第七章 短路电流计算
短路电流的计算

一、无限大容量电源供电系统的概念
• 无限大容量电源——内阻抗为零的电源。当电源内阻抗 为零时,不管输出的电流如何变动,电源内部均不产生 压降,电源母线上的输出电压维持不变。
无限大容量电源短路电流变化曲线
•
三相短路电流常用的计算方法有欧姆法和标幺制
法两种。
•
欧姆法是最基本的短路计算方法,适用于两个及
S
j
S Sj
U
j
U Uj
I
j
I Ij
X
j
X Xj
S、U、I、X需要满足以下关系式:
选取基准值时,只要选定两个,另外两个可以通过计算得到。
I Sj
j 3U j
X
U
2 j
j Sj
基准容量一般取100MVA,基准电压取短路点所在网路段的平均额定电压。
二、供电系统中各元件电抗标幺值
1)输电线路
X
x0
l
S U
j
2 j
x0l
Sj
U
2 av
图3-5 多级电压的供电系统示意图
2)变压器
u k %
3I NT X T 100 S NTX T 100
U NT
U
2 NT
X
T
XT Xj
u
k
%
U
2 NT
100 SNT
Sj
U
2 j
u k % S j 100 SNT
3)电抗器
X LR %
3I NLR X LR 100 U NLR
I 3 z2max
1 8.586
0.177
I 3 z2min
1 8.668
0.115
I 3 z2max
第七章 三相短路分析

短路的原因: 电气设备载流部分绝缘损坏; 运行人员误操作; 其他因素(如鸟兽等)。
短路的现象: 电流剧烈增加; 系统中的电压大幅度下降。
第七章 电力系统三相短路分析计算
? 短路的危害: 1. 短路电流的热效应会使设备发热急剧增加,可能导致设 备过热而损坏甚至烧毁; 2. 短路电流产生很大的电动力,可引起设备机械变形、扭 曲甚至损坏; 3. 短路时系统电压大幅度下降,严重影响电气设备的正常 工作; 4. 严重的短路可导致并列运行的发电厂失去同步而解列, 破坏系统的稳定性。 5. 不对称短路产生的不平衡磁场,会对附近的通讯系统及 弱电设备产生电磁干扰,影响其正常工作 。
第七章 电力系统三相短路分析计算
第二节 恒定电势源电路的三相短路
1. 恒定电势源的概念
说明:无限大功率电源是一个相 对概念,真正的无限大功率电源 是不存在的。
? 恒定电势源(又叫无限大功率电源),是指 系统的容量为 ∞ ,内阻抗为零。
? 恒定电势源的特点:在电源外部发生短路,电源母线上的 电压基本不变,即认为它是一个恒压源。
第七章 电力系统三相短路分析计算
2. 由恒定电势源供电的三相对称电路
图7-2 恒定电势源中的三相短路
a)三相电路 b)等值单相电路
短路前,系统中的a相电压和电流分别为
e ? Em sin(? t ? ? ) i ? Im sin(? t ? ? ? ? ' )
? 为电压的初始相位,亦称合闸角。? '为电压与电流的相位差。
?短路前空载(即 I m ? 0)
?短路瞬间电源电压过零值,即初始相角 ? ? 0
第七章 电力系统三相短路分析计算
短路电流的计算方式

这本身就不是一个简单的事!你既然用到短路电流了,就肯定不是初中阶段的计算了吧所以你就不用找省劲的法子了当然你也可以找个计算软件嘛就不用自己计算了供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件.二.计算条件1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多.具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗.2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻.3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流.三.简化计算法即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.在介绍简化计算法之前必须先了解一些基本概念.1.主要参数Sd三相短路容量(MVA)简称短路容量校核开关分断容量Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定x电抗(Ω)其中系统短路容量Sd和计算点电抗x 是关键.2.标么值计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算).(1)基准基准容量Sjz =100 MVA基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144(2)标么值计算容量标么值S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量S* = 200/100=2.电压标么值U*= U/UJZ ; 电流标么值I* =I/IJZ3无限大容量系统三相短路电流计算公式短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)冲击电流有效值: IC = Id *√1+2 (KC-1)2 (KA)其中KC冲击系数,取1.8所以IC =1.52Id冲击电流峰值: ic =1.41* Id*KC=2.55 Id (KA)当1000KVA及以下变压器二次侧短路时,冲击系数KC ,取1.3这时:冲击电流有效值IC =1.09*Id(KA)冲击电流峰值: ic =1.84 Id(KA)掌握了以上知识,就能进行短路电流计算了.公式不多,又简单.但问题在于短路点的总电抗如何得到?例如:区域变电所变压器的电抗、输电线路的电抗、企业变电所变压器的电抗,等等.一种方法是查有关设计手册,从中可以找到常用变压器、输电线路及电抗器的电抗标么值.求得总电抗后,再用以上公式计算短路电流; 设计手册中还有一些图表,可以直接查出短路电流.下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.4.简化算法【1】系统电抗的计算系统电抗,百兆为一。
短路电流的计算方法 Word 文档

1、短路电流的计算方法:1.1、两相短路电流计算公式:I=∑R=R1/K+Rb+R2∑X=Xx+X1/K+Xb+X2式中:I——两相短路电流,A∑R、∑X——短路回路内一相电阻、电抗值的总和,ΩXx——根据三相短路容量计算的系统电抗值,ΩR1、X1——高压电缆的电阻、电抗值,ΩKb——变压器变压比Rb、Xb——变压器的电阻、电抗值,ΩR2、X2——低压电缆的电阻、电抗值,ΩUe——变压器二次侧额定电压,V1.2、三相短路电流计算公式:I=1.15 I2、电缆线路短路保护2.1、1200V及以下电网中电磁式过电流继电器的整定2.1.1、保护干线装置公式:Iz≥IQe+Kx∑Ie式中:IQe——最大容量电动机额定起动电流,A,为电动机额定电流的6.0~7.0倍。
∑Ie——其余电动机额定电流之和,AKx——需用系数,取0.5~1.0,一般取1.0。
2.1.2、校验公式:≥1.5若线路上串联两台以上开关(其间无分支线路),则上一级开关整定值,也应按下一级开关保护范围最远点的两相短路电流来校验,校验灵敏度应满足1.2~1.5的要求,以保证双重保护的可靠性。
若校验不满足时,应采取以下措施:1.加大干线或支线电缆截面。
2.设法减少低压电缆线路的长度。
3.采用相敏保护器或软起动等新技术提高灵敏度。
4.更换大容量变压器或采取变压器并联。
5.增设分段保护开关。
6.采用移动变电站或移动变压器。
2.2、电子保护器的整定:2.2.1、电磁起动器中电子保护器过流整定公式:Iz≤Ie当运行中电流超过Iz时视为过载,电子保护器延时动作;当运行中电流达到8Iz时视为短路,电子保护器瞬时动作。
2.2.2、校验公式:≥1.2若校验不满足时,应采取以下措施:1.加大干线或支线电缆截面。
2.设法减少低压电缆线路的长度。
3.采用相敏保护器或软起动等新技术提高灵敏度。
4.更换大容量变压器或采取变压器并联。
5.增设分段保护开关。
6.采用移动变电站或移动变压器。
短路电流计算及计算结果

短路电流计算及计算结果等值网络制定及短路点选择:根据前述的步骤,针对本变电所的接线方式,把主接线图画成等值网络图如图4-1所示:F1-F3为选择的短路点,选取基准容量 =100MVA ,由于在电力工程中,工程上习惯性标准一般选取基准电压. 基准电压 (KV ): 10.5 37 115基准电流 (KA): 5.50 1.56 0.50 1、主变电抗计算SFSZ7—31500/110的技术参数∴X 12* =( U d1%/100)*(S j /S B ) =(10.75/100) *(100/40)= 0.269 X 13* =( U d2%/100)*(S j /S B ) =(0/100) *(100/40)= 0X 14* =( U d3%/100)*(S j /S B ) =(6.75/100) *(100/40)= 0.1692、三相短路计算简图,图4-2eav b U U U 05.1==图4-2 三相短路计算简图图4-3 110KV 三相短路kA 0.643110*732.1100311'===B B F V S I 3、三相短路计算(1)、110kV 侧三相短路简图如下图4-3当F1短路时, 短路电流稳态短路电流的有名值冲击电流短路全电流最大有效值短路容量(2)、35kV 侧三相短路简图如下图4-4当F2短路时,短路电流稳态短路电流的有名值KA I I IF F F 3.68.9*643.0*''1'1'1''===KA I I F ch 065.16*55.2'1''1'==KA I I F ch 51.9*51.1'1''1''==MVA S I S B F 980100*8.9*1''01===KA V S I B B F 56.137*732.110032'2===933.20269.0102.01113121''2=++=++=X X X I F KA I I I F F F 58.4933.2*56.1*''2'22''===8.9102.011''==F I 图4-4 35kV 侧三相短路简图冲击电流 I 'ch2 =2.55*4.58=11.68 kA短路全电流最大有效值I "ch2 =1.51*4.58 = 6.92 kA 短路容量 S 2〃= I "F2*S B =2.933*100=293.3 MVA (3)、10kV 侧三相短路简图如下图4-5当F3短路时,I 'F3 = S B /(VB3)= 100/(1.732*10.5) =5.499 kA短路电流I "F3〃=1/(0.102+0.269+0.169)=1.852稳态短路电流的有名值IF3′= I 'F3*I "F3〃= 5.499*1.852 =10.184 kA 冲击电流 I 'ch3 =2.55*10.184 = 25.97 kA短路全电流最大有效值I "ch3 =1.51*10.184 =15.38 kA 短路容量 S 3〃= I "F3*S B =1.852*100=185.2MVA 短路电流计算结果见表4-1表4-1 短路电流计算结果短路点 基准电压VaV (KV ) 稳态短路电流有名值I″KA 短路电流冲击值ich(KA)短路全电流最大有效值Ich(KA) 短路容量S″( MVA) F1 115 6.3 16.065 9.51 980 F2 37 4.58 11.68 6.92 293.3 F310.510.18425.9715.38185.23图4-5 10KV 侧35kV 侧三相短路简小结短路电流是效验导体和电气设备热稳定性的重要条件,短路电流计算结果是选择导体和电气设备的重要参数,同时继电保护的灵敏度也是用它来效验的。
第七章短路电流的计算与分析

第七章短路电流的计算与分析在电力系统中,短路故障是指电路中直接相连的两点之间发生低阻抗的故障。
当发生短路故障时,短路电流会迅速增大,可能导致设备受损甚至发生火灾、爆炸等危险情况。
因此,正确计算和分析短路电流对于电力系统的设计和运行至关重要。
短路电流的计算是为了确定电力系统中各个设备的短路能力以及保护装置的选择和设置。
一般来说,短路电流的计算可以分为两种情况:对称短路电流计算和不对称短路电流计算。
对称短路电流是指在故障中各相之间电路参数相等的短路,而不对称短路电流是指在故障中各相之间电路参数不相等的短路。
对称短路电流的计算是电力系统中最基本的计算方法,其计算公式为:I=U/Z其中,I为对称短路电流,U为短路点的电压,Z为短路点的阻抗。
不对称短路电流的计算相对来说更加复杂,需要考虑电力系统中各个设备的不对称参数。
不对称短路电流的计算公式为:I=U/Zs其中,I为不对称短路电流,U为短路点的电压,Zs为短路电流的阻抗。
在进行短路电流的计算时,需要考虑一些因素,如电源类型、电网结构、短路地点以及电力设备的参数等。
同时,还需要使用计算工具,如电力系统短路计算软件或电力系统网路分析软件进行计算。
在进行短路电流分析时,需要对短路电流进行合理的分析和评估。
首先需要对短路电流的大小进行评估,判断是否超过设备的额定电流。
其次,还需要对短路电流的方向进行分析,判断是否会对系统的其他设备产生不利影响。
最后,还需要对短路电流的持续时间进行评估,判断是否会对设备造成临界损坏。
总之,短路电流的计算与分析是确保电力系统正常运行的重要环节。
正确的短路电流计算和分析可以确保电力设备的安全性和可靠性,从而保障电力系统的正常运行。
因此,在实际工作中,电力系统的设计和运行人员需要对短路电流的计算和分析有深入的了解,并采取相应的措施来确保电力系统的安全运行。
短路电流的计算课件

计算短路电流的直流分量
总结词
短路电流的直流分量是指短路发生后,持续存在的直流电流分量。它对断路器的分断能 力和设备保护有影响。
详细描述
计算短路电流的直流分量需要考虑电源容量和短路点的位置等因素。通常使用电路分析 的方法来计算直流分量的大小,并考虑其对系统的影响。
PART 04
短路电流计算的实际应用
特点
短路电流通常很大,可以达到正常工 作电流的几十倍甚至几百倍,会对电 路和设备造成严重损坏。
短路电流的产生
01
02
03
设备故障
设备故障是短路电流产生 的主要原因之一,如电线 老化、绝缘层破损、设备 内部故障等。
误操作
操作人员误操作也可能导 致短路电流的产生,如错 误地连接线路、错误地操 作开关等。
系统稳定性受影响
短路电流的产生可能会对电力系统的 稳定性造成影响,如导致电压波动、 电流波动等,严重时可能导致整个系 统崩溃。
PART 02
短路电流计算的基本原理
REPORTING
欧姆定律的应用
欧姆定律是计算短路电流的基本原理之一,它指出在电路中 ,电流、电压和电阻之间的关系。在短路情况下,欧姆定律 可以帮助我们计算出短路电流的大小。
短路电流的计算课件
REPORTING
• 短路电流概述 • 短路电流计算的基本原理 • 短路电流计算的步骤和方法 • 短路电流计算的实际应用 • 短路电流计算的注意事项 • 短路电流计算案例分析
目录
PART 01
短路电流概述
REPORTING
定义与特点
定义
短路电流是指电力系统在正常运行时 ,由于某种原因导致电路中出现不正 常的通路,使得电流不经过负载而直 接流过这个通路的现象。
短路电流计算方法

一.概述供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件.二.计算条件1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多.具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗.2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻.3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流.三.简化计算法即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.在介绍简化计算法之前必须先了解一些基本概念.1.、主要参数Sd三相短路容量(MVA)简称短路容量校核开关分断容量Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定x电抗(Ω)其中系统短路容量Sd和计算点电抗x 是关键.2、.标么值计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算).(1)基准基准容量Sjz =100 MVA基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144(2)标么值计算容量标么值S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量S* = 200/100=2.电压标么值U*= U/UJZ ; 电流标么值I* =I/IJZ3、无限大容量系统三相短路电流计算公式短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)冲击电流有效值: IC = Id *√1+2 (KC-1)2 (KA)其中KC冲击系数,取1.8所以IC =1.52Id冲击电流峰值: ic =1.41* Id*KC=2.55 Id (KA)当1000KVA及以下变压器二次侧短路时,冲击系数KC ,取1.3这时:冲击电流有效值IC =1.09*Id(KA)冲击电流峰值: ic =1.84 Id(KA)掌握了以上知识,就能进行短路电流计算了.公式不多,又简单.但问题在于短路点的总电抗如何得到?例如:区域变电所变压器的电抗、输电线路的电抗、企业变电所变压器的电抗,等等.一种方法是查有关设计手册,从中可以找到常用变压器、输电线路及电抗器的电抗标么值.求得总电抗后,再用以上公式计算短路电流; 设计手册中还有一些图表,可以直接查出短路电流.下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 4.简化算法【1】系统电抗的计算系统电抗,百兆为一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章短路电流计算系统图转化为等值电路图一、基准值:工程上通常选取基准容量Sj=100MV A,基准电压通常取各元件所在的各级平均电压:220KV电压级:Vj=1.05×220KV=230KV110KV电压级: Vj=1.05×110KV=115KV10KV电压级: Vj=1.05×10KV=10.5KV基准电流220KV侧Ij=0.251KA,110KV侧Ij=0.502KA,10KV侧Ij=5.5KA三绕组变压器阻抗电压为U12%=14.5 U13%=23.2 U23%=7.2三绕组变压器等值电抗分别为:X1%=1/2(U12%+U13%-U23%)=1/2(14.5+23.2-7.2)=15.25X2%=1/2(U12%+U23%-U23%)=1/2(14.5+7.2-23.2)=0X3%=1/2(U13%+U23%-U12%)1/2(23.2+7.2-14.5)=7.95功率:Sd1=100Sc/x1%=100×120/15.25=786.89MVASd3=100Sc/x3%=100×120/7.95=1509.43MVA各绕组电抗标么值:X4*=X1*=x1%/100×Sj/Sn=15.25/100×100/120=0.127X6*=X3*=x3%/100×Sj/Sn=7.95/100×100/120=0.066等值线路图:各取220KV,110KV和10KV母线处短路点为d1,d2,d31、220KV短路计算由图知:220KV母线d1点发生短路时,系统等效电抗X7*=xd2*+x1*∥x4*=0.3835d1短路时的短路电流标么值:Id1*=E1*/xd1*+E2*/x7*=1/0.16+1/0.3835=8.86 故d1处短路时短路电流的有名值为:Id1=Ij×Id1*=0.251×8.86=2.22KA冲击电流:Ich1=ich= 2Kch I d=2.55Id冲击电流最大有效值为:Ich=2)1+Kch Id=1.51Id(21-工程设计中所取冲击系数为Kch=1.8即220KV测冲击电流和最大有效值为:ich1=2.55Id=2.55×2.22=5.661KAIch1=1.51Id=1.51×2.22=3.352KA短路容量:Sd1=3Vj1Id1=3×230×2.22=884.4MVA2、110KV母线发生短路时:由以上等效图计算:X8*=xd1*+x1*∥x4*=0.2235标么值:Id2*=1/x8*+1/xd2*=7.599有名值为:Id2=I2j×Id2*=0.502×7.599=3.815KA冲击电流:ich2=2.55Id2=2.55×3.815=9.728KA冲击电流有效值:Ich2=1.51Id=1.51×3.815=5.76KA短路容量:Sd2=3Vj2Id2=3×115×3.815=759.894MVA3、10KV母线发生短路时:由以上等效图计算:X9*=xd1*+x1*∥x4*=0.2235X10*=x3*∥x6*=0.033X11*=x9*+x10*+x9*x10*/xd2*=0.2235+0.033+0.2235 0.033/0.32=0.2795X12*=xd2*+x10*+xd2*x10*/x9*=0.4002标么值:Id3*=1/x11*+1/x12*=6.077有名值:Id3=6.077×5.5=33.424KA冲击电流:ich3=2.55Id3=2.55×33.424=85.231KA冲击电流有效值:Ich3=1.51Id3=50.47KA短路容量:Sd2=3Vj3Id3=3×10.5×33.424=607.867MVA常用电压电流电抗基准值表(Sj=100MVA)第二章电气设备的选择计算第一节断路器选择计算一、220KV断路器的选择与校验1、按额定电压选择Vymax=1.15Ve>Vgmax=1.1Ve2、按额定电流选择Ie≥Igmax考虑到变压器在电压降低5%时其出力保持不变,所以相应回路的Igmax=1.05Ie。
即Igmax =220305.11202⨯⨯⨯=0.66133 KA3、按开断电流来选择I Nbr ≥I ''=20.242 KA 4、 按短路关合电流选择 i Ncl ≥ich=51.617 KA根据以上计算,可以初步选择LW6-220型断路器,其参数见下表:表2.1 所选220KV 断路器的参数br t k =t pr +t br =t in +t a + t br =0.036+0.05+0.15=0.2366 s 式中 t k : 短路计算时间; t pr : 继电保护动作时间; t in : 断路器固有分闸时间; t a : 断路器开断时电弧持续时间。
短路电流的热效应为:Qk =I 2'' t k =(20.242)2⨯0.2366=96.944 KA 2s 电气设备在4s 内热稳定电流的热效应:Qn =I 2n t=502⨯4=10000 KA 2s 从而知Qk <Qn ,满足要求。
6.校验动稳定: icj =56.617<idw =100, 满足要求。
将上述计算结果列表如下:表2.2 220KV 断路器选择与校验结果表二、110KV 断路器的选择与校验1.按额定电压选择Vymax =1.15Ve >Vgmax=1.1Ve2.按额定电流选择 Ie ≥Igmax Igmax =110305.11202⨯⨯⨯=1.3227 KA3.按开断电流来选择INbr ≥I ''=7.11 KA 4.按短路关合电流选择iNcl ≥ich=18.131 KA根据以上计算,可以初步选择LW14-110型断路器,其参数见下表:表2.3 所选110KV 断路器的参数5.校验热稳定,取后备保护动作时间t br 为0.15s 。
t k =t pr +t br =t in +t a + t br =0.025+0.05+0.15=0.225 s Qk =I 2'' t k =(7.11)2⨯0.225=11.37 KA 2Qn =I 2n t=31.52⨯3=2977 KA 2s从而知Qk <Qn ,满足要求。
6.校验动稳定icj =18.131<idw =80, 满足要求。
将上述计算结果列表如下:表2.4 110KV 断路器选择与校验结果表三、10KV 侧断路器的选择与校验 1. 10KV 最大负荷出线正常工作时 Igmax==eV S ⨯⨯305.1max=103540005.1⨯⨯=327.358 A短路时,由前面的短路计算结果可知 Id=35.855 KA 由于加装了电抗器,可以选择断路器,根据10KV 侧出线的额定电压和最大负荷电流,选定断路器的型号为:SN10-10I ,其技术参数见下表:表2.7 所选10KV 侧断路器的参数经过动、热稳定及相关校验知SN10-10I 断路器满足要求第二节 隔离开关选择计算一、220KV 隔离开关的选择与校验 1.按额定电压选择Vymax =1.15Ve >Vgmax=1.1Ve2.按额定电流选择 Ie ≥Igmax Igmax =220305.11202⨯⨯⨯=0.661 KA根据以上计算,可以初步选择GW7-220DW 型隔离开关,其参数见下表:表2.8所选220KV 隔离开关的参数br t k =t pr +t br =t in +t a + t br =0.036+0.05+0.15=0.2366 s Qk =I 2'' t k =(20.242)2⨯0.2366=96.944 KA 2sQn =I 2n t=31.52⨯3=2977 KA 2s从而知Qk <Qn ,满足要求。
4.校验动稳定icj =56.617<idw =80, 满足要求。
注:由于隔离开关不用来接通和切断短路电流,故无需进行开断电流和短路电流校验。
由上述计算表明,选择GW7-220DW 型隔离开关能满足要求 将上述计算结果列表如下:表2.9 220KV 隔离开关选择与校验结果表二、110KV 隔离开关的选择与校验 1.按额定电压选择Vymax =1.15Ve >Vgmax=1.1Ve2.按额定电流选择 Ie ≥Igmax Igmax =110305.11202⨯⨯⨯=1.3227 KA根据以上计算,可以初步选择GW5-110型隔离开关,其参数见下表:表2.10 所选110KV 隔离开关的参数br t k =t pr +t br =t in +t a + t br =0.025+0.05+0.15=0.225 s Qk =I 2'' t k =(7.11)2⨯0.225=11.37 KA 2sQn =I 2n t=31.52⨯4=3969 KA 2s从而知Qk <Qn ,满足要求。
4.校验动稳定icj =18.131<idw =100, 满足要求。
将上述计算结果列表如下:表2.11 110KV 隔离开关的选择与校验结果表三、10KV 侧隔离开关的选择与校验1.按额定电压选择Vymax =1.15Ve >Vgmax=1.1Ve2.按额定电流选择 Ie ≥Igmax Igmax==eV S ⨯⨯305.1max=103540005.1⨯⨯=327.358 A根据以上计算数据,可以初步选择GN2-10/3000型隔离开关,其参数见下表:表2.14 所选10KV 隔离开关的参数3.校验热稳定t k =t pr +t br =t in +t a + t br =0.06+0.05+0.15=0.26 s QK =I 2'' t k =(35.855)2⨯0.26=334.25 KA 2Qn=I 2n t=502⨯4=25000 KA 2s从而知Qk <Qn ,满足要求。
4.校验动稳定icj=91.430<idw=100, 满足要求。
由上述计算结果列表明选择GN2-10/3000隔离开关能满足要求将上述计算结果列表如下:表2.15 10KV侧隔离开关的选择与校验结果表从上表可知,选择GN2-10/3000型隔离开关满足要求第三节电流互感器选择计算一、220KV侧电流互感器的选择:1.根据电流互感器安装处电网额定电压Uns=220KV,线路Imax=727A查表,可初步选择型号为LB9-220的电流互感器参数如下表2.热稳定校验:只需对本身带有一次回路导体的互感器进行。