∠AOE∠∠B′OB;∠∠B′BO=∠AEO;∠∠BOP=∠EOP′,而∠BOE=60°,∠∠POP'=60°,∠∠POP′为等边三角形,∠OP=PP′,∠PA+PB+PO=AP+OP′+P′E=AE;即m最小=AE=13如图;作正△OBE的外接圆∠Q,根据费马点的性质知∠BPO=120°,则∠PBO+∠BOP=60°,而∠EBO=∠EOB=60°;∠∠PBE+∠POE=180°,∠BPO+∠BEO=180°;即B、P、O、E四点共圆;易求得Q(33,1),则H(233,0);∠AH=533;由割线定理得:AP•AE=OA•AH,即:AP=OA•AH÷AE=3×533÷13=51313故:m可以取到的最小值为13.当m取得最小值时,线段AP的长为513 13【点睛】此题是二次函数的综合类试题,涉及到二次函数解析式的确定、等边三角形的性质、解直角三角形以及费马点位置的确定和性质,能力要求极高,难度很大.11.(1)150°;(2)见详解;(3)7;(4)62+.【解析】【分析】(1)根据旋转性质得出ABP△∠ACP'△,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP =AP′=3,BP=CP′=4,根据∠ABC 为等边三角形,得出∠BAC =60°,可证∠APP′为等边三角形,PP′=AP =3,∠AP′P =60°,根据勾股定理逆定理222223425PP P C PC ''+=+==,得出△PP′C 是直角三角形,∠PP′C =90°,可求∠AP′C =∠APP +∠PPC =60°+90°=150°即可; (2)将△APB 逆时针旋转60°,得到△AB′P′,连结PP′,根据△APB ∠△AB′P′,AP =AP′,PB =PB′,AB =AB′,根据∠P AP′=∠BAB′=60°,△APP′和△ABB′均为等边三角形,得出PP′=AP ,根据PA PB PC PP P B PC '''++=++,根据两点之间线段最短得出点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,点P 在CB′上即可;(3)将△APB 逆时针旋转60°,得到△AP′B′,连结BB′,PP′,得出△APB ∠∠AP′B′,可证△APP′和△ABB′均为等边三角形,得出PP′=AP ,BB′=AB ,∠ABB′=60°,根据PA PB PC PP P B PC '''++=++,可得点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,利用30°直角三角形性质得出AB =2AC =2,根据勾股定理BC =2222213AB AC -=-=,可求BB′=AB =2,根据∠CBB′=∠ABC +∠ABB′=30°+60°=90°,在Rt △CBB′中,B′C =()2222327BC BB '+=+=即可; (4)将△BCE 逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F ∠AB ,交AB 延长线于F ,得出△BCE ∠△CE′B′,BE =B′E′,CE =CE ′,CB =CB′,可证△ECE′与△BCB′均为等边三角形,得出EE ′=EC ,BB′=BC ,∠B′BC =60°,AE BE CE AE EE E B '''++=++,得出点C ,点E ,点E′,点B′四点共线时,AE BE CE AE EE E B '''++=++最小=AB′,根据四边形ABCD 为正方形,得出AB =BC =2,∠ABC =90°,可求∠FBB′=180°-∠ABC -∠CBB′=180°-90°-60°=30°,根据30°直角三角形性质得出BF =112122BB '=⨯=,勾股定理BF =2222213BB B F ''-=-=,可求AF =AB +BF =2+3,再根据勾股定理AB′=()222223162AF B F '+=++=+即可. (1)解:连结PP′,∠ABP △∠ACP '△,∠∠BAP =∠CAP′,∠APB =∠AP′C ,AP =AP′=3,BP=CP′=4,∠∠ABC 为等边三角形,∠∠BAC =60°∠∠P AP ′=∠P AC +∠CAP ′=∠P AC +∠BAP =60°,∠∠APP′为等边三角形,,∠PP′=AP =3,∠AP′P =60°,在△P′PC 中,PC =5,222223425PP P C PC ''+=+==,∠∠PP′C 是直角三角形,∠PP′C =90°,∠∠AP′C =∠APP +∠PPC =60°+90°=150°,∠∠APB =∠AP′C =150°,故答案为150°;(2)证明:将△APB 逆时针旋转60°,得到△AB′P′,连结PP′,∠∠APB ∠△AB′P′,∠AP =AP′,PB =PB′,AB =AB′,∠∠P AP′=∠BAB′=60°,∠∠APP′和△ABB′均为等边三角形,∠PP′=AP ,∠PA PB PC PP P B PC '''++=++,∠点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,∠点P 在CB′上,∠CB '过ABC 的费马点.(3)解:将∠APB 逆时针旋转60°,得到∠AP′B′,连结BB′,PP′,∠∠APB ∠∠AP′B′,∠AP′=AP ,AB′=AB ,∠∠P AP′=∠BAB′=60°,∠∠APP′和∠ABB′均为等边三角形,∠PP′=AP ,BB′=AB ,∠ABB′=60°,∠PA PB PC PP P B PC '''++=++∠点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,∠90C ∠=︒,1AC =,30ABC ∠=︒,∠AB =2AC =2,根据勾股定理BC =2222213AB AC -=-=∠BB′=AB =2,∠∠CBB′=∠ABC +∠ABB′=30°+60°=90°,∠在Rt∠CBB′中,B′C =()2222327BC BB '+=+= ∠PA PB PC ++最小=CB′=7;(4)解:将∠BCE 逆时针旋转60°得到∠CE′B′,连结EE′,BB′,过点B′作B′F ∠AB ,交AB 延长线于F ,∠∠BCE ∠∠CE′B′,∠BE =B′E′,CE =CE ′,CB =CB′,∠∠ECE′=∠BCB′=60°,∠∠ECE′与∠BCB′均为等边三角形,∠EE ′=EC ,BB′=BC ,∠B′BC =60°,∠AE BE CE AE EE E B '''++=++,∠点C ,点E ,点E′,点B′四点共线时,AE BE CE AE EE E B '''++=++最小=AB′, ∠四边形ABCD 为正方形,∠AB =BC =2,∠ABC =90°,∠∠FBB′=180°-∠ABC -∠CBB′=180°-90°-60°=30°,∠B′F ∠AF ,∠BF =112122BB '=⨯=,BF =2222213BB B F ''-=-=, ∠AF =AB +BF =2+3,∠AB′=()222223162AF B F '+=++=+,∠AE BE CE ++最小=AB′=62+.【点睛】本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质,掌握图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质是解题关键.。
中考复习之线段和差最值之费马点问题-附练习题含参考答案
ABCP中考数学复习线段和差最值系列之费马点皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.言归正传,今天的问题不是费马提出来的,是他解决的,故而叫费马点. 问题:在△ABC 内找一点P ,使得P A +PB +PC 最小.【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.以上依据似乎都用不上,怎么办?若点P 满足∠PAB=∠BPC=∠CPA=120°,则PA+PB+PC 值最小,P 点称为该三角形的费马点.一、如何作费马点问题要从初一学到的全等说起:(1)如图,分别以△ABC 中的AB 、AC 为边,作等边△ABD 、等边△ACE . (2)连接CD 、BE ,即有一组手拉手全等:△ADC ≌△ABE .(3)记CD 、BE 交点为P ,点P 即为费马点.(到这一步其实就可以了)(4)以BC 为边作等边△BCF ,连接AF ,必过点P ,有∠P AB =∠BPC =∠CP A =120°.在图三的模型里有结论:(1)∠BPD =60°;(2)连接AP ,AP 平分∠DPE .有这两个结论便足以说明∠P AB =∠BPC =∠CP A =120°.但是在这里有个小小的要求,细心的同学会发现,这个图成立的一个必要条件是∠BAC <120°,若120BAC ∠≥︒ ,这个图就不是这个图了,会长成这个样子:EB ACAB CDE此时CD 与BE 交点P 点还是我们的费马点吗?显然这时候就不是了,显然P 点到A 、B 、C 距离之和大于A 点到A 、B 、C 距离之和.所以,是的,你想得没错,此时三角形的费马点就是A 点!当然这种情况不会考的,就不多说了.二、为什么是这个点为什么P 点满足∠P AB =∠BPC =∠CP A =120°,P A +PB +PC 值就会最小呢?归根结底,还是要重组这里3条线段:P A 、PB 、PC 的位置,而重组的方法是构造旋转!在上图3中,如下有△ADC ≌△ABE ,可得:CD =BE .类似的手拉手,在图4中有3组,可得:AF =BE =CD .巧的,它们仨的长度居然一样长!更巧的是,其长度便是我们要求的P A +PB +PC 的最小值,这一点是可以猜想得到的,毕竟最小值这个结果,应该也是个特别的值! 接下来才是真正的证明:考虑到∠APB =120°,∴∠APE =60°,则可以AP 为边,在PE 边取点Q 使得PQ =AP ,则△APQ 是等边三角形.△APQ 、△ACE 均为等边三角形,且共顶点A ,故△APC ≌△AQE ,PC =QE . 以上两步分别转化P A =PQ ,PC =QE ,故P A +PB +PC =PB +PQ +QE =BE .没有对比就没有差别,我们换个P 点位置,如下右图,同样可以构造等边△APQ ,同样有△APC ≌△AQE ,转化P A =PQ ,PC =QE ,显然,P A +PB +PC =PB +PQ +QE >BE .还剩下第3个问题!如果说费马点以前还算是课外的拓展内容,那现在,已经有人把它搬上了中考舞台!【中考再现】问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG=O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是______.【分析】本题的问题背景实际上是提示了解题思路,构造60°的旋转,当然如果已经了解了费马点问题,直接来解决就好了!如图,以MG 为边作等边△MGH ,连接NH ,则NH 的值即为所求的点O 到△MNG 三个顶点的距离和的最小值.(此处不再证明)过点H 作HQ ⊥NM 交NM 延长线于Q 点,根据∠NMG =75°,∠GMH =60°,可得∠HMQ =45°,∴△MHQ 是等腰直角三角形, ∴MQ =HQ =4,∴NH== 练习题1.如图,在△ABC 中,△ACB=90°,AB=AC=1,P 是△ABC 内一点,求P A +PB +PC 的最小值.2. 如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.NG图2图1ABCD EPHGN M464Q HGN MABCDME3.如图,矩形ABCD中,AB=10,BC=15,现在要找两点E、F,则EA+EB+EF+FC+FD的最小值为__________4.如图,等腰Rt∆ABC中,AB=4,P为∆ABC内部一点,则PA+PB+PC的最小值为_______5.如图,∆ABC中,AB=4,,∠ABC=75°,P为∆ABC内的一个动点,连接PA、PB、PC,则PA+PB+PC的最小值为________6.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则PA+PB+PC的最小值为______7.在Rt∆ABC中,∠ACB=90°,AC=1,,点O为Rt∆ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC=_______8.如图,在四边形ABCD中,∠B=60°,AB=BC=3,AD=4,∠BAD=90°,点P是四边形内部一点,则PA+PB+PD的最小值是______9.如图,点P是矩形ABCD对角线BD上的一个动点,已知AB=2,,则PA+PB+PC 的最小值为_______10.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则PA+PB+PD的最小值为__________11.已知,在∆ABC中,∠ACB=30°点P是ABC内一动点,则PA+PB+PC的最小值为__________12.如图,设点P到等边三角形ABC两顶点A、B的距离分别为2则PC的最大值为______13.如图,设点P到正方形ABCD两顶点A、D的距离为2PC的最大值为________14.如图,设点P到正方形ABCD两顶点A、D的距离为2则PO的最大值为_________.15.如图,在Rt∆ABC中,∠BAC=90⁰,AB=AC,点D是BC边上一动点,连接AD,把AD 绕点A逆时针旋转90⁰,得到AE,连接CE、DE,点F是DE的中点,连接CF问题:在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小,当PA+PB+PC 取最小值时,AP的长为m,用含有m的式子表示CE的长.参考答案1.7.8.7 9.3 10. 12.2+13.2+1 15.32m +。
中考数学复习专题:几何最值模型—费马点专题
【费马点】平面内,到三角形的三个顶点的距离之和最小的点称为费马点【结论】如图所示,△ABC 的三个内角均不大于120°,P 为三角形内一点,当点P 与△ABC 三个顶点的连线夹角均为120°时,PA +PB +PC 的值最小.(PA +PB +PC=AD=BE=CF ) 【费马点作法】如图,以△ABC 的三边向外分别作等边三角形,然后把外面的三个顶点与原三角形的相对顶点相连,交于点P ,点P 就是原三角形的费马点.【证明】如图,将△ABP 绕点B 逆时针旋转60°,得到△A 'BP ',连接P P ',则△BPP 是等边三角形,所以PB =PP '. 由旋转的性质可得P A +PB +PC =P 'A '+PP '+PC >A 'C 因此,当A '、P '、P 、C 四点共线时,P A 十PB 十PC 的值最小.因为△BPP '是等边三角形,即∠BPP '=60°, 所以∠BPC =120°.因为∠APB =∠A 'P 'B ,∠BP 'P =60°, 所以∠APB =180°-60°=120°,则∠CP A =360°-120°-120°=120°, 故∠BPC =∠APB =∠CP A =120°.CBAPPDFECBAA'P'ABCP费马点结论:1) 对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点; 2) 对于有一个角超过120°的三角形,费马点就是这个内角的顶点. 费马问题解决问题的方法是运用旋转变换.1) 利用旋转把三条共点线段转化成折线段, 2) 利用两点之间线段最短 构造直角三角形,利用勾股定理 模型巧记求到三角形三个顶点距离和的最小值,只需要以三角形的一条边为边作等边三角形,那么原三角形的第三个顶点和等边三角形的第三个顶点的距离就是最小值 例1、P 是边长是2的等边△ABC 内的一点, 求PA+PB+PC 的最小值【分析】把△APC 绕A 逆时针旋转60°,得到△AP'C',连接PP' 易知△APP'是等边三角形∴PC=P'C∴∠CAC'=60°∴P A+PB+PC=PB+PP'+PC’当且仅当BPP'C '共线时取得最小值∵AB =2;∴AD =1;BD =3∴.C'D =3∴BC =23 点评:①用旋转把三条共点线段转化成折线段 ②利用两点之间线段最短③构造直角三角形,利用勾股定理例2、P 是边长是1的正方形ABCD 内的一点, 求PA+PB+PC 的最小值【分析】把△APB 绕B 逆时针旋转,得到△BP'A',连接PP' ∴△BPP '是等边三角形 ∴BP=BP ' ∴∠PBP '=60°∴P A+PB+PC=P'A'+PP'+PC ,当且仅当CPP'A'共线时取得最小值∵AB =AB '=1;A'P'PCBA∴A'M =12;BM =32;∴CM =232;CA '=622例3、P 是△ABC 内的一点,BC=6,AC=5,∠ACB =30°, 求P A+PB+PC 的最小值 【分析】把△APC 绕C 顺时针旋转60°,得到△CP'A',连接PP' ∴△CPP '是等边三角形 ∴CP=PP'∴∠PCP '=60°∴P A+PB+PC=P 'A'+PB+PP '当且仅当BPP ’A ’共线时取得最小值 ∵CA=CA '=5;CB=6,∠ACB =30° ∴∠A 'CB =60° ∴A 'B =61什么是加权费马点问题?标准的费马点问题式中的三条线段的系数全为1。
(中考数学二轮强化专题)第10讲 费马点问题
第十讲线段和最小之“费马点问题”问题背景“费马点”——就是到三角形三个顶点的距离之和最小的点.“费马点”问题在中考考查时主要隐藏在求PA+PB+PC的最小值问题,通常将某三角形绕点旋转一定的角度,从而将三条线段转化在同一条直线上,利用两点之间线段最短解决问题.模型分析1、对于一个各角不超过120°的三角形,“费马点”是对各边的张角都是120°的点;2、对于有一个角超过120°的三角形,费马点就是这个内角的顶点.费马点P使它到△ABC三个顶点的距离之和PA+PB+PC最小,这就是所谓的“费马”问题.【模型计算】如图,将△APC绕点A逆时针旋转60°到△AP′C′,则可以构造出等边三角形APP′,从而得到AP=PP′,CP=C′P′,所以将PA+PB+PC的值转化为PP′+PB+P′C′的值,则线段BC′的长即为所求的最小值.经典例题剖析例1.如图,在△ABC中,P为平面内一点,连结P A,PB,PC,分别以PC和AC为一边向右作等边三角形△PCM和△ACD.【探究】求证:PM=PC,MD=P A【应用】若BC=a,AC=b,∠ACB=60°,则P A+PB+PC的最小值是______________(用a,b 表示)例2.如图,矩形ABCD中,AB=2√3,BC=6,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC 的最小值是________________。
强化练习1.如图,已知正方ABCD内一动点E到A、B、C三点的距离之和的最小值为1+√3,则这个正方形的边长为______.2.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=4√2.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是________.3.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为√3+1时,求正方形的边长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题9 费马点
破解策略
费马点是指平面内到三角形三个顶点距离之和最小的点,这个最小的距离叫做费马距离.
若三角形的内角均小于120°,那么三角形的费马点与各顶点的连线三等分费马点所在的周角;若三角形内有一个内角大于等于120°,则此钝角的顶点就是到三个顶点距离之和最小的点.
1.若三角形有一个内角大于等于120°,则此钝角的顶点即为该三角形的费马点
如图在△ABC中,∠BAC≥120°,求证:点A为△ABC的费马点
证明:
如图,在△ABC内有一点P延长BA至C,使得AC=AC,作∠CAP=∠CAP,并且使得AP=AP,连结PP 则△APC≌△APC,PC=PC
因为∠BAC≥120°
所以∠PAP=∠CAC≤60
所以在等腰△PAP中,AP≥PP
所以PA+PB+PC≥PP+PB+PC>BC=AB+AC
所以点A为△ABC的费马点
2.若三角形的内角均小于120°,则以三角形的任意两边向外作等边三角形,两个等边三角形外接圆在三角形内的交点即为该三角形的费马点.
如图,在△ABC中三个内角均小于120°,分别以AB、AC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点为O,求证:点O为△ABC的费马点
证明:在△ABC内部任意取一点O,;连接OA、OB、OC
将△AOC绕着点A逆时针旋转60°,得到△AO′D连接OO′则O′D=OC
所以△AOO′为等边三角形,OO′=AO
所以OA+OC+OB=OO′+OB+O′D
则当点B、O、O′、D四点共线时,OA+OB+OC最小
此时ABAC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点即为点O
如图,在△ABC中,若∠BAC、∠ABC、∠ACB均小于120°,O为费马点,则有∠AOB=∠BOC=∠COA=120°,所以三角形的费马点也叫三角形的等角中心
例1如图,在平面直角坐标系中,点A的坐标为(-6,0),点B的坐标为(6,0),点C的坐标为(6,),延长AC至点D使得CD=AC,过点DE作DE//AB,交BC的延长线于点E,设G为y轴上的一点,
点P从直线y=x+与y轴的交点M出发,先沿y轴到达点G,再沿GA到达点A,若点P在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定点G的位置,使点P按照上述要求到达A所用的时间最短
解:∵t=
∴当2GA+GM最小时,时间最短
如图,假设在OM上存在一点G,则BG=AG
∴MG+2AG=MG+AG+BG
把△MGB绕点B顺时针旋转60°,得到△M′G′B,连结GG′,MM′
∴△GG′B、△MM′B都为等边三角形
则GG′=G′B=GB
又∵M′G′=MG
∴MG+AG+BG=M′G′+GG′+AG
∵点A、M′为定点
∴AM′与OM的交点为G,此时MG+AG+BG最小
∴点G的坐标为(0,)
例2A、B、C、D四个城市恰好为一个正方形的四个顶点,要建立一个公路系统使得每两个城市之间都有公路相通,并是整个公路系统的总长度为最小,则应当如何修建?
解:如图,将△ABP 绕点N 逆时针旋转60°,得到△EBM ;同样,将△DCQ 绕点C 顺时针旋转60°,得到△FCN ,连结AE 、DF ,则△ABE 、△DCF 均为等边三角形,连结PM 、QN ,则△BPM ,△CQN 均为等边三角形
所以当点E ,M ,P ,Q ,N ,F 共线时,整个公路系统的总长取到最小值,为线段EF 的长,如图,此时点P ,Q 在EF 上,1=2=3=4=30.
F
E
进阶训练
1.如图,在ABC 中,ABC =60,AB =5,BC =3,P 是ABC 内一点,求PA +PB +PC 的最小值,并确定当PA +PB +PC 取得最小值时,
APC 的度数.
答案:PA+PB+PC的最小值为7,此时APC=120.
【提示】如图,将APB绕点B逆时针旋转60,得到A'BP',连结PP',A'C.过点A'作A'E BC,交CB的延长线于点E.解Rt A'E C求A'C的长,所得即为PA+PB+PC的最小值.
2.如图,四边形ABCD 是正方形,ABE是等边三角形,M为对角线BD上任意一点,将BM绕点B逆时针旋转60得到BN,连结AM,CM,EN.
(1)当M在何处时,AM+CM的值最小?
(2)当M在何处时,AM+BM +CM的值最小?请说明理由;
(3)当AM+BM+CM的最小值为时,求正方形的边长.
E
答案:(1)当点M落在BD的中点时,AM+CM的值最小,最小值为AC的长;
(2)连结CE,当点M位于BD与CE 的交点处时.AM+BM+CM的值最小,最小值为CE的长.
(3)正方形的边长为.
【提示】(3)过点E作EF BC,交CB的延长线于点F,解Rt EFC即可.。