国电联合动力技术有限公司双馈式风电机组低电压穿越功能对变流器的技术要求ppt
双馈式风力发电机低电压穿越技术分析

此 , 加快 L V R T 标 准制度对风 力发电稳定持 续
运行有重要意义。
2 . L VR T实现方法
2 . 1传统控制策略不适合故障过程控制 通过 双馈 电机转子轴的有功与无功解耦控
力设施日趋现代化与自动化 为发电、 输电 以及供电提 供了 更为科学、 高效的设备支持, 使电 力资源得到高效、 优化利用。 本文将对双 馈式风力发电机低电压穿越技术进行研究, 分析该 技术风电场对 电 力系统的影响。
( 1 ) 电 网发生故 障时 , 保护 电 网与 电压、变 的工作模式 , 如果不 能采取 这种模式 , 电压恢
流 器不 出现损坏。 ( 2) 将故障 时机械转 矩跃 复暂态容易 出现与返 回值不匹配的・ 情况 , 容易 变对齿轮 箱与风 机造成的冲击 , 进而避免齿轮 使积分 出现饱和 , 产生 更加严 重的暂态响应。 箱 出现机械磨损。 ( 3 ) 需与电网的 L v R T 标准 由此 , 为了使切换 更加 平滑 必须将 参考 值设 满足 , 随着我国风力发电产业快速发展 大规 置 为实 际值 , 这样 才能 使整 个状态是缓慢、安 模发电项 目被提上 日程 , 但是风力发 电能源供 全的。 应不足 , 对电网稳定性带来 了不利 影响 。 由 2 . 2 _ 2 能量T 7 - - -  ̄系统
机会在故障期间提供无功给 电网 但是需要 注
意的是 , 切换不需要再使用特殊 的控制方 法 ,
【 参考文献】
但是会 出现严重 的暂 态 】 。鉴于此过程电机 没 l l I 程 孟增 . 双馈风力发电系统低 电压 穿越关 有与电 网发生解列 , 电机依然可 以生成 电磁转
键技术研 究 【 D 】 . 上海交通大学 , 2 01 2 .
各国风电并网导则对低压电穿越的要求(ppt版)

1.
低电压穿越(LVRT)的概念 Concept of Low Voltage Ride Through
镇赉风电场一期(49.5MW) 洮北风电场(98.6MW) 宝山风电场(49.5MW) 洮南风电场(99MW) 富裕风电场(15MW) 镇赉变 大安变 查干浩特风电场 (24MW) 新立风电场 (49.5MW) 白城变 大安风电场(99MW)
2004-12-14
中国电力科学研究院
CHINA ELECTRIC POWER RESEARCH INSTITUTE
1
各国风电并网导则对低电压穿越的要求
-为什么需要低电压穿越
Comparison of LVRT requirements worldwide-
Why do we need LVRT?
Voltage dips will be more severe during high wind penetration
风电机组达到切入风速时 Low Wind
风电机组额定运行时 High Wind
10
中国电力科学研究院
CHINA ELECTRIC POWER RESEARCH INSTITUTE
The impact on wind turbine of voltage dips
Unbanlance torque may influnce the stable operation of wind turbine Overcurrent of generator in transient may damage the Electronics components. Additional torque or forces may damage the mechanical components.
风电场低电压穿越技术培训课件

定子侧保护电路
变流器通过发电机定子端的串联变压器增加交流开关 实现与电网串联连接,转子侧变流器选用电流等级较 高的大功率IGBT,故障时定子侧产生较大的暂态电 流,此时通过控制晶闸管触发延迟角对此电流进行限 制。
•风电场低电压穿越技术培训
定子侧保护电路
• 将变流器与电网进行串联连接,则双馈感应发电机定子端 的电压为网侧电压和变流器输出的电压之和。这样便可以 通过控制变流器的电压来控制定子磁链,有效的抑制由于 电网电压跌落所造成的磁链振荡,从而阻止转子侧大电流 的产生,减小系统受电网扰动的影响,达到强化电网的目 的。但这种方式将增加系统许多成本,控制也比较复杂。
1 没有故障,判断风速,满足启动条件,进入并网过程。
•风电场低电压穿越技术培训
风力机组脱网
• 如果电机出力持续低于脱网设定值,风力机组将退出电 网,处于待机状态。断开发电机接触器,切除补偿电容, 断开旁路接触器,同时执行正常刹车过程,使风力机处 于停止状态,等风速满足条件后再次执行并网过程。这 一过程是在风速较低时进行的,电机出力为负功率时, 吸收电网有功,风力几乎不做功。为防止风力机在低风 速下频繁启动和停止,统计可控硅在1小时内的投入次数, 若投入次数大于4次,则停止并网,报故障,等待风的状 态平稳后由手动复位使风力机组正常运行如果电机出力 持续高于额定功率10%,将执行正常停机。当出力持续 高于额定功率20%,将执行安全停机,等待风速降低后 重新启动电机运行。
3
附加的转矩、应力可能损坏机械部分
•风电场低电压穿越技术培训
国内机组低电压运行能力现状
• 变速风电机组的LVRT功能,受制 于电力电子器件自身的过流能力。
• 一般而言,IGBT的过流能力只是 额定电流的两倍。
UP系列1.5MW风机整机低电压穿越功能实现方案-2.6

UP系列1.5MW双馈式风力发电机组低电压穿越功能实现方案国电联合动力技术有限公司风电设备技术研究所UP系列1.5MW双馈式风力发电机组低电压穿越功能实现方案1.低电压穿越的背景及意义1.1 低电压穿越的背景近年来,变速恒频风力发电技术在兆瓦级以上风力发电机的应用成为研究热点,在新安装的变速恒频风力发电机中,双馈感应发电机(DFIG)占到很大的比重,它使用双PWM变流器控制双馈感应发电机的励磁电流,一方面由于双馈感应发电机转子和定子间的电磁关系,变流器只需供给转差功率就可以调节风力发电机的转速,实现了对风能的最大捕获,大大减少了变速风力发电系统变流器的额定容量;另一方面,发电系统可以通过改变励磁电流的幅值和相位实现独立调节发电机输出的有功、无功功率,这可以保证风力发电厂运行与单位功率因数,减小电力系统的损耗。
另外也可以按照风场的要求来发出一定容量的有功和无功功率的容量。
双馈感应式变速恒频风力发电技术可以提高风能捕获能力和转换效率,改善并优化风力发电机组的运行条件,使得发电机组与电力系统之间能实现良好的柔性连接,便于实现并网操作,是一种优化的具有良好应用前景的风力发电解决方案。
但是真是因为DFIG风力发电系统使用了小容量变流器,因此减弱了DFIG系统抵御电网电压跌落的能力。
国内外进行的一些研究表明,当电网电压跌落到一定数值时,如果不加任何处理措施,DFIG系统将切出电网。
因此,需要研究在电网电压故障下如何使DFIG风力发电系统能够保持和电网的连接,并且能够对电网提供支撑来提高电力系统的稳定性。
1.2 风电机组低电压穿越的概念当电网故障或扰动引起风电场并网点的电压跌落时,在一定电压跌落的范围内,风电机组能够不间断并网运行。
英文简称名称LVRT(Low V oltage Ride Through),该定义摘自《国家电网公司风电场接入电网技术规定(修订版)2009年2月》第3.8节。
1.3 风电机组低电压穿越对风电机组各设备的要求风电机组的低电压穿越对风电机组各设备有特殊的要求。
双馈风力发电机组及其低电压穿越技术

∞0 0s o = 9±6r () 1
目 风 力发电机主要有双馈发电机和永磁 前, 同步发电机两种。 双馈异步风力发 电机在结构上 和绕线异步 电机 类似 , 因其定、 子都可 以馈 入 转 或馈 出能量 , 双馈 的定义 由此而来 。 着风 电机 随
组单机容量 的不断增 加和风 电厂规模 的不断扩
Abs r c : tr i g fo t eb scwo k n rn i l f t a t S a t r m a i n h r i g p i cp e o t e d u l — d g n r t r ma h ma i o e ft e d u l — h o b e f e e a o , t e t m d l h o b e e c o f d g n r t r wa s a ls e ,a d t e ,smu a i n wa e e e a o s e t b ih d n h n i l to s c n u t dwh n t ewi d s e d c a g n . es au ft e o d c e e n p e h n i g Th t t so h h d u l・e e e a o e p r t g u d rt e c n i o h t o b e f d g n r t r s t e a i n e h o d t n t a o n i p we rd f i r c u r d wa t d e , h to g ra ii o rg i a l eo c re ssu id t esr n e b lt u y o e lw・ ot g i e t r u h wa an d b a so e f h o - l erd h o g sg i e y me n ft t v a ・ h h r wa e me h d h ti , h o b e f d g n r t ri h a d r t o .T a s t e d u l— e e ao n t e e wi dt r i ewa b et i t i s a a ll p r to t n b n s l man an i r l e a i n wi u a o tp eo h t e n t r n t e c s ft mp r r al r ft e p we h e wo k i h a e o e o a y fi eo o r u h g i. rd Ke wo d :Do b y・ e n r t r S a o l x Or・ y rs u l ・ d Ge e a o t t r F u i F ・ e t t n Ve t rCo to Lo v l g i e t r u h nai o co nr l w o t e r —h o g a d
浅析双馈式风力发电机低电压穿越技术

浅析双馈式风力发电机低电压穿越技术双馈式风力发电机是一种常见的风力发电机类型,其具有低启动转矩、高风能利用率和良好的可调谐性等特点,因此在风力发电行业中得到了广泛的应用。
双馈式风力发电机在发电过程中可能会遇到低电压穿越的问题,这种情况在风力发电系统中并不少见,因此针对双馈式风力发电机低电压穿越技术的研究和分析具有重要的意义。
双馈式风力发电机低电压穿越技术主要是指当风速下降,风力发电机所受的风能也会减小,导致风力发电机输出电压下降,当输出电压降至一定水平以下时,会影响风力发电机的正常运行,甚至会导致系统的停机。
研究双馈式风力发电机在低电压工况下的性能和运行特性对于提高风力发电系统的可靠性和稳定性具有重要的意义。
双馈式风力发电机低电压穿越技术涉及到的主要问题是风力发电机的控制策略和控制逻辑。
在低电压工况下,风力发电机需要根据实际情况采取相应的控制策略,以保证风力发电机的正常运行并最大限度地利用风能。
一种常见的控制策略是采用双馈风力发电机转子侧变流器的控制方式,即通过调节转子侧变流器的参数来调整转子的功率因数,以保证风力发电机在低电压工况下仍能保持较高的输出功率和效率。
双馈式风力发电机低电压穿越技术还涉及到风力发电机的电气保护和安全控制。
在低电压工况下,风力发电机容易发生电气故障和过载现象,因此需要采取相应的电气保护措施来保护风力发电机的安全运行。
还需要针对低电压穿越情况制定相应的安全控制策略,以避免因电压过低导致的系统故障和停机情况。
针对双馈式风力发电机低电压穿越技术的研究还需要对其性能进行分析和评估。
通过对双馈式风力发电机在低电压工况下的功率特性、效率特性和稳定性进行分析和评估,可以为风力发电系统的设计和运行提供重要的参考依据。
还可以通过对双馈式风力发电机在低电压工况下的性能进行模拟和仿真研究,来验证控制策略和电气保护措施的有效性和可靠性。
双馈式风力发电机低电压穿越技术是风力发电领域的重要研究方向,其研究对于提高风力发电系统的可靠性和稳定性具有重要的意义。
双馈型风电机组低电压穿越技术要点及展望

二、控制策略的改进
2、采用预测控制算法:通过预测未来的系统需求和风电机组的性能,可以提 前调整风电机组的运行状态,以更好地适应低电压穿越过程。
二、控制策略的改进
3、优化保护策略:在低电压穿越过程中,系统的故障可能导致风电机组承受 较大的冲击。因此,需要优化风电机组的保护策略,以保证其在故障情况下的安 全运行。例如,可以引入更灵敏的故障检测机制,以及更快速的保护动作时间。
二、双馈型风电机组低电压穿越技术要点
这一要求所适用的工况不仅包含一般意义上的深度短时对称、不对称电压跌 落,还应特别长时间单相(或两相)电压轻度跌落、高度不平衡时的运行工况。
三、展望
三、展望
随着风电在电力系统中的比例日益增大,双馈型风电机组低电压穿越技术的 重要性也日益凸显。未来,这一领域的研究将更加深入,包括进一步优化控制策 略、改进电力电子器件的性能、研发新的保护设备等。随着智能电网的发展,通 过先进的预测技术和调度算法,将能够更有效地管理和调控风电发电量,从而降 低电网电压跌落的风险。
三、结论
三、结论
本次演示对提高双馈型风电机组低电压穿越能力的方法进行了研究。通过优 化发电机的控制策略、提高发电机的过载能力、加强对电力系统的管理和监控等 措施,可以有效地提高双馈型风电机组的低电压穿越能力。然而,这些方法在实 际应用中还需要进一步验证和完善。未来,随着技术的不断进步和应用实践的积 累,双馈型风电机组的低电压穿越能力将会得到进一步提高。
双馈型风电机组低电压穿越 技术要点及展望
目录
01 一、双馈型风电机组 及其低电压穿越技术 概述
03 三、展望
02 二、双馈型风电机组 低电压穿越技术要点
04 参考内容
内容摘要
随着全球对可再生能源需求的日益增长,风力发电在全球范围内得到了广泛 应用。然而,风力发电的特性使得电网在遭遇风力发电设备故障时,极易引发电 网电压跌落,对整个电网的稳定运行构成威胁。在这其中,双馈型风电机组 (DFIG)因其独特的运行机制,对电网电压跌落的响应特性尤为值得。本次演示 将重点探讨双馈型风电机组低电压穿越(LVRT)的技术要点及未来发展趋势。
低电压穿越PPT版

-1 5 0
1 .0 0 .8
❖ 3 phase short-circuit duration
0 .6
0 .4 0 .2
100ms
1 .0
0 .5
0 .0
-0 .5
-1 .0
1 .0 8 1 .0 6 1 .0 4 1 .0 2 1 .0 0 0 .9 8
0
1
2
3
4
5
6
7
8
t/s
动态电压崩溃
Dynamic Voltage Callapse
1. 低电压穿越(LVRT)的概念 Concept of Low Voltage Ride Through
风电装机比例较高时:
➢ 高风速期间,由于输电网故障引起的大量风电切除会导致系 统潮流的大幅变化甚至可能引起大面积的停电,而带来频率 的稳定问题。
➢ 低电压穿越能力是必需的
The wind penetration is high
各国风电并网导则对低电压穿越的要求
-为什么需要低电压穿越
Comparison of LVRT requirements worldwideWhy do we need LVRT?
迟永宁 CHI Yongning 并网技术室 2009.01.06
中国电力科学研究院新能源研究所
大纲 Outline
1. 低电压穿越(LVRT)的概念
must be tripped in case of voltage dips during the grid fault.
风
桨叶
齿轮箱
异步发电机
低速轴 高速轴
升压变
电网
并联电容器组
1. 低电压穿越(LVRT)的概念 Concept of Low Voltage Ride Through
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国电联合动力技术有限公司双馈式风电机组低电压穿越功能对变流器的技术要求版本:A编制:徐佳园审核:潘磊日期:2011年6月11日目录1.风电机组低电压穿越功能概述 (1)2.风力发电机组对变流器低电压穿越技术规定 (2)2.1基本要求 (2)2.2不同故障类型的考核要求 (3)2.3有功恢复 (3)2.4无功支撑 (3)3.风电机组低电压穿越功能中变流器功能的实现 (4)4.低电压穿越功能中变流器需完成的功能 (5)4.1电网低电压检测 (5)4.2低电压穿越过程及恢复过程中的有功功率控制 (8)4.3变流器其它需要具有的功能 (9)附件一低电压穿越测试点清单 (12)1.风电机组低电压穿越功能概述风电机组低电压穿越功能对风电机组各设备有特殊的要求。
这些设备包括风电机组主控系统、变流器、变桨系统、发电机、齿轮箱和联轴器。
本文主要是在风电机组低电压穿越过程中对变流器功能做出说明,以配合风电机组其它部件完成低电压穿越功能。
对于电气控制系统,需要在低电压穿越期间保持风电机组不脱网,并能够最大限度的发出无功功率,对电网实现支撑。
变流器应当能够承受低电压跌落时在转子上产生的大电流,同时能够泄放部分能量。
变流器要满足当前电网法规对风电机组低电压穿越功能的基本要求,当电网法规发生变更时,变流器应能够满足新的电网法规相关要求,必要时重新修订此低电压穿越技术要求。
2.风力发电机组对变流器低电压穿越技术规定2.1基本要求低电压穿越功能的基本要求请参照:中国国家电网公司企业标准(Q/GDW 392-2009)风电场接入电网技术规定(2009年12月22日),具体要求如下:图2.1风电场低电压穿越技术要求规定图2.1为对风电场的低电压穿越要求。
风电场并网点电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不间断并网运行;并网点电压在图中电压轮廓线以下时,场内风电机组允许从电网切除。
规定的风电场低电压穿越要求为:1)风电场内的风电机组具有在并网点电压跌至20%额定电压时能够保证不脱网连续运行625ms的低电压穿越能力;2)风电场并网点电压在发生跌落后2s内能够恢复到额定电压的90%时,风电场内的风电机组能够保证不脱网连续运行。
国家电网出台的风电场接入电网技术规定,是针对整个风电场所提的技术要求,具体检测点在整个风电场的并网点侧。
目前,针对单机的低电压穿越能力考核也是以此规定的技术要求为标准。
2.2不同故障类型的考核要求对于电网发生不同类型故障的情况,对风电场低电压穿越的要求如下:1)当电网发生三相短路故障引起并网点电压跌落时,风电场并网点各线电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意一线电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。
2)当电网发生两相短路故障引起并网点电压跌落时,风电场并网点各线电压在图中电压轮廓线及以上的区域时,场内风电机组必须保证不脱网连续运行;风电场并网点任意一线电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。
3)当电网发生单相接地短路故障引起并网点电压跌落时,风电场并网点各相电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意一相电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。
2.3有功恢复对故障期间没有切出电网的风电场,其有功功率在故障切除后快速恢复,以至少10%额定功率/秒的功率变化率恢复至故障前的值。
2.4无功支撑变流器低电压穿越功能要具备无功支撑选项,可以手动设定无功百分比。
这一项要求目前在国网技术规定中虽然没有作出规定,但根据目前风电发展情况以及世界上其它一些国家风电并网法规对低电压穿越技术无功支撑的要求,我公司是要求变流器具有该项功能的。
无功支撑功能有助于电网低电压的恢复,有助于风电机组的低电压穿越功能的实现。
3.风电机组低电压穿越功能中变流器功能的实现双馈型发电机组,当电网瞬间跌落时,产生很大的初始电流,定子侧如此,根据磁通守恒定律,转子侧电流也很大。
因为转子变流器输出电压和电流被限制,比较严重的电网故障时,变流器必须保护,变流器所需基本功能如下:1)变流器需要提供有源CROWBAR,当变流器检测到电网电压下降时,将根据直流母线的电压控制CROWBAR部件的动作,泄放转子上的能量来抑制转子电压的升高。
2)并网开关和网侧接触器继续保持并网,变流器要有无功支撑选项,可手动调节无功。
3)变流器要实现不对称跌落下的故障穿越。
4)变流器控制系统需配备相应的UPS,以保证在电压跌落时变流器的控制功能正常运行。
以上是变流器完成低电压穿越所需的基本功能,如果变流器厂家有不同于上述的低电压穿越技术时,请及时通知本公司相关人员。
4.低电压穿越功能中变流器需完成的功能4.1电网低电压检测风电机组电网低电压的检测主要依靠变流器自身的电压检测功能来实现的。
当变流器检测到低电压发生后给主控发出低电压穿越状态启动信号,主控接收到该信号后作为低电压穿越控制的起点,之后执行低电压穿越程序,实现低电压穿越功能。
目前变流器在检测到电网电压跌落之后,其控制模式将转换为电网支撑模式。
同时变流器给主控的CCU STATUS WORD位的状态位将发生变化,主控系统通过检测这些状态位的变化确认低电压穿越状态的开始。
当电网电压恢复后,电网支撑模式关闭且有功功率以参数TORQUE RISE TIME定义的相应的速度增加到设定值。
同时变流器状态字CCU STATUS WORD状态位将发生变化,主控系统通过检测这些状态位的变化确认低电压穿越状态的结束。
参数CCU STATUS WORD第6位、第8位和第10位包含有关低电压穿越功能的电网动态信息,其中电网跌落情况的位状态如下所述:1)B10 LOW VOLTAGE FOR RIDE THROUGH当电网电压低于电压LEVEL1 时置1;当电网电压高于电压LEVEL1时清0。
其中电压等级1和电压等级2以及时间t1、t2应该在参数设置时设为可选择项,设定范围应该根据在满足国家标准前提下变流器最大能力来设定。
图4.1 低电压级别设定示意图表4.1 低电压级别设定表最低相间电压导致的欠压跳闸,用参数AC UNDERVOLT TRIP确定。
电网电压可以测量,3相相间电压可以计算。
如果电压跌落在可接受的范围(如图4.1电压跌落图阴影部分),风电机组必须与电网保持连接。
电网支撑功能只有在电压开始跌落后约100ms至150ms 开始生效(这个时间需根据电网要求确定),需要用此时间来稳定发电机。
然后,开始通过产生容性无功功率,支撑电网。
2)B8 TORQUE REDUCTION当最终给定到DTC 的转矩给定被限幅,以至于无法产生需求的转矩给定值时,将一直被置1。
3)B6 CROWBAR TRIGGERED当有源CROWBAR 需要变为触发状态时,被置1。
有关B10、B8、B6动作情况如图4.2所示:图4.2 CCU STA TUS WORD中有关低电压穿越相应位的变化情况CCU STATUS WORD详细状态位请见下表。
4.2低电压穿越过程及恢复过程中的有功功率控制一些电网导则要求风力发电机在电网发生故障的情况下为电网产生有功功率。
我公司要求风力发电机在电网发生故障的情况下为电网优先产生有功功率,当电网电压下降时有功功率也会比例下降,要基于电压跌落深度限制转矩给定。
例如在风速满足时,75%电网电压时产生75%功率,25%电网电压时产生25%功率。
在保证有功功率情况下,尽可能地对电网进行无功支撑。
在电网电压恢复之后,变流器的电网支撑模式会被关闭,有功功率以100ms(该值为变流器内部的默认值)的斜坡速率增加到设定值。
该参数要有可以设定的参数(可定义为TORQUE RISETIME)。
当低电压穿越的信号消失时,主控切换至普通运行状态即可,此时需要重点观察过渡过程。
同时由于在主控程序中限制功率输出最大为15%/s,变流器应能按主控转矩指令进行有功功能的恢复,此恢复速率是满足电网的技术规定。
以上功能是为了符合中国国家电网对风电机组的要求。
但是变流器需要具备无功功率优先功能,以备符合其它一些国家与地区电网法规。
4.3变流器其它需要具有的功能4.3.1 电网支撑1)电网支撑模式选择根据不同电网导则的要求,电网支撑模式需具备选择性(ON 或OFF)。
电网支撑功能是通过馈入无功电流到电网来实现的。
无功电流给定是与电网电压有关的一个函数,用户可以定义几个不同的电压等级。
当电网电压处于定义的电网电压等级之间时,无功电流给定与电网电压成线性关系。
自电压跌落出现的时刻起,该动态无功电流控制的响应时间不大于Xms(该值应满足不同电网的不同要求),并能持续Xms(该时间值满足不同电网的不同要求)的时间。
2)不同电网电压等级,对应的无功电流给定:这项要求需有可设定参数,不同电压等级下补偿无功电流的大小是可以通过参数设定的。
3)通过现场总线设置电网支撑功能无功电流给定也能通过现场总线给出。
在这种情况下,变流器电网支撑自动功能应该选为OFF。
4)电网故障后的电网支撑一些电网导则要求风力发电机在电网发生故障后一定时间内为电网提供支撑。
电网支撑程度和时间长度由下列参数定义,参数需要根据电网导则的要求设置。
5)电网支撑受最高可能转子相电流限制无功电流电网支撑往往会大量增加转子电流,特别是当电网故障不对称时。
非对称电网故障会对转子产生极高的电流尖峰。
过高转子尖峰电流可导致CROWBAR 跳闸。
为消除不必要的CROWBAR跳闸,在转子尖峰电流上升过高时,无功电流给定受限。
4.3.2 电网过压瞬变设定值一些电网导则要求风力发电机在电网电压上升过高时,能够从电网吸收无功电流,目的在于稳定电网电压等级。
4.3.3 电网分量分析:电网导则检验算法通常采用DFT/FFT分析法分析电网电压和电流。
无功和有功电流的产生和消耗,基于正、负和零分量计算。
4.3.4 CROWBARCROWBAR所需具备以下测量值:测量值4.3.5 变流器监测软件中所需监测的信号:1)机侧变流器●GENERATOR TORQUE [%] 电机转矩●DC VOLTAGE [V] 直流电压●MOTOR SPEED [rpm] 转子转速●TORQUE REF A [%] 转矩参考●CB BRIDGE VOLTAGE [V] CROWBAR 桥电压●CB ENERGY [kWs] CROWBAR 能量●Is REACT+ [A] 转子无功电流●SEQUENCE VOLT (-) [V] 负序电压●SEQUENCE VOLT (+) [V] 正序电压●IR MAX MEASURED [A] 电流最大侧量值●Is ACT+ [A] 转子有功电流●STATOR IS NO FILT [A] 定子无滤波电流●Is [A] 转子总电流2)网侧变流器●REACTIVE POWER [ kV Ar] 无功功率●POWER [kW] 有功功率●LINE CURRENT [A] 网侧总电流●MAINS VOLTAGE [V] 网侧主电压●DC VOLTAGE [V] 直流电压●MAIN STATUS WORD 主控字状态●CHOPPER ENERGY [%] 制动斩波器能量●STATOR IS (RMS) [A] 定子电流附件一低电压穿越测试点清单。