高二数学 事件和的概率

合集下载

高二数学随机事件的概率详细知识点总结2022

高二数学随机事件的概率详细知识点总结2022

高二数学随机事件的概率详细知识点总结2022二数学知识点总结2021有哪些?马上要数学考试了,同学们复习好了吗?特别是上了高二的同学,高二数学难度大了不少,是不是觉得压力很大?一起来看看高二数学知识点总结2021,欢迎查阅!高二数学随机事件的概率知识点总结一、事件1.在条件SS的必然事件.2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.3.在条件SS的随机事件.二、概率和频率1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据.2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nAnA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A 出现的频率.3.对于给定的随机事件A,由于事件A发生的频率fn(A)P(A),P(A).三、事件的关系与运算四、概率的几个基本性质1.概率的取值范围:2.必然事件的概率P(E)=3.不可能事件的概率P(F)=4.概率的加法公式:如果事件A与事件B互斥,则P(AB)=P(A)+P(B).5.对立事件的概率:若事件A与事件B互为对立事件,则AB为必然事件.P(AB)=1,P(A)=1-P(B).高二数学《导数》知识点总结导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)1、导数的定义:在点处的导数记作 .2. 导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t) 表示即时速度。

a=v/(t) 表示加速度。

3.常见函数的导数公式: ① ;② ;③ ;⑤ ;⑥ ;⑦ ;⑧ 。

4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果 ,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数 ;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数最大值与最小值的步骤:ⅰ求的根; ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。

建平中学数学:事件和的概率

建平中学数学:事件和的概率

事件积的概念

设A、B是两个随机事件,把“事件A与事件B 同时出现”叫做“事件A与事件B的积”,它 也是一个随机事件,记作AB.

例:把1、2、3、4、5、6、7、8、9、10 分别写在10个形状大小一样的卡片上,随 机抽取一张卡片,求卡片上出现偶数或出 现大于6的数的概率.
解:设卡片上“出现偶数”为事件A,“出现大于6的数”为事 , 件B,则“出现偶数或出现大于6的数”为事件A与事件B的和, A B 即 借助文氏图(图3),可知 2 7 5 4 P ( AB ) P( A B) P ( A) P( B) 10 10 10 10 即卡片上出现偶数或出现大于6的 数的概率为 7
4.1事件 和的概率
思考

从52张扑克牌中抽取一张,求恰好抽到黑桃 或A的概率. 为了解决这个问题,我们要引入“事件和” 与“事件积”的概念.

事件和的概念

设A、B出现”叫做“事件A与事件B的 A B 和”,它也是一个随机事件,记作 .
另一种讲法是“事件A出现或事件B出 现”.
互不相容事件
对立事件
巩固练习

1. 2. 3. 4.
从一副混合后的扑克牌(52张)中随机抽取一张, 求下列事件A与事件B的和的概率: 事件A为“出现J”,事件B为“出现K”; 事件A为“出现K”,事件B为“出现梅花”; 事件A为“出现红色牌”,事件B为“出现黑色牌”; 事件A为“出现有人头的牌”,事件B为“出现红色 牌”
10
注意到 P( A B) P( A) P( B) P( AB)
思考
P( A B) P( A) P( B) P( AB)
是否对任何随机事件A、B都成立?
练习1

高二数学随机事件的概率知识精讲

高二数学随机事件的概率知识精讲

高二数学随机事件的概率【本讲主要内容】随机事件的概率事件的定义、随机事件的概率、概率的性质、基本事件、等可能性事件、等可能性事件的概率【知识掌握】【知识点精析】1. 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件。

随机现象的两个特征⑴结果的随机性:即在相同的条件下做重复的试验时,如果试验的结果不止一个,则在试验前无法预料哪一种结果将发生。

⑵频率的稳定性:即大量重复试验时,任意结果(事件)A出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小。

这一常数就成为该事件的概率。

2. 随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作()P A。

理解:需要区分“频率”和“概率”这两个概念:(1)频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的随机事件出现的可能性。

(2)概率是一个客观常数,它反映了随机事件的属性。

大量重复试验时,任意结果(事件)A出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小。

这一常数就成为该事件的概率。

3. 概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率。

4. 概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A≤≤,必然事件和不可能事件看作随机事件的两个极端情形。

5. 基本事件:一次试验连同其中可能出现的每一个结果(事件A)称为一个基本事件。

例如:投掷硬币出现2种结果叫2个基本事件,通常试验中的某一事件A由几个基本事件组成(例如:投掷一枚骰子出现正面是3的倍数这一事件由“正面是3”、“正面是6”这两个基本事件组成)。

6. 等可能性事件:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件。

高中数学必修二课件:概率的基本性质

高中数学必修二课件:概率的基本性质

一次购物 1至4件 5至8件

9至 12件
13至 16件
顾客数(人)
x
30
25
ቤተ መጻሕፍቲ ባይዱ
y
结算时间
1
1.5
2
2.5
(分钟/人)
已知这100位顾客中一次购物量超过8件的顾客占55%.
17件 及以上
10
3
①确定x,y的值,并求顾客一次购物的结算时间的平均值;
②求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).
错解:因为P(A)=36=12,P(B)=36=12, 所以P(A∪B)=P(A)+P(B)=1. 错因分析:由于事件A与事件B不是互斥事件,更不是对立事件,因此 P(A∪B)=P(A)+P(B)不成立.因此解答此题应从“A∪B”这一事件出发求解. 答:因为A∪B包含4种结果,即出现1,2,3和5,所以P(A∪B)=46=23.
②由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小 明”为事件A′+C′,根据互斥事件的概率加法公式,得P(A′+C′)=P(A′) +P(C′)=0.28+0.08=0.36.
(2)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集
了在该超市购物的100名顾客的相关数据,如下表所示.
(2)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2, 3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的 编号之和等于7,则中一等奖,等于6或5,则中二等奖,等于4,则中三等奖, 其余结果不中奖.
①求中二等奖的概率; ②求不中奖的概率.
【解析】 从五个小球中一次任意摸出两个小球,不同的结果有(0,1), (0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共 10种.记两个小球的编号之和为x.

数学必修二概率知识点

数学必修二概率知识点

数学必修二概率知识点概率是数学中一个重要的分支,它是研究随机现象的规律性和可预测性的数学工具。

在数学必修二中,概率是一个重点内容,学生需要掌握一些基础概率知识和计算方法。

下面是数学必修二中的一些概率知识点。

1.事件与样本空间:-事件:事件是对一些结果或结果集合的描述,可以是简单事件或复合事件。

例如,抛一枚硬币的结果可以是正面或反面。

-样本空间:样本空间是所有可能结果的集合,用S表示。

例如,抛一枚硬币的样本空间为{正面,反面}。

2.事件的概率:-基本概率公式:对于有限样本空间S,事件A的概率P(A)等于A中元素的个数除以S中元素的个数。

例如,抛一枚硬币正面的概率是1/2 -相对频率法:通过实验反复重复进行一系列试验,记录事件发生的次数,然后事件发生的频率趋于稳定值,该稳定值就是事件的概率。

3.概率的性质:-0≤P(A)≤1:事件的概率介于0和1之间。

-P(S)=1:样本空间中所有可能事件的概率之和等于1-互斥事件:两个事件A和B不能同时发生,P(A∪B)=P(A)+P(B)。

-对立事件:两个事件A和B互为对立事件,发生A的概率等于1减去发生B的概率,即P(A)=1-P(B)。

4.条件概率:-条件概率:在事件B发生的条件下,事件A发生的概率。

记作P(A,B)。

例如,在已知一个人是男性的情况下,他是个体育迷的概率。

-乘法定理:P(A∩B)=P(A,B)P(B)=P(B,A)P(A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A,B)表示在事件B发生的条件下,事件A发生的概率。

5.独立事件:-独立事件:两个事件A和B相互独立,表示事件A的发生与事件B的发生无关。

P(A,B)=P(A),P(B,A)=P(B),P(A∩B)=P(A)P(B)。

-互不独立事件:事件A和事件B不是独立事件,表示事件A的发生与事件B的发生有关。

6.全概率公式与贝叶斯定理:-全概率公式:设B1、B2、..、Bn是样本空间S的一个划分(即两两互斥且并起来为S),则对任一事件A,有P(A)=P(A,B1)P(B1)+P(A,B2)P(B2)+...+P(A,Bn)P(Bn)。

《概率论》第1章 事件与概率

《概率论》第1章 事件与概率
第一章 事件与概率
25/27
5. 试用A、B、C 表示下列事件: ① A 出现; A ② 仅 A 出现;ABC ③ 恰有一个出现;ABC ABC ABC ④ 至少有一个出现;A B C ⑤ 至多有一个出现; ABC ABC ABC ABC ⑥ 都不出现; ABC ⑦ 不都出现; ABC A B C ⑧ 至少有两个出现; AC BC AB
第一章 事件与概率
3/27
在随后的200多年里,概率论不仅在理论上获得了一定 发展,而且在人口统计、保险业、误差理论、天文学等自 然科学中得到了应用.在这一时期,对概率论在理论和应用 方 面 作 出 重 要 贡 献 的 数 学 家 有 雅 格 布 · 努 利 (Jakob 伯 Bernoullii),丹尼尔· 伯努利(Daniel Bernoullii), 棣莫弗(De Moivre), 拉 普 拉 斯 (pace), 欧 拉 (L.Euler), 贝 叶 斯 (T.Bayes), 蒲 丰 (G.Buffon), 高 斯 (F.Gauss), 泊 松 (S.Poisson),布尼亚可夫斯基 (V.Bunjakovskii),切比雪夫 (Chebyshev), 马 尔 可 夫 (A.Markov), 李 雅 普 诺 夫 (A.Lyapunov)等. 尽管18,19世纪,概率论在理论和应用方面得到了很多 成果,但与其它数学分支比较,概率论的发展是缓慢的.甚 至直到20世纪以前概率论还未进入主流数学.其基本原因 是概率论缺乏严密的逻辑基础.
4/27
凯恩斯主张把任何命题都看作事件,例如“明天将下 雨”,“土星上有生命”等等都是事件,人们对这些事件的 可信程度就是概率,而与随机试验无关,通常称为 主观概 率. 米泽斯定义事件的概率为该事件出现的频率的极限, 而作为公理就必须把这一极限的存在作为第一条公理,通 常称为客观概率.

高中数学中的概率与统计公式整理

高中数学中的概率与统计公式整理

高中数学中的概率与统计公式整理概率与统计是高中数学中的重要内容,它们在我们日常生活中的应用非常广泛。

在学习概率与统计时,整理公式是非常重要的,它可以帮助我们更好地理解和应用这些知识。

本文将整理一些高中数学中常用的概率与统计公式,帮助大家更好地掌握这一知识点。

一、概率公式1. 事件的概率公式:对于一个事件A,它的概率可以用如下公式表示:P(A) = 事件A发生的次数 / 总的可能次数2. 互斥事件的概率公式:如果两个事件A和B是互斥事件(即两个事件不能同时发生),则它们的概率可以用如下公式表示:P(A或B) = P(A) + P(B)3. 相互独立事件的概率公式:如果两个事件A和B是相互独立事件(即一个事件的发生不受另一个事件的影响),则它们的概率可以用如下公式表示:P(A且B) = P(A) × P(B)4. 条件概率公式:如果事件B已经发生,事件A的概率可以用如下公式表示:P(A|B) = P(A且B) / P(B)5. 贝叶斯公式:如果事件A和事件B是两个相关事件,且P(B) ≠ 0,则事件B发生的条件下事件A发生的概率可以用如下公式表示:P(A|B) = P(B|A) × P(A) / P(B)二、统计公式1. 样本均值的计算公式:对于一组样本数据x1, x2, ..., xn,它们的均值可以用如下公式表示:x = (x1 + x2 + ... + xn) / n2. 总体均值的计算公式:对于一组总体数据x1, x2, ..., xn,它们的均值可以用如下公式表示:μ = (x1 + x2 + ... + xn) / N3. 样本方差的计算公式:对于一组样本数据x1, x2, ..., xn,它们的方差可以用如下公式表示:s^2 = [(x1 - x)^2 + (x2 - x)^2 + ... + (xn - x)^2] / (n - 1)4. 总体方差的计算公式:对于一组总体数据x1, x2, ..., xn,它们的方差可以用如下公式表示:σ^2 = [(x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2] / N5. 样本标准差的计算公式:对于一组样本数据x1, x2, ..., xn,它们的标准差可以用如下公式表示:s = √[s^2]6. 总体标准差的计算公式:对于一组总体数据x1, x2, ..., xn,它们的标准差可以用如下公式表示:σ = √[σ^2]7. 正态分布的概率计算公式:对于一个服从正态分布的随机变量X,它的概率密度函数可以用如下公式表示:f(x) = (1 / (σ√(2π))) × e^(-((x - μ)^2) / (2σ^2))以上是高中数学中常用的概率与统计公式的整理。

高中数学概率公式大全

高中数学概率公式大全

高中数学概率公式大全一、常用概率公式及应用1、概率定义:概率是指某件事情发生的可能性,以及该事件发生后,另一个事件发生的可能性,都是以概率来衡量的。

2、贝叶斯公式:P(A|B)=P(A)* P(B|A)/P(B),p(A|B)表示的是在已知事件B发生的情况下,事件A发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在A发生时事件B也发生的概率,而P(B)表示事件B发生的概率。

3、全概率公式:P(A)= ∑P(A|B)*P(B),全概率公式是通过对一个事件进行分类求其总概率,表示事件A发生的概率,P(A|B)表示事件在A发生时事件B也发生的概率,而P(B)表示事件B发生的概率。

4、乘法公式:P(A∩B)=P(A)*P(B|A),乘法定理是用来描述概率的一种方式,也叫做“独立性原理”,通常使用来计算两个不相关事件A和B发生的概率,P(A∩B)表示A和B同时发生的概率,而P (B|A)表示在A发生的情况下B发生的概率,P(A)表示事件A发生的概率。

5、条件概率公式:P(A|B)=P(A∩B)/P(B),P(A|B)表示在事件B发生的情况下事件A发生的概率,也可以理解为在B中发生A的条件概率。

P(A∩B)指的是两个事件A和B同时发生的概率,而P (B)表示的是事件B发生的概率。

二、重要定理1、条件概率定理:P(A)= ∑P(A|B)*P(B)。

概率世界中,条件概率定理是一个不可或缺的定理,它捕捉了一个核心思想,就是通过对某个条件下求出另一个条件的概率,从而可以计算事件A发生的概率。

2、独立性定理:P(A∩B)=P(A)*P(B),当两个事件没有任何关系时,也就是说,事件A和事件B相互独立,那么他们同时发生的概率等于各自发生的概率的乘积。

3、期望定理:期望就是某种随机变量X的取值的数学期望,通常以<X>表示,它是服从该随机变量X分布的概率密度函数或概率分布函数的函数,也可以是某个给定概率发生的概率分布期望。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

互不相容事件
• 不可能同时出现的两个事件叫做互不相容事 件或互斥事件. P(AU B) P(A) P(B)
思考
• “对立事件”和“互不相容事件”有什么区 别?
互不相容事件 对立事件
巩固练习
• 从一副混合后的扑克牌(52张)中随机抽取一张, 求下列事件A与事件B的和的概率:
1. 事件A为“出现J”,事件B为“出现K”; 2. 事件A为“出现K”,事件B为“出现梅花”; 3. 事件A为“出现红色牌”,事件B为“出现黑色牌”; 4. 事件A为“出现有人头的牌”,事件B为“出现红色
借助文氏图(图3),可知
P(A) 5 P(B) 4 P( AB) 2 P( A U B) 7
10
10
10
10
即卡片上出现偶数或出现大于6的 数的概率为 7
10
注意到 P(AU B) P(A) P(B) P(AB)
思考
P(AU B) P(A) P(B) P(AB) 是否对任何随机事件A、B都成立?
4.1事件 和的概率
思考
• 从52张扑克牌中抽取一张,求恰好抽到黑 桃或A的概率.
• 为了解决这个问题,我们要引入“事件和” 与“事件积”的概念.
事件和的概念
• 设A、B是两个随机事件,把“事件A与事
件B至少有一个出现”叫做“事件A与事件
B的和”,它也是一个随机事件,记

.
Hale Waihona Puke AUB另一种讲法是“事件A出现或事件B出 现”.
牌”
事件积的概念
• 设A、B是两个随机事件,把“事件A与事 件B 同时出现”叫做“事件A与事件B的 积”,它也是一个随机事件,记作AB.
• 例:把1、2、3、4、5、6、7、8、9、10
分别写在10个形状大小一样的卡片上,随
机抽取一张卡片,求卡片上出现偶数或出
现大于6的数的概率.
解:设卡片上“出现偶数”为事件A,“出现大于6的数”为事 件 即,B,则“出现偶数或出现大于6的数”为事件A与事件B的A和U B,
练习1
• 某远程教育网在某时段播放20套不同的节 目,其中,9套是公民学历教育类节目,8 套是外语类节目,5套既是公民学历教育类 节目,又是外语类节目. 求在该时段随机选 择一套节目,选到公民学历教育类节目或 外语类节目的概率.
练习2
• 把1、2、3、4、5、6、7、8、9、10分别 写在10个形状大小一样的卡片上,随机抽 取一张卡片,求卡片上出现小于3或大于6 的数的概率.
相关文档
最新文档