安徽中考真题
2024年安徽省中考真题数学试卷含答案解析

安徽省2024年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A .70.94410⨯B .69.4410⨯C .79.4410⨯D .694.410⨯【答案】B【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3.某几何体的三视图如图所示,则该几何体为()A .B .C .D .【答案】D【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4.下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=Da=5.若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π6.已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可7.如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是()A B C .2D .8.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是()A .12a -<<B .112b <<C .2241a b -<+<D .1420a b -<+<【答案】C∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9.在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED ∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠【答案】D【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD=又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =,AFB AFE ∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =,CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D.10.如图,在RtABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .∵90ABC ∠=︒,AB =∴22AC AB BC =+=∵BD 是边AC 上的高.二、填空题11.若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12.,祖冲之给出圆周率的一种分数形式的近似值为227(填“>”或“<”).13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.由树状图可得,共有12种等结果,其中恰为∴恰为2个红球的概率为21126=,故答案为:1.14.如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为.∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,∵四边形ABCD 是正方形,四边形∴90A B C D ∠=∠=∠=∠=∴567690∠+∠=∠+∠=︒,∴57∠=∠,三、解答题15.解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.(2)连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴122104S CC B ==⨯⨯⨯= (3)∵根据网格信息可得出5AB =∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,(10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18.数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-L L一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.19.科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20.如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解21.综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1求图1中a 的值.【数据分析与运用】任务2A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.Y的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且22.如图1,ABCDAM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。
2024年安徽省中考数学真题试卷及答案解析

数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1. ﹣5的绝对值是()A. 5B. ﹣5C.D.2. 据统计,年我国新能汽车产量超过万辆,其中万用科学记数法表示为()A. B. C. D.3. 某几何体的三视图如图所示,则该几何体为()A. B.C. D.4. 下列计算正确的是()A. B.C. D.5. 若扇形的半径为6,,则的长为()A. B. C. D.6. 已知反比例函数与一次函数的图象的一个交点的横坐标为3,则k的值为()A. B. C. 1 D. 37. 如图,在中,,点在的延长线上,且,则的长是()A. B. C. D.8. 已知实数a,b满足,,则下列判断正确的是()A. B.C. D.9. 在凸五边形中,,,F是的中点.下列条件中,不能推出与一定垂直的是()A. B.C. D.10. 如图,在中,,,,是边上的高.点E,F分别在边,上(不与端点重合),且.设,四边形的面积为y,则y关于x的函数图象为()A. B.C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11. 若代数式有意义,则实数的取值范围是_____.12. 我国古代数学家张衡将圆周率取值为,祖冲之给出圆周率的一种分数形式的近似值为.比较大小:______(填“>”或“<”).13. 不透明的袋中装有大小质地完全相同的个球,其中个黄球、个白球和个红球.从袋中任取个球,恰为个红球的概率是______.14. 如图,现有正方形纸片,点E,F分别在边上,沿垂直于的直线折叠得到折痕,点B,C分别落在正方形所在平面内的点,处,然后还原.(1)若点N在边上,且,则______(用含α的式子表示);(2)再沿垂直于的直线折叠得到折痕,点G,H分别在边上,点D落在正方形所在平面内的点处,然后还原.若点在线段上,且四边形是正方形,,,与的交点为P,则的长为______.三、(本大题共2小题,每小题8分,满分16分)15. 解方程:16. 如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系,格点(网格线的交点)A.B,C.D的坐标分别为,,,.(1)以点D为旋转中心,将旋转得到,画出;(2)直接写出以B,,,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线平分,写出点E 的坐标.四、(本大题共2小题,每小题8分,满分16分)17. 乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)已知农作物种植人员共位,且每人只参与一种农作物种植,投入资金共万元.问这两种农作物的种植面积各多少公顷?18. 数学兴趣小组开展探究活动,研究了“正整数N能否表示为(均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(为正整数):奇数的倍数表示结果一般结论______按上表规律,完成下列问题:()( )( );()______;(2)兴趣小组还猜测:像这些形如(为正整数)的正整数不能表示为(均为自然数).师生一起研讨,分析过程如下:假设,其中均为自然数.分下列三种情形分析:若均为偶数,设,,其中均为自然数,则为的倍数.而不是的倍数,矛盾.故不可能均为偶数.若均为奇数,设,,其中均为自然数,则______为的倍数.而不是的倍数,矛盾.故不可能均为奇数.若一个是奇数一个是偶数,则为奇数.而是偶数,矛盾.故不可能一个是奇数一个是偶数.由可知,猜测正确.阅读以上内容,请在情形的横线上填写所缺内容.五、(本大题共2小题,每小题10分,满分20分)19. 科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点处发出,经水面点折射到池底点处.已知与水平线的夹角,点到水面的距离m,点处水深为,到池壁的水平距离,点在同一条竖直线上,所有点都在同一竖直平面内.记入射角为,折射角为,求的值(精确到,参考数据:,,).20. 如图,是的外接圆,D是直径上一点,的平分线交于点E,交于另一点F,.(1)求证:;(2)设,垂足为M,若,求的长.六、(本题满分12分)21. 综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x(单位:)表示.将所收集的样本数据进行如下分组:组别A B C D Ex整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a的值.【数据分析与运用】任务2 A,B,C,D,E五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3 下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C组;②两园样本数据的众数均在C组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.七、(本题满分12分)22. 如图1,对角线与交于点O,点M,N分别在边,上,且.点E,F分别是与,的交点.(1)求证:;(2)连接交于点H,连接,.(ⅰ)如图2,若,求证:;(ⅱ)如图3,若为菱形,且,,求的值.八、(本题满分14分)23. 已知抛物线(b为常数)的顶点横坐标比抛物线的顶点横坐标大1.(1)求b的值;(2)点在抛物线上,点在抛物线上.(ⅰ)若,且,,求h的值;(ⅱ)若,求h的最大值.参考答案1. 【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A.2. 【答案】B【解析】【分析】本题考查了科学记数法,先把万转化为,再根据科学记数法:(,为整数),先确定的值,然后根据小数点移动的数位确定的值即可,根据科学记数法确定和的值是解题的关键.【详解】解:万,故选:.3. 【答案】D【解析】【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D选项.故选:D.4. 【答案】C【解析】【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据相应运算法则依次判断即可【详解】解:A.与不是同类项,不能合并,选项错误,不符合题意;B.,选项错误,不符合题意;C.,选项正确,符合题意;D.当时,,当时,,选项错误,不符合题意;故选:C5. 【答案】C【解析】【分析】此题考查了弧长公式,根据弧长公式计算即可.【详解】解:由题意可得,的长为,故选:C.6. 【答案】A【解析】【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出,代入反比例函数求解即可【详解】解:∵反比例函数与一次函数图象的一个交点的横坐标为3,∴,∴,∴,故选:A7. 【答案】B【解析】【分析】本题考查了等腰直角三角形的判定和性质,对顶角的性质,勾股定理,过点作的延长线于点,则,由,,可得,,进而得到,,即得为等腰直角三角形,得到,设,由勾股定理得,求出即可求解,正确作出辅助线是解题的关键.【详解】解:过点作的延长线于点,则,∵,,∴,,∴,,∴为等腰直角三角形,∴,设,则,在中,,∴,解得,(舍去),∴,∴,故选:.8.【答案】C【解析】【分析】题目主要考查不等式的性质和解一元一次不等式组,根据等量代换及不等式的性质依次判断即可得出结果,熟练掌握不等式的性质是解题关键【详解】解:∵,∴,∵,∴,∴,选项B错误,不符合题意;∵,∴,∵,∴,∴,选项A错误,不符合题意;∵,,∴,,∴,选项C正确,符合题意;∵,,∴,,∴,选项D错误,不符合题意;故选:C9. 【答案】D【解析】【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,结合根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A.连接,∵,,,∴,∴又∵点F为的中点∴,故不符合题意;B.连接,∵,,,∴,∴,又∵点F为的中点,∴,∵,∴,∴,∴,∴,故不符合题意;C.连接,∵点F为的中点,∴,∵,,∴,∴,,∵,,∴,∴,∴,∴,故不符合题意;D.,无法得出题干结论,符合题意;故选:D.10. 【答案】A【解析】【分析】本题主要考查了函数图象的识别,相似三角形的判定以及性质,勾股定理的应用,过点E作于点H,由勾股定理求出,根据等面积法求出,先证明,由相似三角形的性质可得出,即可求出,再证明,由相似三角形的性质可得出,即可得出,根据,代入可得出一次函数的解析式,最后根据自变量的大小求出对应的函数值.【详解】解:过点E作于点H,如下图:∵,,,∴,∵是边上的高.∴,∴,∵,,∴,∴,解得:,∴,∵,,∴,,∴,∴,∴,∴∵,∴当时,,当时,.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11. 【答案】【解析】【分析】根据分式有意义的条件,分母不能等于,列不等式求解即可.【详解】解:分式有意义的条件是分母不能等于,.故答案为:.【点拨】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12. 【答案】>【解析】【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案.【详解】解:∵,,而,∴,∴;故答案为:13. 【答案】【解析】【分析】本题考查了用树状图或列表法求概率,画出树状图即可求解,掌握树状图或列表法是解题的关键.详解】解:画树状图如下:由树状图可得,共有种等结果,其中恰为个红球的结果有种,∴恰为个红球的概率为,故答案为:.14. 【答案】①. ##②.【解析】【分析】①连接,根据正方形的性质每个内角为直角以及折叠带来的折痕与对称点连线段垂直的性质,再结合平行线的性质即可求解;②记与交于点K,可证:,则,,由勾股定理可求,由折叠的性质得到:,,,,,则,,由,得,继而可证明,由等腰三角形的性质得到,故.【详解】解:①连接,由题意得,,∵,∴,∴,∵四边形是正方形,∴,∴,,∴,,∴∴,故答案为:;②记与交于点K,如图:∵四边形是正方形,四边形是正方形,∴,,,∴,∴,∴,同理可证:,∴,,在中,由勾股定理得,由题意得:,,,,,∴,∴,∴,∴,∴,即,∵,∴,∴,∴,∴,由题意得,而,∴,∴,故答案为:.【点拨】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.三、(本大题共2小题,每小题8分,满分16分)15. 【答案】,【解析】【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵,∴,∴,∴,.【点拨】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16. 【答案】(1)见详解(2)40(3)(答案不唯一)【解析】【分析】本题主要考查了画旋转图形,平行四边形的判定以及性质,等腰三角形的判定以及性质等知识,结合网格解题是解题的关键.(1)将点A,B,C分别绕点D旋转得到对应点,即可得出.(2)连接,,证明四边形是平行四边形,利用平行四边形性质以及网格求出面积即可.(3)根据网格信息可得出,,即可得出是等腰三角形,根据三线合一的性质即可求出点E的坐标.【小问1详解】解:如下图所示:【小问2详解】连接,,∵点B与,点C与分别关于点D成中心对称,∴,,∴四边形是平行四边形,∴.【小问3详解】∵根据网格信息可得出,,∴是等腰三角形,∴也是线段的垂直平分线,∵B,C的坐标分别为,,∴点,即.(答案不唯一)四、(本大题共2小题,每小题8分,满分16分)17. 【答案】农作物的种植面积为公顷,农作物的种植面积为公顷.【解析】【分析】本题考查了二元一次方程组的应用,设农作物的种植面积为公顷,农作物的种植面积为公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设农作物的种植面积为公顷,农作物的种植面积为公顷,由题意可得,,解得,答:设农作物的种植面积为公顷,农作物的种植面积为公顷.18. 【答案】(1)(),;();(2)【解析】【分析】()()根据规律即可求解;()根据规律即可求解;()利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【小问1详解】()由规律可得,,故答案为:,;()由规律可得,,故答案为:;【小问2详解】解:假设,其中均为自然数.分下列三种情形分析:若均为偶数,设,,其中均为自然数,则为的倍数.而不是的倍数,矛盾.故不可能均为偶数.若均为奇数,设,,其中均为自然数,则为的倍数.而不是的倍数,矛盾.故不可能均为奇数.若一个是奇数一个是偶数,则为奇数.而是偶数,矛盾.故不可能一个是奇数一个是偶数.由可知,猜测正确.故答案为:.五、(本大题共2小题,每小题10分,满分20分)19. 【答案】【解析】【分析】本题考查了解直角三角形,勾股定理,三角函数,过点于,则,,由题意可得,,,,解求出、,可求出,再由勾股定理可得,进而得到,即可求解,正确作出辅助线是解题的关键.【详解】解:过点于,则,,由题意可得,,,,在中,,,∴,,∴,∴在,,∴,∴.20. 【答案】(1)见详解(2).【解析】【分析】本题主要考查了等腰三角形的性质,圆周角定理,勾股定理等知识,掌握这些性质以及定理是解题的关键.(1)由等边对等角得出,由同弧所对的圆周角相等得出,由对顶角相等得出,等量代换得出,由角平分线的定义可得出,由直径所对的圆周角等于可得出,即可得出,即.(2)由(1)知,,根据等边对等角得出,根据等腰三角形三线合一的性质可得出,的值,进一步求出,,再利用勾股定理即可求出.【小问1详解】证明:∵,∴,又与都是所对的圆周角,∴,∵,∴,∵平分,∴,∵直径,∴,∴,故,即.【小问2详解】由(1)知,,∴,又,,∴,,∴圆的半径,∴,在中.,∴即的长为.六、(本题满分12分)21. 【答案】任务1:40;任务2:6;任务3:①;任务4:乙园的柑橘品质更优,理由见解析【解析】【分析】题目主要考查统计表及频数分布直方图,平均数、中位数及众数的求法,根据图标获取相关信息是解题关键.任务1:直接根据总数减去各部分的数据即可;任务2:根据加权平均数的计算方法求解即可;任务3:根据中位数、众数的定义及样本中的数据求解即可;任务4:分别计算甲和乙的一级率,比较即可.【详解】解:任务1:;任务2:,乙园样本数据的平均数为6;任务3:①∵,∴甲园样本数据的中位数在C组,∵,∴乙园样本数据的中位数在C组,故①正确;②由样本数据频数直方图得,甲园样本数据的众数均在B组,乙园样本数据的众数均在C组,故②错误;③无法判断两园样本数据的最大数与最小数的差是否相等,故③错误;故答案为:①;任务4:甲园样本数据的一级率为:,乙园样本数据的一级率为:,∵乙园样本数据的一级率高于甲园样本数据的一级率,∴乙园的柑橘品质更优.七、(本题满分12分)22. 【答案】(1)见详解(2)(ⅰ)见详解,(ⅱ)【解析】【分析】(1)利用平行四边形的性质得出,再证明是平行四边形,再根据平行四边形的性质可得出,再利用证明,利用全等三角形的性质可得出.(2)(ⅰ)由平行线截线段成比例可得出,结合已知条件等量代换,进一步证明,由相似三角形的性质可得出,即可得出.(ⅱ)由菱形的性质得出,进一步得出,,进一步可得出,进一步得出,同理可求出,再根据即可得出答案.【小问1详解】证明:∵四边形是平行四边形,∴,,∴,又∵,∴四边形是平行四边形,∴,∴.在与中,∴.∴.【小问2详解】(ⅰ)∵∴,又.,∴,∵,∴,∴,∴(ⅱ)∵是菱形,∴,又,,∴,∴,∵.,∴,∴,即,∴,∴,∵,,,∴,∴,即,∴∴,故.【点拨】本题主要考查了平行四边形的判定以及性质,全等三角形判定以及性质,相似三角形的判定以及性质,平行线截线段成比例以及菱形的性质,掌握这些判定方法以及性质是解题的关键.八、(本题满分14分)23. 【答案】(1)(2)(ⅰ)3;(ⅱ)【解析】【分析】题目主要考查二次函数的性质及化为顶点式,解一元二次方程,理解题意,熟练掌握二次函数的性质是解题关键.(1)根据题意求出的顶点为,确定抛物线(b为常数)的顶点横坐标为2,即可求解;(2)根据题意得出,,然后整理化简;(ⅰ)将代入求解即可;(ⅱ)将代入整理为顶点式,即可得出结果.【小问1详解】解:,∴的顶点为,∵抛物线(b为常数)的顶点横坐标比抛物线的顶点横坐标大1,∴抛物线(b为常数)的顶点横坐标为2,∴,∴;【小问2详解】由(1)得∵点在抛物线上,点在抛物线上.∴,,整理得:(ⅰ)∵,∴,整理得:,∵,,∴,∴;(ⅱ)将代入,整理得,∵,∴当,即时,h取得最大值为.。
2023年安徽省中考数学真题+答案解析

2023年安徽省中考数学真题+答案解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的相反数是()A.﹣5 B.C.D.52.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.3.(4分)下列计算正确的是()A.a4+a4=a8B.a4•a4=a16C.(a4)4=a16D.a8÷a4=a24.(4分)在数轴上表示不等式<0的解集,正确的是()A.B.C.D.5.(4分)下列函数中,y的值随x值的增大而减小的是()A.y=x2+1 B.y=﹣x2+1 C.y=2x+1 D.y=﹣2x+16.(4分)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=()A.60°B.54°C.48°D.36°7.(4分)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.B.C.D.8.(4分)如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC 于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A.2B.C.+1 D.9.(4分)已知反比例函数y=(k≠0)在第一象限内的图象与一次函数y=﹣x+b的图象如图所示,则函数y=x2﹣bx+k﹣1的图象可能为()A.B.C.D.10.(4分)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:+1=.12.(5分)据统计,2023年第一季度安徽省采矿业实现利润总额74.5亿元,其中74.5亿用科学记数法表示为.13.(5分)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD是锐角△ABC的高,则BD=(BC+).当AB=7,BC=6,AC=5时,CD=.14.(5分)如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)先化简,再求值:,其中x=.16.(8分)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元.已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,点A,B,C,D均为格点(网格线的交点).(1)画出线段AB关于直线CD对称的线段A1B1;(2)将线段AB向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.18.(8分)【观察思考】【规律发现】请用含n的式子填空:(1)第n个图案中“◎”的个数为;(2)第1个图案中“★”的个数可表示为,第2个图案中“★”的个数可表示为,第3个图案中“★”的个数可表示为,第4个图案中“★”的个数可表示为,……,第n个图案中“★”的个数可表示为.【规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数n,使得连续的正整数之和1+2+3+……+n 等于第n个图案中“◎”的个数的2倍.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A点时,测得A到R点的距离为40m,R点的俯角为24.2°,无人机继续竖直上升到B点,测得R点的俯角为36.9°.求无人机从A点到B点的上升高度AB(精确到0.1m).参考数据:sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.20.(10分)已知四边形ABCD内接于⊙O,对角线BD是⊙O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分∠BCD;(2)如图2,E为⊙O内一点,满足AE⊥BC,CE⊥AB.若BD=3,AE=3,求弦BC的长.六、(本题满分12分)21.(12分)端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表成绩/分 6 7 8 9 10人数 1 2 a b 2已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是,七年级活动成绩的众数为分;(2)a=,b=;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.七、(本题满分12分)22.(12分)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(i)如图2,连接CD,求证:BD=CD;(ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.八、(本题满分14分)23.(14分)在平面直角坐标系中,点O是坐标原点,抛物线y=ax2+bx(a≠0)经过点A(3,3),对称轴为直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1.过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E.(i)当0<t<2时,求△OBD与△ACE的面积之和;(ii)在抛物线对称轴右侧,是否存在点B,使得以B,C,D,E为顶点的四边形的面积为?若存在,请求出点B的横坐标t的值;若不存在,请说明理由.2023年安徽省中考数学真题答案解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的相反数是()A.﹣5 B.C.D.5【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,即可得出答案.【解答】解:﹣5的相反数是5.故选:D.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.2.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.【分析】根据几何体的三视图分析解答即可.【解答】解:由几何体的三视图可得该几何体是B选项,故选:B.3.(4分)下列计算正确的是()A.a4+a4=a8B.a4•a4=a16C.(a4)4=a16D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则分别化简,进而判断即可.【解答】解:A.a4+a4=2a4,故此选项不合题意;B.a4•a4=a8,故此选项不合题意;C.(a4)4=a16,故此选项符合题意;D.a8÷a4=a4,故此选项不合题意.故选:C.4.(4分)在数轴上表示不等式<0的解集,正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:<0,x﹣1<0,x<1,在数轴上表示为,故选:A.5.(4分)下列函数中,y的值随x值的增大而减小的是()A.y=x2+1 B.y=﹣x2+1 C.y=2x+1 D.y=﹣2x+1【分析】根据各函数解析式可得y随x的增大而减小时x的取值范围.【解答】解:选项A中,函数y=x2+1,x<0时,y随x的增大而减小;故A不符合题意;选项B中,函数y=﹣x2+1,x>0时,y随x的增大而减小;故B不符合题意;选项C中,函数y=2x+1,y随x的增大而增大;故C不符合题意;选项D中,函数y=﹣2x+1,y随x的增大而减小.故D符合题意;故选:D.6.(4分)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=()A.60°B.54°C.48°D.36°【分析】根据多边形的内角和可以求得∠BAE的度数,根据周角等于360°,可以求得∠COD的度数,然后即可计算出∠BAE﹣∠COD的度数.【解答】解:∵五边形ABCDE是正五边形,∴∠BAE==108°,∠COD==72°,∴∠BAE﹣∠COD=108°﹣72°=36°,故选:D.7.(4分)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.B.C.D.【分析】先罗列出所有等可能结果,从中找到“平稳数”的结果,再根据概率公式求解即可.【解答】解:用1,2,3这三个数字随机组成一个无重复数字的三位数出现的等可能结果有:123、132、213、231、312、321,其中恰好是“平稳数”的有123、321,所以恰好是“平稳数”的概率为=,故选:C.8.(4分)如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC 于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A.2B.C.+1 D.【分析】根据相似三角形的判定结合正方形的性质证得△AEF∽△ACB,求得AC=3,根据相似三角形的性质求得AE=2,CE=,证得△ADE∽△CFE,根据相似三角形的性质得到CM ==BM,证得△CDM≌△BGM,求出BG,根据勾股定理即可求出MG.【解答】解:∵四边形ABCD是正方形,AF=2,FB=1,∴CD=AD=AB=BC=3,∠ADC=∠DAB=∠ABC=90°,DC∥AB,AD∥BC,∴AC==3,∵EF⊥AB,∴EF∥BC,∴△AEF∽△ACB,∴=,∴=,∴EF=2,∴AE==2,∴CE=AC﹣AE=,∵AD∥CM,∴△ADE∽△CFE,∴=,∴==2,∴CM==BM,在△CDM和△BGM中,,∴△CDM≌△BGM(SAS),∴CD=BG=3,∴MG===.故选:B.9.(4分)已知反比例函数y=(k≠0)在第一象限内的图象与一次函数y=﹣x+b的图象如图所示,则函数y=x2﹣bx+k﹣1的图象可能为()A.B.C.D.【分析】根据反比例函数y=与一次函数y=﹣x+b的图象,可知k>0,b>0,所以函数y=x2﹣bx+k﹣1的图象开口向上,对称轴为直线x=>0,根据两个交点为(1,k)和(k,1),可得k ﹣b=﹣1,b=k+1,可得函数y=x2﹣bx+k﹣1的图象过点(1,﹣1),不过原点,即可判断函数y =x2﹣bx+k﹣1的大致图象.【解答】解:∵一次函数函数y=﹣x+b的图象经过第一、二、四象限,且与y轴交于正半轴,则b>0,反比例函数y=的图象经过第一、三象限,则k>0,∴函数y=x2﹣bx+k﹣1的图象开口向上,对称轴为直线x=>0,由图象可知,反比例函数y=与一次函数y=﹣x+b的图象有两个交点(1,k)和(k,1),∴﹣1+b=k,∴k﹣b=﹣1,∴b=k+1,∴对于函数y=x2﹣bx+k﹣1,当x=1时,y=1﹣b+k﹣1=﹣1,∴函数y=x2﹣bx+k﹣1的图象过点(1,﹣1),∵反比例函数y=与一次函数y=﹣x+b的图象有两个交点,∴方程=﹣x+b有两个不相等的实数根,∴Δ=b2﹣4k=(k+1)2﹣4k=(k﹣1)2>0,∴k﹣1≠0,∴当x=0时,y=k﹣1≠0,∴函数y=x2﹣bx+k﹣1的图象不过原点,∴符合以上条件的只有A选项.故选:A.10.(4分)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB 最小,即可得P A+PB最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B 正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.四边形ABCD【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK =m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC=(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:+1=3.【分析】直接利用立方根的性质化简,进而得出答案.【解答】解:原式=2+1=3.故答案为:3.12.(5分)据统计,2023年第一季度安徽省采矿业实现利润总额74.5亿元,其中74.5亿用科学记数法表示为7.45×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74.5亿=7450000000=7.45×109.故答案为:7.45×109.13.(5分)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD是锐角△ABC的高,则BD=(BC+).当AB=7,BC=6,AC=5时,CD=1.【分析】根据BD=(BC+)和AB=7,BC=6,AC=5,可以计算出BD的长,再根据BC的长,即可计算出CD的长.【解答】解:∵BD=(BC+),AB=7,BC=6,AC=5,∴BD=(6+)=5,∴CD=BC﹣BD=6﹣5=1,故答案为:1.14.(5分)如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=kx+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,当D的坐标为(2+2,)时,BD2=(2+=9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣2,)时,BD2=(2+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.三、(本大题共2小题,每小题8分,满分16分)15.(8分)先化简,再求值:,其中x=.【分析】直接将分式的分子分解因式,进而化简,把已知数据代入得出答案.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.16.(8分)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元.已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.【分析】设调整前甲地该商品的销售单价为x元,乙地该商品的销售单价为y元,根据销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,列出二元一次方程组,解方程组即可.【解答】解:设调整前甲地该商品的销售单价为x元,乙地该商品的销售单价为y元,由题意得:,解得:,答:调整前甲地该商品的销售单价40元,乙地该商品的销售单价为50元.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,点A,B,C,D均为格点(网格线的交点).(1)画出线段AB关于直线CD对称的线段A1B1;(2)将线段AB向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.【分析】(1)根据轴对称的性质画出图形即可;(2)根据平移的性质画出图形即可;(3)根据线段垂直平分线的作法画出图形即可.【解答】解:(1)线段A1B1如图所示;(2)线段A2B2如图所示;(3)直线MN即为所求.18.(8分)【观察思考】【规律发现】请用含n的式子填空:(1)第n个图案中“◎”的个数为3n;(2)第1个图案中“★”的个数可表示为,第2个图案中“★”的个数可表示为,第3个图案中“★”的个数可表示为,第4个图案中“★”的个数可表示为,……,第n个图案中“★”的个数可表示为.【规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数n,使得连续的正整数之和1+2+3+……+n 等于第n个图案中“◎”的个数的2倍.【分析】(1)不难看出,第1个图案中“◎”的个数为:3=1+2,第2个图案中“◎”的个数为:6=1+2+2+1,第2个图案中“◎”的个数为:6=1+2+2+3+1,…,从而可求第n个图案中“◎”的个数;(2)根据所给的规律进行总结即可;(3)结合(1)(2)列出相应的式子求解即可.【解答】解:(1)∵第1个图案中“◎”的个数为:3=1+2,第2个图案中“◎”的个数为:6=1+2+2+1,第2个图案中“◎”的个数为:6=1+2+2+3+1,…,∴第n个图案中“◎”的个数:1+2(n﹣1)+n+1=3n,故答案为:3n;(2)由题意得:第n个图案中“★”的个数可表示为:;故答案为:;(3)由题意得:=2×3n,解得:n=11或n=0(不符合题意).五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A点时,测得A到R点的距离为40m,R点的俯角为24.2°,无人机继续竖直上升到B点,测得R点的俯角为36.9°.求无人机从A点到B点的上升高度AB(精确到0.1m).参考数据:sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.【分析】在不同的直角三角形中,利用直角三角形的边角关系进行计算即可.【解答】解:如图,由题意可知,∠ORB=36.9°,∠ORA=24.2°,在Rt△AOR中,AR=40m,∠ORA=24.2°,∴OA=sin∠ORA×AR=sin24.2°×40≈16.4(m),OR=cos24.2°×40≈36.4(m),在Rt△BOR中,OB=tan36.9°×36.4≈27.3(m),∴AB=OB﹣OA=27.3﹣16.4=10.9(m),答:无人机上升高度AB约为10.9m.20.(10分)已知四边形ABCD内接于⊙O,对角线BD是⊙O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分∠BCD;(2)如图2,E为⊙O内一点,满足AE⊥BC,CE⊥AB.若BD=3,AE=3,求弦BC的长.【分析】(1)由垂径定理证出∠ACB=∠ACD,则可得出结论;(2)延长AE交BC于M,延长CE交AB于N,证明四边形AECD是平行四边形,则AE=CD=3,根据勾股定理即可得出答案.【解答】(1)证明:∵OA⊥BD,∴=,∴∠ACB=∠ACD,即CA平分∠BCD;(2)延长AE交BC于M,延长CE交AB于N,∵AE⊥BC,CE⊥AB,∴∠AMB=∠CNB=90°,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°,∴∠BAD=∠CNB,∠BCD=∠AMB,∴AD∥NC,CD∥AM,∴四边形AECD是平行四边形,∴AE=CD=3,∴BC===3.六、(本题满分12分)21.(12分)端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表成绩/分 6 7 8 9 10人数 1 2 a b 2 已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是1,七年级活动成绩的众数为8分;(2)a=2,b=3;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.【分析】(1)分别求得成绩为8分,9分,10分的人数,再结合总人数为10人列式计算即可求得成绩为7分的学生数,然后根据众数定义即可求得众数;(2)根据中位数的定义将八年级的活动成绩从小到大排列,那么其中位数应是第5个和第6个数据的平均数,结合已知条件易得第5个和第6个数据分别为8,9,再根据表格中数据即可求得答案;(3)结合(1)(2)中所求,分别求得两个年级优秀率及平均成绩后进行比较即可.【解答】解:(1)由扇形统计图可得,成绩为8分的人数为10×50%=5(人),成绩为9分的人数为10×20%=2(人),成绩为10分的人数为10×20%=2(人),则成绩为7分的学生数为10﹣5﹣2﹣2=1(人),∵出现次数最多的为8分,∴七年级活动成绩的众数为8分,故答案为:1;8;(2)由题意,将八年级的活动成绩从小到大排列后,它的中位数应是第5个和第6个数据的平均数,∵八年级10名学生活动成绩的中位数为8.5分,∴第5个和第6个数据的和为8.5×2=17=8+9,∴第5个和第6个数据分别为8分,9分,∵成绩为6分和7分的人数为1+2=3(人),∴成绩为8分的人数为5﹣3=2(人),成绩为9分的人数为10﹣5﹣2=3(人),即a=2,b=3,故答案为:2;3;(3)不是,理由如下:结合(1)(2)中所求可得七年级的优秀率为×100%=40%,八年级的优秀率为×100%=50%,七年级的平均成绩为=8.5(分),八年级的平均成绩为=8.3(分),∵40%<50%,8.5>8.3,∴本次活动中优秀率高的年级并不是平均成绩也高.七、(本题满分12分)22.(12分)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(i)如图2,连接CD,求证:BD=CD;(ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.【分析】(1)证MA=MD=MB,得∠MAD=∠MDA,∠MDB=∠MBD,再由三角形内角和定理得∠ADB=∠MDA+∠MDB=90°即可;(2)(i)证四边形EMBD是平行四边形,得DE=BM=AM,再证四边形EAMD是平行四边形,进而得平行四边形EAMD是菱形,则∠BAD=∠CAD,然后证A、C、D、B四点共圆,由圆周角定理得=,即可得出结论;(ii)过点E作EH⊥AB于点H,由勾股定理得AB=10,再由菱形的性质得AE=AM=5,进而由锐角三角函数定义得EH=3,则AH=4,BH=6,然后由锐角三角函数定义即可得出结论.【解答】(1)解:∵M是AB的中点,∴MA=MB,由旋转的性质得:MA=MD=MB,∴∠MAD=∠MDA,∠MDB=∠MBD,∵∠MAD+∠MDA+∠MDB+∠MBD=180°,∴∠ADB=∠MDA+∠MDB=90°,即∠ADB的大小为90°;(2)(i)证明:∵∠ADB=90°,∴AD⊥BD,∵ME⊥AD,∴ME∥BD,∵ED∥BM,∴四边形EMBD是平行四边形,∴DE=BM=AM,∴DE∥AM,∴四边形EAMD是平行四边形,∵EM⊥AD,∴平行四边形EAMD是菱形,∴∠BAD=∠CAD,又∵∠ACB=∠ADB=90°,∴A、C、D、B四点共圆,∵∠BCD=∠CAD,∴=,∴BD=CD;(ii)解:如图3,过点E作EH⊥AB于点H,则∠EHA=∠EHB=90°,在Rt△ABC中,由勾股定理得:AB===10,∵四边形EAMD是菱形,∴AE=AM=AB=5,∴sin∠CAB===,∴EH =AE •sin ∠CAB =5×=3,∴AH ===4,∴BH =AB ﹣AH =10﹣4=6,∴tan ∠ABE ===,即tan ∠ABE 的值为.八、(本题满分14分)23.(14分)在平面直角坐标系中,点O 是坐标原点,抛物线y =ax 2+bx (a ≠0)经过点A (3,3),对称轴为直线x =2.(1)求a ,b 的值;(2)已知点B ,C 在抛物线上,点B 的横坐标为t ,点C 的横坐标为t +1.过点B 作x 轴的垂线交直线OA 于点D ,过点C 作x 轴的垂线交直线OA 于点E .(i )当0<t <2时,求△OBD 与△ACE 的面积之和;(ii )在抛物线对称轴右侧,是否存在点B ,使得以B ,C ,D ,E 为顶点的四边形的面积为?若存在,请求出点B 的横坐标t 的值;若不存在,请说明理由.【分析】(1)运用待定系数法即可求得答案;(2)由题意得B (t ,﹣t 2+4t ),C (t +1,﹣t 2+2t +3),利用待定系数法可得OA 的解析式为y =x ,则D (t ,t ),E (t +1,t +1),(i )设BD 与x 轴交于点M ,过点A 作AN ⊥CE ,则M (t ,0),N (t +1,3),利用S △OBD +S △ACE =BD •OM +AN •CE 即可求得答案;(ii )分两种情况:①当2<t <3时,②当t >3时,分别画出图象,利用S 四边形DCEB =(BD +CE )•DH ,建立方程求解即可得出答案.【解答】解:(1)∵抛物线y =ax 2+bx (a ≠0)经过点A (3,3),对称轴为直线x =2, ∴, 解得:;(2)由(1)得:y =﹣x 2+4x ,∴当x =t 时,y =﹣t 2+4t ,当x =t +1时,y =﹣(t +1)2+4(t +1),即y =﹣t 2+2t +3,∴B (t ,﹣t 2+4t ),C (t +1,﹣t 2+2t +3),设OA 的解析式为y =kx ,将A (3,3)代入,得:3=3k ,∴k =1,∴OA 的解析式为y =x ,∴D (t ,t ),E (t +1,t +1),(i )设BD 与x 轴交于点M ,过点A 作AN ⊥CE ,如图,则M (t ,0),N (t +1,3),∴S △OBD +S △ACE =BD •OM +AN •CE =(﹣t 2+4t ﹣t )•t +(﹣t 2+2t +3﹣t ﹣1)=(﹣t 3+3t 2)+(t 3﹣3t 2+4)=﹣t 3+t 2+t 3﹣t 2+2=2;(ii )①当2<t <3时,过点D 作DH ⊥CE 于H ,如图,则H (t +1,t ),BD =﹣t 2+4t ﹣t =﹣t 2+3t ,CE =t +1﹣(﹣t 2+2t +3)=t 2﹣t ﹣2,DH =t +1﹣t =1, ∴S 四边形DCEB =(BD +CE )•DH , 即=(﹣t 2+3t +t 2﹣t ﹣2)×1,解得:t=;②当t>3时,如图,过点D作DH⊥CE于H,则BD=t﹣(﹣t2+4t)=t2﹣3t,CE=t2﹣t﹣2,=(BD+CE)•DH,∴S四边形DBCE即=(t2﹣3t+t2﹣t﹣2)×1,解得:t1=+1(舍去),t2=﹣+1(舍去);综上所述,t的值为.。
2024年安徽省中考语文真题(解析附作文版)

语文你拿到的试卷满分为150分(其中卷面书写占5分),考试时间为150分钟。
一、语文积累与运用(35分)1.默写。
(1)阅读中国古代诗文,常见“天下”二字。
从《茅屋为秋风所破歌》“____________________,____________________”中,我们读出了杜甫心系苍生的济世情怀;从《岳阳楼记》“____________________,____________________”中,我们读出了范仲淹的开阔胸襟和崇高境界;从《破阵子·为陈同甫赋壮词以寄之》“____________________,____________________”中,我们读出了辛弃疾收复失地、建功立业的壮志豪情。
(2)中国古代诗歌常常追求含蓄隽永的表达效果,如李白《黄鹤楼送孟浩然之广陵》中的“___________________,____________________”和岑参《白雪歌送武判官归京》中的“____________________,____________________”,都写了友人离开后诗人的深情凝望,寓情于景,言有尽而意无穷。
【答案】①.安得广厦千万间②.大庇天下寒士俱欢颜③.先天下之忧而忧④.后天下之乐而乐⑤.了却君王天下事⑥.赢得生前身后名⑦.孤帆远影碧空尽⑧.唯见长江天际流⑨.山回路转不见君⑩.雪上空留马行处【详解】本题考查名句默写。
默写题作答时,一是要透彻理解诗文的内容;二是要认真审题,找出符合题意的诗文句子;三是答题内容要准确,做到不添字、不漏字、不写错字。
本题中的“厦、庇、俱、赢、碧、唯”等字词容易写错。
2.请运用积累的知识,完成各题。
【甲】它以难zhē掩的光芒使生命呼吸使高树繁枝向它舞蹈使河流带着狂歌奔向它去当它来时,我听见冬蛰的虫蛹转动于地下群众在旷场上高声说话城市从远方用电力与钢铁召.唤它(节选自《艾青诗选·太阳》)【乙】黑夜收敛起她那神秘的帷幔群星倦了,一颗颗地散.去……黎明——这时间的新嫁娘啊乘上有金色轮子的车辆从天的那边到来……我们的世界为了迎接她,已在东方张挂了万丈的shǔ光……(节选自《艾青诗选·吹号者》)【丙】光给我们以智慧光给我们以想象光给我们以热情创造出不朽的形象(节选自《艾青诗选·光的赞歌》)(1)给加点的字注音,根据拼音写出相应的汉字。
2023年安徽省中考数学真题试卷及答案

2023年安徽省中考数学真题试卷一、选择题(本大题共10小题,每小题4分,满分40分) 1. 5-的相反数是( )A. 5B. 5-C. 15D. 15- 2. 某几何体的三视图如图所示,则该几何体为( )A. B.B. D.3. 下列计算正确的是( )A. 448a a a +=B. 4416a a a ⋅=C. ()1446a a = D. 842a a a ÷= 4. 在数轴上表示不等式102x -<的解集,正确的是( ) A.B. C. D. 5. 下列函数中,y 的值随x 值的增大而减小的是( )A. 21y x =+B. 12+-=x yC. 21y x =+D. 21y x =-+6. 如图,正五边形ABCDE 内接于O ,连接,OC OD ,则BAE COD ∠-∠=( )A.60︒B. 54︒C. 48︒D. 36︒ 7. 如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为"平稳数".用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是"平稳数"的概率为( ) A. 59 B. 21 C. 13 D. 29 8. 如图,点E 在正方形ABCD 的对角线AC 上,EF AB ⊥于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若2AF =,1FB =,则MG =( )A. B. 2 C. 1 D. 9. 已知反比例函数()0k y k x=≠在第一象限内的图象与一次函数y x b =-+的图象如图所示,则函数21y x bx k =-+-的图象可能为( )A. B.C. D. 10. 如图,E 是线段AB 上一点,ADE ∆和BCE ∆是位于直线AB 同侧的两个等边三角形,点,P F 分别是,CD AB 的中点.若4AB =,则下列结论错误..的是( )A.PA PB +的最小值为B. PE PF +的最小值为B.CDE ∆周长的最小值为6 D. 四边形ABCD 面积的最小值为二、填空题(本大题共4小题,每小题5分,满分20分)11. 1=_____________.12. 据统计,2023年第一季度安徽省采矿业实现利润总额74.5亿元,其中74.5亿用科学记数法表示为_____.13. 清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的"三斜求积术"给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD 是锐角ABC ∆的高,则2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭.当7,6AB BC ==,5AC =时,CD =____.14. 如图,O 是坐标原点,OAB Rt ∆的直角顶点A 在x 轴的正半轴上,2,30AB AOB =∠=︒,反比例函数(0)k y k x=>的图象经过斜边OB 的中点C .(1)k =__________;(2)D 为该反比例函数图象上的一点,若∥DB AC ,则22OB BD -的值为____________.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:2211x x x +++,其中1x =. 16. 根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元,已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.四、(本大题共2小题、每小题8分、满分16分)17. 如图,在由边长为1个单位长度的小正方形组成的网格中,点,,,A B C D 均为格点(网格线的交点).(1)画出线段AB 关于直线CD 对称的线段11A B ;(2)将线段AB 向左平移2个单位长度,再向上平移1个单位长度,得到线段22A B ,画出线段22A B ;(3)描出线段AB 上的点M 及直线CD 上的点N ,使得直线MN 垂直平分AB . 18. 【观察思考】【规律发现】请用含n 的式子填空:(1)第n 个图案中""的个数为 ;(2)第1个图案中"★"的个数可表示为122⨯,第2个图案中"★"的个数可表示为232⨯,第3个图案中"★"的个数可表示为342⨯,第4个图案中"★"的个数可表示为452⨯,……,第n 个图案中"★"的个数可表示为______________. 【规律应用】(3)结合图案中"★"的排列方式及上述规律,求正整数n ,使得连续的正整数之和123n ++++等于第n 个图案中""的个数的2倍.五、(本大题共2小题,每小题10分,满分20分)19. 如图,,O R 是同一水平线上的两点,无人机从O 点竖直上升到A 点时,测得A 到R 点的距离为40m,R 点的俯角为24.2︒,无人机继续竖直上升到B 点,测得R 点的俯角为36.9︒.求无人机从A 点到B 点的上升高度AB (精确到0.1m ).参考数据:sin24.20.41,cos24.20.91,tan24.20.45≈≈≈︒︒︒,sin36.90.60,cos36.90.80,tan36.90.75≈≈≈︒︒︒.20. 已知四边形ABCD 内接于O ,对角线BD 是O 的直径.(1)如图1,连接,OA CA ,若OA BD ⊥,求证;CA 平分BCD ∠;(2)如图2,E 为O 内一点,满足,AE BC CE AB ⊥⊥,若BD =3AE =,求弦BC 的长.六、(本题满分12分)21. 端午节是中国的传统节日,民间有端午节吃粽子的习俗,在端午节来临之际,某校七、八年级开展了一次"包粽子"实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数、为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行活整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是______________,七年级活动成绩的众数为______________分;(2)=a ______________,b =______________;(3)若认定活动成绩不低于9分为"优秀",根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.七、(本题满分12分)22. 在Rt ABC △中,M 是斜边AB 的中点,将线段MA 绕点M 旋转至MD 位置,点D 在直线AB 外,连接,AD BD .(1)如图1,求ADB ∠的大小;(2)已知点D 和边AC 上的点E 满足,ME AD DE AB ⊥∥.(ⅰ)如图2,连接CD ,求证:BD CD =;(ⅱ)如图3,连接BE ,若8,6AC BC ==,求tan ABE ∠的值.八、(本题满分14分)23. 在平面直角坐标系中,点O 是坐标原点,抛物线()20y ax bx a =+≠经过点()3,3A ,对称轴为直线2x =.(1)求,a b 的值;(2)已知点,B C 在抛物线上,点B 的横坐标为t ,点C 的横坐标为1t +.过点B 作x 轴的垂线交直线OA 于点D ,过点C 作x 轴的垂线交直线OA 于点E . (ⅰ)当02t <<时,求OBD ∆与ACE △的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点B ,使得以,,,B C D E 为顶点的四边形的面积为32若存在,请求出点B 的横坐标t 的值;若不存在,请说明理由.2023年安徽省中考数学真题试卷答案一、选择题(本大题共10小题,每小题4分,满分40分)1.A2. B3. C4. A5. D6. D7. C8. B解:∵四边形ABCD 是正方形2AF =,1FB =∴213AD BC AB AF FG ===+=+=,AD CB ∥,,AD AB CB AB ⊥⊥ ∴EF AB ⊥∴AD EF BC ∥∥ ∴2DE AF EM FB==,ADE CME ∽△△ ∴2CM DE AD EM ==,则1322CM AD ==∴23MB = ∵BC AD ∥∴GMB GDA ∽ ∴31232BG MB AB DA === ∴1322BG AB == 在Rt BGM △中2MG === 故选:B .9. A解:如图所示设()1,A k ,则(),1B k ,根据图象可得1k >将点(),1B k 代入y x b =-+ ∴1k b =-+∴1k b =-∵1k >∴2b >∴21y x bx k =-+-()2222112=224b b x bx b x bx b x b ⎛⎫=-+--=-+--++- ⎪⎝⎭ 对称轴为直线12b x => 当1x =时,121b b -+-=-∴抛物线经过点1,1∴抛物线对称轴在1x =的右侧,且过定点1,1 当0x =时,120y k b =-=-> 故选:A .10. A解:如图所示延长,AD BC依题意60QAD QBA ∠=∠=︒ ∴ABQ 是等边三角形∵P 是CD 的中点∴PD PC =∵DEA CBA ∠=∠∴ED CQ ∥∴,PQC PED PCQ PDE ∠=∠∠=∠ ∴PDE PCQ ≌∴PQ PE =∴四边形DECQ 是平行四边形则P 为EQ 的中点 如图所示设,AQ BQ 的中点分别为,G H 则11,22GP AE PH EB == ∴当E 点在AB 上运动时,P 在GH 上运动当E 点与F 重合时,即AE EB = 则,,Q P F 三点共线,PF 取得最小值 此时()122AE EB AE EB ==+= 则ADE ECB △≌△∴,C D 到AB 的距离相等则CD AB ∥此时PF AD ==此时ADE ∆和BCE ∆的边长都为2,则,AP PB 最小∴2PF ==∴PA PB ===∴PA PB +=或者如图所示,作点B 关于GH 对称点B ',则PB PB '=,则当,,A P B '三点共线时AP PB AB '+=.此时AB '===故A 选项错误; 根据题意可得,,P Q F 三点共线时,PF 最小,此时PEPF ==则PE PF +=,故B 选项正确;CDE ∆周长等于4CD DE CE CD AE EB CD AB CD ++=++=+=+即当CD 最小时,CDE ∆周长最小如图所示,作平行四边形GDMH ,连接CM∵60,60GHQ GHM GDM ∠=︒∠=∠=︒,则120CHM ∠=︒如图,延长DE ,HG ,交于点N 则60NGD QGH ∠=∠=︒,60NDG ADE ∠=∠=︒ ∴NGD △是等边三角形∴ND GD HM ==在NPD 与HPC △中60NPD HPC N CHP PD PC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴NPD HPC ≌∴ND CH =∴CH MH =∴30HCM HMC ∠=∠=︒∴CM QF ∥,则CM DM ⊥∴DMC 是直角三角形在DCM △中,DC DM >∴当DC DM =时,DC 最短,122DC GH AB === ∵2CD PC PC =+∴CDE 周长的最小值为2226++=,故C 选项正确;∵NPD HPC ≌∴四边形ABCD 面积等于ADE EBC DEC ADE NEBC S S S S S ++=+平行四边∴当BGD △的面积为0时,取得最小值,此时,,D G 重合,C H ,重合,∴四边形ABCD 面积的最小值为232=故D 选项正确 故选:A . 二、填空题(本大题共4小题,每小题5分,满分20分)11. 312. 97.4510⨯13. 1解:∵7,6AB BC ==,5AC =∴2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭149256526-⎛⎫=+= ⎪⎝⎭ ∴651CD BC BD =-=-=故答案为:1.14. ①.②. 4解:(1)∵2,30AB AOB =∠=︒∴24OA OB AB ===∴()(),A B∵C 是OB 的中点∴)C ∵反比例函数(0)k y k x =>的图象经过斜边OB 的中点C .∴k =∴反比例数解析式为y x =(2)∵()A ,)C 设直线AC 的解析式为y kx b =+∴01b b⎧=+⎪⎨=+⎪⎩解得:2k b ⎧=⎪⎨⎪=⎩∴直线AC的解析式为2y x =+ ∵∥DB AC设直线BD 的解析式为33y x b ,将点()2B 代入并解得4b = ∴直线BD 的解析式为43y x =-+∵反比例数解析式为y x=联立4y x y ⎧=+⎪⎪⎨⎪=⎪⎩解得:32x y ⎧=⎪⎨=⎪⎩或32x y ⎧=⎪⎨=+⎪⎩当32x y ⎧=⎪⎨=⎪⎩时,((2223229312BD =-+-+=+=当32x y ⎧=⎪⎨=+⎪⎩时,()()2223229312BD =++=+=(222216OB =+=∴22OB BD -4=故答案为:4.三、(本大题共2小题,每小题8分,满分16分)15. 1x+调整前甲、乙两地该商品的销售单价分别为40,50元.解:设调整前甲、乙两地该商品的销售单价分别为,x y 元,根据题意得:()10110%15x y x y +=⎧⎨++=-⎩解得:4050x y =⎧⎨=⎩. 答:调整前甲、乙两地该商品的销售单价分别为40,50元.四、(本大题共2小题、每小题8分、满分16分)17. 【小问1详解】解:如图所示,线段11A B 即为所求;【小问2详解】解:如图所示,线段22A B 即为所求【小问3详解】解:如图所示,点,M N 即为所求如图所示,∵AM BM ==MN ==∴AM MN =又1,3NP MQ MP AQ ====∴NPM MQA ≌∴NMP MAQ ∠=∠又90MAQ AMQ ∠+∠=︒∴90NMP AMQ ∠+∠=︒∴AM MN ⊥∴MN 垂直平分AB .18. (1)3n(2)()12n n ⨯+(3)11n =【小问1详解】解:第1个图案中有3个第2个图案中有336+=个第3个图案中有3239+⨯=个第4个图案中有33312+⨯=个……∴第n 个图案中有3n 个故答案为:3n . 【小问2详解】第1个图案中"★"的个数可表示为122⨯第2个图案中"★"的个数可表示为232⨯第3个图案中"★"的个数可表示为342⨯第4个图案中"★"的个数可表示为452⨯,……第n 个图案中"★"的个数可表示为()12n n ⨯+ 【小问3详解】解:依题意,()11232n n n ⨯+++++=……第n 个图案中有3n 个∴()1322n n n +=⨯解得:0n =(舍去)或11n =. 五、(本大题共2小题,每小题10分,满分20分)19. 无人机从A 点到B 点的上升高度AB 约为10.9米解:依题意,24.2ARO ∠=︒,36.9BRO ∠=︒,40AR =在Rt AOR 中,24.2ARO ∠=︒∴sin 40sin 24.2AO AR ARO =⨯∠=⨯︒cos 40cos24.2RO AR ARO =⨯∠=⨯︒在Rt BOR 中,tan 40cos24.2tan36.9OB OR BRO =⨯∠=⨯︒⨯︒∴AB BO AO =-40cos24.2tan36.940sin 24.2=⨯︒⨯︒-⨯︒400.910.75400.41≈⨯⨯-⨯10.9≈(米)答:无人机从A 点到B 点的上升高度AB 约为10.9米.20. (1)见解析 (2)BC =【小问1详解】∵对角线BD 是O 的直径,OA BD ⊥∴AB AD =∴BCA DCA ∠=∠∴CA 平分BCD ∠.【小问2详解】∵对角线BD 是O 的直径∴90BAD BCD ∠=∠=︒∴,DC BC DA AB ⊥⊥∵,AE BC CE AB ⊥⊥∴,DC AE DA CE∴四边形AECD 平行四边形∴DC AE =∵BD =3AE =∴BD =3DC =∴BC ==六、(本题满分12分)21. (1)1,8(2)23,(3)优秀率高的年级不是平均成绩也高,理由见解析【小问1详解】解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%---∴样本中,七年级活动成绩为7分的学生数是1010%=1根据扇形统计图,七年级活动成绩的众数为8分故答案为:1,8.【小问2详解】∵八年级10名学生活动成绩的中位数为8.5分∴第5名学生为8分,第6名学生为9分∴5122a =--=,1012223b =----=故答案为:23,. 【小问3详解】优秀率高的年级不是平均成绩也高,理由如下七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯ 八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5< ∴优秀率高的年级为八年级,但平均成绩七年级更高∴优秀率高的年级不是平均成绩也高.七、(本题满分12分)22. (1)90ADB ∠=︒ (2)(ⅰ)见解析;(ⅱ)21 【小问1详解】解:∵MA MD MB ==∴,MAD MDA MBD MDB ∠=∠∠=∠在ABD △中,=180MAD MDA MBD MDB ∠+∠+∠+∠︒ ∴180902ADB ADM BDM ︒∠=∠+∠==︒ 【小问2详解】证明:(ⅰ)如图,延长BD AC 、,交于点F ,则90BCF ∠=︒∵ME AD ⊥,90ADB ∠=︒∴EM BD ∥.又∵DE AB ∥∴四边形BDEM 是平行四边形.∴DE BM =.∵M 是AB 的中点,∴AM BM =.∴DE AM =.∴四边形AMDE 是平行四边形.∵ME AD ⊥∴AMDE 是菱形.∴AE AM =.∵EM BD ∥ ∴AE AM AF AB=. ∴AB AF =.∵90ADB ∠=︒,即AD BF ⊥∴BD DF =,即点D 是Rt BCF 斜边的中点. ∴BD CD =.(2)如图所示,过点E 作EH AB ⊥于点H∵8,6AC BC ==∴10AB = 则152AE AM AB === ∵,90EAH BAC ACB AHE ∠=∠∠=∠=︒ ∴AHE ACB ∽ ∴510EH AH AE BC AC AB === ∴3,4EH AH ==∴1046BH AB AH =-=-= ∴31tan 62EH ABE BH ===. 八、(本题满分14分)23. (1)1,4a b =-=(2)(ⅰ)2;(ⅱ)52t =【小问1详解】解:依题意,93322a b b a +=⎧⎪⎨-=⎪⎩解得:14a b =-⎧⎨=⎩∴24y x x =-+; 【小问2详解】(ⅰ)设直线OA 的解析式为y kx =∵()3,3A ∴33k =解得:1k =∴直线y x =如图所示,依题意,()()()()22,4,1,141B t t t C t t t -++-+++,(),D t t ,()1,1E t t ++ ∴()()2223033=33t t t BD t t t t ⎧-+<≤⎪=-+⎨->⎪⎩()()()()22220213122t t t CE t t t t t ⎧-++<<⎪=-+++=⎨--≥⎪⎩ ∴当02t <<时,OBD 与ACE △的面积之和为()1131=222BD t CE t ⨯+-- (ⅱ)当点B 在对称右侧时,则2t > ∴22CE t t =--当23t <<时,23BD t t =-+ ∴()221321=12BDEC S t t t t t =-++--⨯-梯形 ∴312t -=解得:52t =当3t >时,23BD t t =-∴()2221321=212BDCE S t t t t t t =-+--⨯--梯形∴2321=2t t --解得:22t +=(舍去)或22t =(舍去)综上所述,52t =.。
2023年安徽省中考语文真题(含答案)

2023年安徽省中考语文真题(含答案)一、语文积累与运用(35分)1. 默写。
(1)诗人笔下,神州锦绣。
曹操的“____________,____________”(《观沧海》)描写了水波荡漾、海岛巍然的景象;王维的“____________,____________”(《使至塞上》)展现了沙漠浩瀚、天地苍茫的风光;李白的“____________,____________”(《望天门山》)写出了万里长江冲破山峦、汹涌回旋的奇观。
(2)古人写水,常以游鱼人景。
柳宗元《小石潭记》中“____________,____________”两句描绘了潭中百来条鱼儿好像在空中游动,没有什么依傍的画面;范仲淹《岳阳楼记》中“____________,____________”两句描绘了水鸟时飞时停,鱼儿游来游去的景象。
2. 请运用积累的知识,完成小题。
却说那妖精脱命升空。
原来行者那一棒不曾打杀妖精,妖精出神去了。
他在那云duān里咬牙切齿,暗恨行者道:“几年只闻得讲他手段,今日果然话不虚传。
那唐僧已此不认得我,将要吃饭。
若低头闻一闻儿,我就一把捞住,却不是我的人了?不期被他走来,弄破我这勾当,又几乎被他打了一棒。
若饶了这个和尚,诚然是劳而无功也。
我还下去戏他一戏。
”好妖精,按落阴云,在那前山坡下,摇身一变,变作个老妇人,年满八旬,手拄着一根弯头竹zhànɡ,一步一声的哭着走来。
八戒见了,大惊道:“师父!不好了!那妈妈儿来寻人了!”唐僧道:“寻甚人?”八戒道:“师兄打杀的,定是他女儿。
这个定是他娘寻将来了。
”行者道:“兄弟莫要胡说!那女子十八岁,这老妇有八十岁,怎么六十多岁还生产?断乎是个假的!等老孙去看来”……行者认得他是妖精,更不理论,举棒照头便打。
那怪见棍子起时,依然抖擞,又出化了元神,脱真儿去了,把个假尸首又打死在山路之下。
(节选自《西游记》)(1)给加点的字注音,根据拼音写出相应的汉字。
云duān()八旬()竹zhànɡ()抖擞()(2)小伟同学收藏有三枚《西游记》邮票如下图),其中与选文内容相关的一枚邮票是______(填写字母);按照小说故事情节的先后顺序,三枚邮票应排序为______、______、______(填写字母)。
2022年安徽省中考语文真题(解析版)

显然,“野象北移”事件已经成为一个缩影,见证了中国为生物多样性保护付出的 努力,也向全球展示了中国生态文明建设取得的显著成效。近些年来,我国不断推进自 然保护地建设,保护了重要自然生态系统和生物资源,在维护重要物种栖息地方面发挥 了积极作用。 (摘编自《生物多样性保护:在美丽的中国,看生机如此盎然》,《光明日报》2022 年 4
月 25 日) 材料三:
生物多样性不仅指生物种类的多样性,还包括基因的多样性和生态系统的多样性方 面,每种生物都是由一定数量的个体组成的,这些个体的基因组成是有差别的,它们共 同构成了一个基因库;每种生物又生活在一定的生态系统中,并且与其他的生物种类相 联系。另一方面,某种生物的数量减少或灭绝必然会影响它所在的生态系统;当生态系
在西双版纳,1991—1995 年,有 30 头亚洲象因偷猎致死。1996—2005 年,亚洲象 得到严格保护,中国境内的大象基本摆脱了被猎杀的厄运。人象冲突的焦点,已经从盗 猎和杀戮,变成了保护与发展的矛盾。
(摘编自刘东黎《观象》) 材料二:
2021 年,一群来自西双版纳的野生亚洲象一路向北迁移,进入昆明。在当地政府 的柔性引导和细心呵护下,终于,它们在外“游荡”数月后,向南跨过元江,重返家园。
中国在生物多样性保护方面取得了丰硕成果。目前,中国已经成为世界上生物多样 性最丰富的国家之一。中国已记录陆生脊椎动物 2900 多种,占全球种类总数的 10%以 上:高等植物 3.6 万余种,数量居全球第三。
精品解析:2024年安徽省中考化学真题(解析版)

C、据元素周期表的一格可知,元素名称正下方的数字表示相对原子质量,钼的相对原子质量为95.96。
D、据元素周期表的一格可知,钼的原子序数是42,在原子中,原子序数=质子数=电子数,所以1个Mo中含有的电子数为42。1个Mo失去2个电子形成1个Mo2+,所以1个Mo2+中含有的电子数为42-2=40。D错误。
故选C。
阅读下列材料,完成下列小题。
杭州亚运会开幕式主火炬的燃料——“零碳甲醇(CH3OH)”备受瞩目,这是全球首次对“零碳甲醇”的实践应用。目前,该燃料已广泛应用在船舶、汽车等领域。“零碳甲醇”是利用焦炉气中的副产品氧气和从工业尾气中捕捉的二氧化碳在一种纳米催化剂的作用下反应得到的,其微观示意图如图。
B、谷曲混合过程中是将谷物(如大米、小麦等)与酒曲混合在一起,没有新物质的生成,属于物理变化,不符合题意;
C、发酵成酒过程中酒曲中的微生物会分解谷物中的糖类,产生酒精和二氧化碳等新物质,有新物质的生成,属于化学变化,符合题意;
D、泉水勾兑过程中是将不同批次或不同口感的酒进行混合,以达到特定的风味或标准,没有新物质的生成,属于物理变化,不符合题意。
【答案】A
【解析】
【详解】A、合理使用化肥和农药,防止水体污染。A错误;
B、推广新能源汽车,减少化石燃料使用,节约化石能源,减少汽车尾气排放。B正确;
C、发展废旧电池回收技术,减少污染,保护环境,节约资源,促进资源循环利用。C正确;
D、提升石油化工水平,充分利用二氧化碳,降低二氧化碳排放,实现绿色低碳转型。D正确。
A.属于有机物B.由52个原子构成
C.由碳、氢、氧三种元素组成D.有益于人体健康
【答案】B
【解析】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年安徽省初中学业水平考试(中考)语文试题注意事项:1.你拿到的试卷满分为150分(其中卷面书写占5分),考试时间为150分钟;2.试卷包括”试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页;3.请务必在“答题卷”上答题,在“试题券”上答题是无效的;4.考试结束后,请将“试题卷”和“答题卷”并交回。
一、语文积累与综合运用(35分)1.默写。
(10分)海内存知己,。
(王勃《送杜少府之任蜀川》)会当凌绝顶,。
(杜甫《望岳》),水中藻、荇交横,盖竹柏影也。
(苏轼《记承天寺夜游》)?英雄末路当磨折。
(秋瑾《满江红》)《<</FONT>论语>十二章》中感叹时光像河水一样流去的句子是“,”。
李白《行路难》(其一)中“,”,表现了诗人对抱负中能施展的坚定信念。
人生中,难免会受到不良风尚的干扰,我们只要努力学习,提高认识能力,就不会为之所惑,正如王安石《登飞来峰》中所说“,”。
2.请运用所积累的知识,完成(1)~(4)题。
(9分)阿基姆明白,这个直到不久前还生龙活虎的年轻人,此刻内心激荡着怎样的情感。
他了解保尔的悲剧……“阿基姆,难道你真的以为生活能把我逼进死角,把我压成一张薄饼吗?只要我的心脏还在跳动,”他突然使劲抓住阿基姆的手紧压着他的胸脯,“只要它还在跳动,就别想叫我离开党。
只有死,才能让我离开战斗行列。
老兄,请你千万记住这一点。
”阿基姆沉默不语。
他知道这绝不是漂亮话,而是一个身负重伤的战士的呐喊。
他明白,像保尔这样的人不可能说出另外的话,表达出另外的情感。
(1)以上文段选自《__________________》,作者是____________。
(2分)(2)“生龙活虎”在句子中的意思是__________________________________________。
(2分)(3)请把文中划线的句子改为反问句_________________________________________。
(2分)(4)请结合原著回答:文段中“悲剧”指什么?“呐喊”表达了保尔怎样的心声?(6分)3.校学生会开展“读古诗·长知识”系列活动,请你参与。
(13分)(1)请按要求修改活动通知。
(6分)通知各位同学:为了更好地落实“读古诗·长知识”活动要求,经研究决定,将在九年级召开“走进送别诗”专题学习活动,请认真整理学过的送别诗,于5月17日下午3点在学校报告厅参加知识竟答活动。
2019年5月8日通知中有错别字的词语是“____________”,正确的写法是“____________”。
(2分)划线句子有语病,请提出修改意见。
(2分)通知的格式有一处不规范,请提出修改意见。
(2分)(2)下面是活动中的两道题,请回答。
(4分)根据下面的诗句,写出古人常用的两种交通工具。
(2分)孤帆远影碧空尽:__________ 脱鞍暂入酒家垆:__________根据下面的诗句,写出古人送别时的两种习俗。
(2分)客舍青青柳色新:__________ 劝君更尽一杯酒:__________(3)下列对一首五律颔联和颈联的补充,最恰当的一项是()(3分)____汉阳渡,初日郢门山。
(颔联)江上几人在,天涯孤棹__。
(颈联)A.风高还 B.风高回 C.高风还 D.高风回二、阅读(55分)阅读下面的文字,回答问题。
【一】(22分)访梅小时候,对于我们这些孩子,冬天实在单调,到处是一片白。
游戏也懒得去做,生活一下子变得索然无味。
正难熬着,奶奶说,舅爷要来家了。
我们十分高兴,盼望着他早点到。
舅爷是个画家,听奶奶说,他的名气老大,在国外办过画展。
但我们翻看他的画集,却并不佩服他,他的画简单极了,每幅画都懒得去画满,往往就是那么几块几笔水墨,那蚂蚱,似乎并不就是蚂蚱,那小鱼,似乎并不就是小。
我们当时就嗤地笑了,觉得跟我们的画差不多呢。
于是乎,我们就不敬而远之了,随便着和他对话,缠他讲城市的故事,日子也觉得有些生气。
一天,他提出要出外作画去,大雪天里,天地一片儿白,有什么可画的呢?我们很有儿分(),更有了几分好奇,便闹嚷嚷地跟他了去。
山包上雪很厚,什么凹的凸的地也没有了;树上,也没有一片叶子。
这里有什么可画的呢?舅爷拣着一块石头坐下,眯缝了那双眼睛,左看看,右看看,看远又看近。
足足半个时辰,才拿出画夹开始画起来了。
我们一眼一眼看,看着看着,果然天地单调,画面更单调。
“单调极了,”我们说,“我们给你寻些能画的色彩吧。
”“找些什么色彩呢?"“譬如梅花,那花是多么红呢!”“去吧,舅爷等着你们寻来最美的东西。
”舅爷笑了,叮咛我们小心去寻。
我们跑去了,先是到了东边,那是一漫斜坡,稀稀地站着几株柿树,如今光裸裸的,没有一颗红艳艳的果子,铁似的枝条衬在雪里,似乎在作着沉思。
再往远去,也是一片灰白。
我们又跑到山包西边,心想这儿一定是会有梅的,因为长着许多树。
但是,我们细细地在找了,并没有什么梅的,甚至连别的什么颜色的东西也没有。
我们一下子都瘫在雪窝里,觉得这冬天里,实在是没有什么可画的色彩了,一时之间,又觉得舅爷可笑:连色彩都没有,还谈得上什么美吗?真后悔不该这么跑了山包的几面坡,更后悔跟着舅爷到这里来呢。
我们转回到舅爷那儿,十分(),他竟已画了四张画,看见了我们,说;“孩子,寻到了吗?”“什么也没寻到,只是白的。
”“好了,找到了。
”“白的有什么意思?”“你们想想,天是什么,天是云,云是什么,云是蒸气,蒸气是什么,蒸气是水,水是什么,水是白的。
天上地下,哪一样不是白色的呢?白色是最美的色彩呢!”“那么说,”我们一时()了,“什么东西里,什么时候难道都有美吗?”“对了,孩子!美是到处都有的,但美却常常被人疏忽了。
你们总是寻那大红大绿,可红得多了,使你烦躁,绿得多了,使你沉郁,黄得多了,使你感伤,只有这白色是无极的,是丰富的,似乎就无极得无有,丰富得荒凉了呢。
”我们都哑然笑了,虽然听得并不甚明白,但毕竟惭愧起来,而且自那以后,愈来愈加深了理解,深深地后悔辜负了多少个冬天,使多少个美好的东西毫无意义地无知地消磨过去了。
(选自《贾平凹散文精选》,有删改)4.在文中括号内依次填入词语,最恰当的一项是()。
(3分)A.吃惊狐疑疑惑 B.狐疑吃惊疑惑B.疑惑狐疑吃惊 D.疑惑吃惊狐疑5.请依据文章内容,在下面横线上填写合适的语句。
(4分)听说舅爷来家,我们高兴地盼望→__________________________→跟随舅爷并看他作画,我们觉得画作单调→__________________________→听舅爷讲白色是最美的色彩后,我们惭愧起来6.请结合上下文,体会下列各句中“笑”的含义。
(4分)(1)我们当时就嗤地笑了,觉得跟我们的画差不多呢。
(2)我们都哑然笑了。
7.请品析下列句子的表达效果。
(5分)(1)舅爷拣着一块石头坐下,眯缝了那双眼睛,左看看,右看看,看远又看近。
(从人物描写的角度)(3分)(2)我们一下子都瘫在雪窝里。
(从词语运用的角度)(2分)8.请结合全文,说说如何才能避免“使多少个美好的东西毫无意义地无知地消磨过去”。
(6分)【二】(18分)材料一:《科学》杂志:机器学习究竟将如何影响人类未来的工作?近几十年来,数字计算机已经改变了几乎所有经济部门的工作,我们正处于一更迅速转变的开始阶段,但关于机器学习对劳动力和经济的具体影响的认识并未确定。
目前一些工作的一部分适合机器学习,而其他部分还不适合。
因而,机器学习对劳动力和经济的影响还是有限的,还没有像有些人宣称的那样——会迎来“工作的终结”。
我们认为,当下关于机器学习可能对劳动力和经济产生影响的讨论,应该从两个基点出发:第一,我们离通用人工智能还很远;第二,机器不能完成人类的全部任务。
可以预测,在机器学习日益渗入应用领域的过程中,剩下不适合机器学习的任务将会激发人类激发这些方面的能力,使新的工作成为可能。
由于机器学习迅速发展,可能将对经济产生很大的破坏性:机器学习既产生赢家,也产生输家,即每当机器学习跨越一个门槛,在某个任务上比人更具成本效益时,企业为了利润最大化,将越来越多的用机器代替人工,这必将转移劳动力需求,重组行业。
这需要引起我们高度重视。
就目前而言,创建一个计算机程序仍需要很多人的编程过程,但在一些领域这个复杂而成本昂贵的工作正逐渐用训练有素的机器学习来完成,机器学习已经产生比人类程序员更精确可靠的程序(例如人脸识别和信用卡欺诈检测),大大降低了程序设计和维护的成本,相关行业的就业形势正开始受到冲击。
(节选自雷锋网)材料二:学习是人类的一种重要智能行为。
机器能否像人类一样具有学习能力呢?1959年,美国的塞缪尔设计了一个下棋程序,该程序具有学习能力,它能在不断对弈中改善自己的棋艺,4年后,该程序战胜了设计者本人。
又过了3年,该程序战胜了美国保持8年不败的冠军。
目前,机器学习已经有了十分广泛的应用,如:数据挖掘、自然语言处理、语音和手写识别、生物特征识别、搜索引擎、医学诊断、信用卡欺诈检测、DNA序列测序、证券市场分析和机器人运用等。
(节选自百度百科词条《机器学习》)材料三:2017年12月7日,是国际象棋界里有里程碑意义的一天,但这并不是计算机击败人脑,而是谷歌的AlphaZero程序击败了Stocckfish8程序。
Stockfish8是2016年全球计算机国际象棋冠军,运用的是几百年来积累的人类国际象棋经验,再加上几十年的计算机国际象棋经验,每秒计算7000万次。
相较之下,AlphaZero每秒只计算8万次,而且写程序时完全没教它任何国际象棋规则,它连基本的起手走法都不会!AlphaZero完全是运用最新的机器学习原理,通过不断和自己下棋来自学,而后在与Stockfish8的100场比赛中赢了28场平72场。
AlphaZero没有向任何人学习,许多获胜走法和策略对人类来说完全是打破常规的,可以说创意十足,令人叫绝。
那么,它用了多久才准备好和Stockfish8对局,而且发展出天才般的能力?答案是4个小时。
只用4个小时,就在国际象棋这项人类智慧的绝顶游戏中所向披靡,令人惊叹!(节选自瓦尔·赫拉利《今日简史》)9.从以上材料看,下列理解和判断,不正确的一项是()(3分)A.机器学习目前对就业的影响有限,因为一些工作只有一部分适合机器学习。
B.机器学习已经进入了迅速发展阶段,世界经济将会因此遭受很大的破坏。
C.机器学习的应用已十分广泛,涵盖了证券市场分析、医学诊断等诸多领域。
D.机器学习的能力难以限量,AlphaZero程序击败Stockfish8程序就是一个例证。
10.请根据以上材料,用简明的语言对“机器学习”作出解释。
(4分)11.材料三主要运用了哪两种说明方法?有什么作用?(6分)12.结合以上材料,你认为机器的能力会超过人类吗?请说说理由。