操作系统实验四实验报告动态分区分配算法

合集下载

实验报告-动态分区分配算法

实验报告-动态分区分配算法

南昌大学实验报告学生姓名:马江涛学号:8000612091 专业班级:计算机软件121班实验类型:□验证□综合□设计□创新实验日期:2014-05-08 实验成绩:【实验要求】1、编程实现首次适应算法和最佳适应算法的动态分区分配的分配过程和回收过程。

其中,空闲分区通过分区链来管理;在进行内存分配时,系统优先使用空闲区低端的空间。

2、假设初始状态下,可用内存空间为640K,并依次有下列请求序列:1)作业1申请130KB。

2)作业2申请60KB。

3)作业3申请100KB。

4)作业2释放60KB。

5)作业4申请200KB。

6)作业3释放100KB。

7)作业1释放130KB。

8)作业5申请140KB。

9)作业6申请60KB。

10)作业7申请50KB。

11)作业6释放60KB。

请分别用首次适应算法和最佳适应算法进行内存块的分配和回收,要求每次分配和回收后显示出空闲内存分区链的情况【可参考后文的实验提示】。

3、上机时认真的进行测试,输入不同的资源分配请求,写出实验结果;4、具体要求:(1)对你的程序关键代码处进行注释。

(2)给出实验数据,对结果进行分析,说明对相关知识点的理解。

【实验目的】了解动态分区分配方式中使用的数据结构和分配算法,并进一步加深对动态分区存储管理方式及其实现过程的理解。

【实验思路】首次适应算法(First-fit):当要分配内存空间时,就查表,在各空闲区中查找满足大小要求的可用块。

只要找到第一个足以满足要球的空闲块就停止查找,并把它分配出去;如果该空闲空间与所需空间大小一样,则从空闲表中取消该项;如果还有剩余,则余下的部分仍留在空闲表中,但应修改分区大小和分区始址。

最佳适应算法(Best-fit):当要分配内存空间时,就查找空闲表中满足要求的空闲块,并使得剩余块是最小的。

然后把它分配出去,若大小恰好合适,则直按分配;若有剩余块,则仍保留该余下的空闲分区,并修改分区大小的起始地址。

内存回收:将释放作业所在内存块的状态改为空闲状态,删除其作业名,设置为空。

操作系统-存储管理动态分区分配及回收算法(附源码)

操作系统-存储管理动态分区分配及回收算法(附源码)

存储管理动态分区分配及回收算法课程名称:计算机操作系统班级:信1501-2实验者姓名:李琛实验日期:2018年5月20日评分:教师签名:一、实验目的分区管理是应用较广泛的一种存储管理技术。

本实验要求用一种结构化高级语言构造分区描述器,编制动态分区分配算法和回收算法模拟程序,并讨论不同分配算法的特点.二、实验要求1、编写:First Fit Algorithm2、编写:Best Fit Algorithm3、编写:空闲区回收算法三、实验过程(一)主程序1、定义分区描述器node,包括3 个元素:(1)adr-—分区首地址(2)size——分区大小(3)next——指向下一个分区的指针2、定义3 个指向node 结构的指针变量:(1)head1——空闲区队列首指针(2)back1-—指向释放区node 结构的指针(3)assign——指向申请的内存分区node 结构的指针3、定义1 个整形变量:free——用户申请存储区的大小(由用户键入)(二)过程1、定义check 过程,用于检查指定的释放块(由用户键入)的合法性2、定义assignment1 过程,实现First Fit Algorithm3、定义assignment2 过程,实现Best Fit Algorithm4、定义acceptment1 过程,实现First Fit Algorithm 的回收算法5、定义acceptment2 过程,实现Best Fit Algorithm 的回收算法6、定义print 过程,打印空闲区队列(三)执行程序首先申请一整块空闲区,其首址为0,大小为32767;然后,提示用户使用哪种分配算法,再提示是分配还是回收;分配时要求输入申请区的大小,回收时要求输入释放区的首址和大小。

实验代码Main。

cpp#include〈stdio。

h〉#include<stdlib.h>#include〈string。

动态分区分配方式的模拟实验原理说明

动态分区分配方式的模拟实验原理说明

动态分区分配方式的模拟实验原理说明一、引言动态分区分配方式是操作系统中的一种内存管理方式,它将内存分为若干个不同大小的分区,根据进程的需求动态地分配内存。

在实际应用中,动态分区分配方式广泛应用于多任务操作系统中,如Windows、Linux等。

本文将介绍动态分区分配方式的模拟实验原理。

二、动态分区分配方式的基本原理动态分区分配方式是指在内存空间中按照进程需要划分出若干个不同大小的空间块,每个空间块可以被一个进程占用。

当有新进程需要内存时,操作系统会在空闲的空间块中选择一个大小合适的空间块给该进程使用。

当进程结束时,该进程所占用的空间块就会被释放出来,成为空闲块。

三、模拟实验环境搭建为了模拟动态分区分配方式,我们需要搭建一个虚拟机环境。

首先需要安装一款虚拟机软件(如VMware Workstation),然后安装一个操作系统(如Windows)。

接下来,在虚拟机中安装Visual Studio等开发工具。

四、模拟实验步骤1.设计数据结构为了方便管理内存空间,我们需要设计一种数据结构来存储内存块的信息。

我们可以使用链表来实现这一功能,每个节点表示一个内存块,包括该内存块的起始地址、大小以及状态(已分配或未分配)等信息。

2.初始化内存空间在模拟实验中,我们需要初始化一段虚拟内存空间。

我们可以使用一个数组来表示整个内存空间,并将其划分为若干个大小不同的空间块。

同时,我们需要将这些空间块的信息存储到链表中。

3.模拟进程请求内存在模拟实验中,我们需要模拟多个进程同时请求内存的情况。

当一个进程请求内存时,操作系统会根据其所需的内存大小,在空闲的空间块中选择一个合适的块分配给该进程,并将该块标记为已分配状态。

4.模拟进程释放内存当一个进程结束时,它所占用的内存块就会被释放出来,成为空闲块。

此时操作系统会更新链表信息,并将该块标记为未分配状态。

5.显示当前内存使用情况在模拟实验过程中,我们需要不断地显示当前的内存使用情况。

动态内存分配实验报告

动态内存分配实验报告

Free[free_p].len=length;
free_p++;
//
sort(Free,Free+free_p,cmp);
for(j=0;j<free_p;j++)
{
1].address)
if(j + 1 < free_p&&Free[j].address+Free[j].len==Free[j +
if(used[i].run_id==id) {
int add=used[i].address; int length=used[i].len; used_p--; for(j=i;j<used_p;j++) {
used[j]=used[j+1]; }
Free[free_p].address=add;
Free[i].address+=len; Free[i].len-=len; } else { free_p--;
for(j=i;j<free_p;j++) {
Free[j]=Free[j+1]; } } break; } }
} void reclaim(int id) {
int i,j,k; for(i=0;i<used_p;i++) {
{ Free[j].len+=Free[j + 1].len; free_p--; for(k =j + 1; k < free_p;k++) { Free[k]=Free[k+1]; }
}
}
} }
} void show() {

实验四动态分区分配算法

实验四动态分区分配算法

实验容:存储器管理实验一、实验目的采用首次适应算法〔FF〕,最正确适应算法〔BF〕,最坏适应算法〔WF〕三种不同的算法,实现对系统空闲区的动态分区分配。

二、实验题目给予顺序搜索的动态分区算法的程序。

三、实验要求读懂给出的核心代码,进展适当的修改,编译通过后,完成实验报告。

四、核心代码#include <stdio.h>#include <stdlib.h>#include <malloc.h>//常量定义#define PROCESS_NAME_LEN 32#define MIN_SLICE 10#define DEFAULT_MEM_SIZE 1024#define DEFAULT_MEM_START 0#define MA_FF 1#define MA_BF 2#define MA_WF 3int mem_size=DEFAULT_MEM_SIZE;int ma_algorithm = MA_FF;static int pid = 0;int flag = 0;struct free_block_type{int size;int start_addr;struct free_block_type *next;};struct free_block_type *free_block;//描述已分配的存块struct allocated_block{int pid; int size;int start_addr;char process_name[PROCESS_NAME_LEN];struct allocated_block *next;};struct allocated_block *allocated_block_head = NULL;//函数声明struct free_block_type* init_free_block(int mem_size);void display_menu();int set_mem_size();void set_algorithm();void rearrange(int algorithm);int rearrange_FF();int rearrange_BF();int rearrange_WF();int new_process();int allocate_mem(struct allocated_block *ab);void kill_process();int free_mem(struct allocated_block *ab);int dispose(struct allocated_block *free_ab);int display_mem_usage();void do_exit();struct allocated_block *find_process(int pid);int main(){char choice; pid=0;free_block= init_free_block(mem_size); //初始化空闲区while(1) {display_menu(); //显示菜单fflush(stdin);choice=getchar(); //获取用户输入switch(choice){case '1': set_mem_size(); break; //设置存大小case '2': set_algorithm();flag=1; break;//设置算法case '3': new_process(); flag=1; break;//创立新进程case '4': kill_process(); flag=1; break;//删除进程case '5': display_mem_usage(); flag=1; break; //显示存使用case '0': do_exit(); exit(0); //释放链表并退出default: break;}}return 1;}struct free_block_type* init_free_block(int mem_size){struct free_block_type *fb;fb=(struct free_block_type *)malloc(sizeof(struct free_block_type));if(fb==NULL){printf("No mem\n");return NULL;}fb->size = mem_size;fb->start_addr = DEFAULT_MEM_START;fb->next = NULL;return fb;}void display_menu(){printf("\n");printf("1 - Set memory size (default=%d)\n", DEFAULT_MEM_SIZE);printf("2 - Select memory allocation algorithm\n");printf("3 - New process \n");printf("4 - T erminate a process \n");printf("5 - Display memory usage \n");printf("0 - Exit\n");}int set_mem_size(){int size;if(flag!=0){ //防止重复设置printf("Cannot set memory size again\n");return 0;}printf("T otal memory size =");scanf("%d", &size);if(size>0) {mem_size = size;free_block->size = mem_size;}flag=1;return 1;}void set_algorithm(){int algorithm;while(1) {printf("\t1 - First Fit\n");printf("\t2 - Best Fit \n");printf("\t3 - Worst Fit \n");scanf("%d", &algorithm);if(algorithm>=1 && algorithm <=3) {ma_algorithm = algorithm;break;}elseprintf("输入有误,请重新输入!\n");}//按指定算法重新排列空闲区链表rearrange(ma_algorithm);}void rearrange(int algorithm){switch(algorithm){case MA_FF: rearrange_FF(); break;case MA_BF: rearrange_BF(); break;case MA_WF: rearrange_WF(); break;}}//首次适应算法int rearrange_FF(){struct free_block_type *temp;//使用头插法,thead为临时头,p为最小地址的数据块的前一个结点struct free_block_type *thead=NULL,*p=NULL;//当前的最小地址int min_addr = free_block->start_addr;temp = free_block;while(temp->next!=NULL) {if(temp->next->start_addr<min_addr) {min_addr = temp->next->start_addr;p = temp;}temp = temp->next;}if(NULL!=p) {temp = p->next;p->next = p->next->next;temp->next = free_block;free_block = temp;}thead = free_block;p = free_block;temp = free_block->next;while(thead->next!=NULL) {min_addr = thead->next->start_addr;while(temp->next!=NULL) {if(temp->next->start_addr<min_addr) {min_addr = temp->next->start_addr;p = temp;}temp = temp->next;}if(p->next!=thead->next) {temp = p->next;p->next = p->next->next;temp->next = thead->next;thead->next = temp;}thead = thead->next;p = thead;temp = thead->next;}return 1;}//最正确适应算法int rearrange_BF(){struct free_block_type *temp;//使用头插法,thead为临时头,p为最小存的数据块的前一个结点struct free_block_type *thead=NULL,*p=NULL;//当前的最小存int min_size = free_block->size;temp = free_block;while(temp->next!=NULL) {if(temp->next->size<min_size) {min_size = temp->next->size;p = temp;}temp = temp->next;}if(NULL!=p) {temp = p->next;p->next = p->next->next;temp->next = free_block;free_block = temp;}thead = free_block;p = free_block;temp = free_block->next;while(thead->next!=NULL) {min_size = thead->next->size;while(temp->next!=NULL) {if(temp->next->size<min_size) {min_size = temp->next->size;p = temp;}temp = temp->next;}if(p->next!=thead->next) {temp = p->next;p->next = p->next->next;temp->next = thead->next;thead->next = temp;}thead = thead->next;p = thead;temp = thead->next;}return 1;}//最坏适应算法int rearrange_WF(){struct free_block_type *temp;//使用头插法,thead为临时头,p为最大存的数据块的前一个结点struct free_block_type *thead=NULL,*p=NULL;//当前的最大存int max_size = free_block->size;temp = free_block;while(temp->next!=NULL) {if(temp->next->size>max_size) {max_size = temp->next->size;p = temp;}temp = temp->next;}if(NULL!=p) {temp = p->next;p->next = p->next->next;temp->next = free_block;free_block = temp;}thead = free_block;p = free_block;temp = free_block->next;while(thead->next!=NULL) {max_size = thead->next->size;while(temp->next!=NULL) {if(temp->next->size>max_size) {max_size = temp->next->size;p = temp;}temp = temp->next;}if(p->next!=thead->next) {temp = p->next;p->next = p->next->next;temp->next = thead->next;thead->next = temp;}thead = thead->next;p = thead;temp = thead->next;}return 1;}int new_process(){struct allocated_block *ab;int size;int ret;ab = (struct allocated_block *)malloc(sizeof(struct allocated_block));if(!ab) exit(-5);ab->next = NULL;pid++;sprintf(ab->process_name, "PROCESS-d", pid);ab->pid = pid;while(1) {printf("Memory for %s:", ab->process_name);scanf("%d", &size);if(size>0) {ab->size=size;break;}else printf("输入大小有误,请重新输入\n");}ret = allocate_mem(ab);if((ret==1) &&(allocated_block_head == NULL)){allocated_block_head=ab;return 1;}else if (ret==1) {ab->next = allocated_block_head;allocated_block_head = ab;return 2; }else if(ret==-1){printf("Allocation fail\n");pid--;free(ab);return -1;}return 3;}int allocate_mem(struct allocated_block *ab){struct free_block_type *fbt, *pre,*head,*temp,*tt;struct allocated_block *tp;int request_size=ab->size;int sum=0;int max;head = (struct free_block_type *)malloc(sizeof(struct free_block_type));pre = head;fbt = free_block;pre->next = fbt;if(ma_algorithm==MA_WF) {if(NULL==fbt||fbt->size<request_size)return -1;}else {while(NULL!=fbt&&fbt->size<request_size) {pre = fbt;fbt = fbt->next;}}if(NULL==fbt||fbt->size<request_size) {if(NULL!=free_block->next) {sum = free_block->size;temp = free_block->next;while(NULL!=temp) {sum += temp->size;if(sum>=request_size)break;temp = temp->next;}if(NULL==temp)return -1;else {pre = free_block;max = free_block->start_addr;fbt = free_block;while(temp->next!=pre) {if(max<pre->start_addr) {max = pre->start_addr;fbt = pre;}pre = pre->next;}pre = free_block;while(temp->next!=pre) {tp = allocated_block_head;tt = free_block;if(pre!=fbt) {while(NULL!=tp) {if(tp->start_addr>pre->start_addr)tp->start_addr = tp->start_addr - pre->size;tp = tp->next;}while(NULL!=tt) {if(tt->start_addr>pre->start_addr)tt->start_addr = tt->start_addr - pre->size;tt = tt->next;}}pre = pre->next;}pre = free_block;while(pre!=temp->next) {if(pre!=fbt)free(pre);pre = pre->next;}free_block = fbt;free_block->size = sum;free_block->next = temp->next;if(free_block->size - request_size < MIN_SLICE) {ab->size = free_block->size;ab->start_addr = free_block->start_addr;pre = free_block;free_block = free_block->next;free(pre);}else {ab->start_addr = fbt->start_addr;free_block->start_addr = free_block->start_addr + request_size;free_block->size = free_block->size - request_size;}}}elsereturn -1;}else {//将存块全局部配if(fbt->size - request_size < MIN_SLICE) {ab->size = fbt->size;ab->start_addr = fbt->start_addr;if(pre->next==free_block) {free_block = fbt->next;}elsepre->next = fbt->next;free(fbt);}else {ab->start_addr = fbt->start_addr;fbt->start_addr = fbt->start_addr + request_size;fbt->size = fbt->size - request_size;}}free(head);rearrange(ma_algorithm);return 1;}void kill_process(){struct allocated_block *ab;int pid;printf("Kill Process, pid=");scanf("%d", &pid);ab = find_process(pid);if(ab!=NULL){free_mem(ab);dispose(ab);}else {printf("没有pid为%d的进程!\n",pid);}}struct allocated_block *find_process(int pid) {struct allocated_block *ab=NULL;ab = allocated_block_head;while(NULL!=ab&&ab->pid!=pid)ab = ab->next;return ab;}int free_mem(struct allocated_block *ab){int algorithm = ma_algorithm;struct free_block_type *fbt, *pre=NULL,*head;fbt=(struct free_block_type*) malloc(sizeof(struct free_block_type));pre=(struct free_block_type*) malloc(sizeof(struct free_block_type));if(!fbt) return -1;// 进展可能的合并,根本策略如下// 1. 将新释放的结点插入到空闲分区队列末尾// 2. 对空闲链表按照地址有序排列// 3. 检查并合并相邻的空闲分区// 4. 将空闲链表重新按照当前算法排序head = pre;fbt->start_addr = ab->start_addr;fbt->size = ab->size;fbt->next = free_block; //新释放的结点插入到空闲分区链表的表头free_block = fbt;rearrange_FF(); //对空闲链表按照地址有序排列pre->next = free_block; //求的pre为fbt的前一个结点pre->size = 0;while(pre->next->start_addr!=fbt->start_addr)pre = pre->next;//左右分区都存在if(0!=pre->size&&NULL!=fbt->next) {//左右分区都可合并if((pre->start_addr+pre->size)==fbt->start_addr && (fbt->start_addr+fbt->size)==fbt->next->start_addr) {pre->size = pre->size + fbt->size + fbt->next->size;pre->next = fbt->next->next;free(fbt->next);free(fbt);}//左分区可合并else if((pre->start_addr+pre->size)==fbt->start_addr) {pre->size = pre->size + fbt->size;pre->next = fbt->next;free(fbt);}//右分区可合并else if((fbt->start_addr+fbt->size)==fbt->next->start_addr) {fbt->size = fbt->size + fbt->next->size;fbt->next = fbt->next->next;free(fbt->next);}}//左分区不存在else if(0==pre->size) {if((fbt->start_addr+fbt->size)==fbt->next->start_addr) {fbt->size = fbt->size + fbt->next->size;fbt->next = fbt->next->next;free(fbt->next);}}//右分区不存在else if(NULL==fbt->next) {if((pre->start_addr+pre->size)==fbt->start_addr) {pre->size = pre->size + fbt->size;pre->next = fbt->next;free(fbt);}}rearrange(algorithm);free(head);return 1;}int dispose(struct allocated_block *free_ab){struct allocated_block *pre, *ab;if(free_ab == allocated_block_head) {allocated_block_head = allocated_block_head->next;free(free_ab);return 1;}pre = allocated_block_head;ab = allocated_block_head->next;while(ab!=free_ab){ pre = ab; ab = ab->next; }pre->next = ab->next;free(ab);return 2;}int display_mem_usage(){struct free_block_type *fbt=free_block;struct allocated_block *ab=allocated_block_head;if(fbt==NULL) return(-1);printf("----------------------------------------------------------\n");printf("Free Memory:\n");printf(" s s\n", " start_addr", " size");while(fbt!=NULL){printf(" d d\n", fbt->start_addr, fbt->size);fbt=fbt->next;}printf("\nUsed Memory:\n");printf("s s s s\n", "PID", "ProcessName", "start_addr", " size");while(ab!=NULL){printf("d s d d\n", ab->pid, ab->process_name, ab->start_addr, ab->size);ab=ab->next;}printf("----------------------------------------------------------\n");return 0;}void do_exit() {}。

操作系统 动态分区存储管理

操作系统 动态分区存储管理

实验四动态分区存储管理实验目的:熟悉并掌握动态分区分配的各种算法。

熟悉并掌握动态分区中分区回收的各种情况,并能够实现分区合并。

实验内容:用高级语言模拟实现动态分区存储管理,要求:1、分区分配算法至少实现首次适应算法、最佳适应算法和最坏适应算法中的至少一种。

熟悉并掌握各种算法的空闲区组织方式。

2、分区的初始化——可以由用户输入初始分区的大小。

(初始化后只有一个空闲分区,起始地址为0,大小是用户输入的大小)3、分区的动态分配过程:由用户输入作业号和作业的大小,实现分区过程。

4、分区的回收:用户输入作业号,实现分区回收,同时,分区的合并要体现出来。

(注意:不存在的作业号要给出错误提示!)5、分区的显示:任何时刻,可以查看当前内存的情况(起始地址是什么,大小多大的分区时空闲的,或者占用的,能够显示出来)6、要求考虑:(1)内存空间不足的情况,要有相应的显示;(2)作业不能同名,但是删除后可以再用这个名字;(3)作业空间回收是输入作业名,回收相应的空间,如果这个作业名不存在,也要有相应的提示。

#include "iostream.h"#include "iomanip.h"#define ERR_NOFREEAREA 1#define ERR_NOADEQUACYAREA 2#define ERR_ALLOCATED 4#define ERR_NOJOBS 1#define ERR_NOSUCHJOB 2#define ERR_RECLAIMED 4typedef struct tagUsedNode{long address;long length;int flag;//作业名struct tagUsedNode *next;}USED_AREA, *USED_TABLE;typedef struct tagFreeNode{long address;long length;struct tagFreeNode *next;}FREE_AREA, *FREE_TABLE;//空闲区、作业区链表USED_TABLE usedTable=NULL;FREE_TABLE freeTable=NULL;//给作业分配空间int Allocate(int jobname,long jobsize){//如果没有空闲区if(freeTable==NULL)return ERR_NOFREEAREA;FREE_TABLE p=freeTable;FREE_TABLE q=p;//找首次适应空闲区while(p!=NULL&&p->length<jobsize){q=p;p=p->next;}//如果找不到有足够空间的分区if(p==NULL)return ERR_NOADEQUACYAREA;USED_TABLE x=new USED_AREA;x->address=p->address;x->length=jobsize;x->flag=jobname;x->next=NULL;//如果该分区大于作业需求,空间大小减去作业大小if(p->length>jobsize){p->length-=jobsize;p->address+=jobsize;}//如果该分区等于作业大小,删除该分区else{if( p==freeTable)freeTable=NULL;elseq->next=p->next;delete p;}//作业加入"作业表"中USED_TABLE r=usedTable;USED_TABLE t=r;while(r!=NULL&&r->address<x->address) {t=r;r=r->next;}if(usedTable==NULL)usedTable=x;else{x->next=r;t->next=x;}return ERR_ALLOCATED;}//回收作业空间int Reclaim(int jobname){if(usedTable==NULL)return ERR_NOJOBS;USED_TABLE p=usedTable;USED_TABLE q=p;while(p!=NULL&&p->flag!=jobname) {q=p;p=p->next;}//如果没有该作业if(p==NULL)return ERR_NOSUCHJOB;//回收后的空间加入到空闲区FREE_TABLE r=freeTable;FREE_TABLE t=r;FREE_TABLE x;while(r!=NULL&&r->address<p->address) {t=r;r=r->next;}x=new FREE_AREA;x->address=p->address;x->length=p->length;x->next=NULL;if(r==freeTable ){x->next=r;freeTable=x;t=freeTable;}else{x->next=r;t->next=x;}//合并分区while(t->next!=NULL&&t->address+t->length==t->next->address) {t->length+=t->next->length;r=t->next;t->next=t->next->next;delete r;}//删除作业if( p==usedTable){usedTable=usedTable->next;}elseq->next=p->next;delete p;return ERR_RECLAIMED;}int Init(){freeTable=new FREE_AREA;freeTable->address=0;freeTable->length=1024;freeTable->next=NULL;return 1;}void jobrequest(){int jobname;int jobsize;cout<<"\n************************"<<endl;cout<<"作业名: ";cin>>jobname;cout<<"作业长度: ";cin>>jobsize;if(Allocate(jobname,jobsize)==ERR_ALLOCATED)cout<<"该作业已成功获得所需空间"<<endl;elsecout<<"该作业没有获得所需空间"<<endl;cout<<"************************\n"<<endl;}void jobreclaim(){int jobname;cout<<"\n************************"<<endl;cout<<"作业名: ";cin >>jobname;int result=Reclaim(jobname);if(result==ERR_RECLAIMED)cout<<"该作业已成功回收"<<endl;else if(result==ERR_NOSUCHJOB||result==ERR_NOJOBS)cout<<"该作业不存在,请重新输入"<<endl;cout<<"************************\n"<<endl;}void freeTablePrint(){cout<<"\n*****************************************"<<endl;cout<<setw(10)<<"地址"<<setw(10)<<"大小"<<setw(10)<<"状态"<<endl<<endl;FREE_TABLE p=freeTable;USED_TABLE q=usedTable;int x,y;while(p||q){if(p)x=p->address;elsex=0x7fffffff;if(q)y=q->address;elsey=0x7fffffff;if(x<y){cout<<setw(10)<<p->address<<setw(10)<<p->length<<setw(10)<<"空闲"<<endl;p=p->next;}if(x>y){cout<<setw(10)<<q->address<<setw(10)<<q->length<<setw(10)<<"已分配"<<setw(10)<<"ID="<<q->flag<<endl;q = q->next;}}cout<<"*****************************************\n"<<endl;}void main(){Init();int choose;bool exitFlag = false;while(!exitFlag){cout<<"-----------------------输入选择项-----------------------"<<endl;cout<<"------ 1 分配分区 2 回收分区 3 显示分区 4 退出------"<<endl;cout<<"--------------------------------------------------------\n"<<endl;cout<<"选择: ";cin>>choose;switch(choose){break;case 1:jobrequest();break;case 2:jobreclaim();break;case 3:freeTablePrint();break;case 4:exitFlag=true;}}}。

动态分区算法实验报告

动态分区算法实验报告

动态分区算法实验报告动态分区算法实验报告一、引言计算机操作系统是现代计算机系统中的核心组成部分,它负责管理计算机硬件资源,并提供各种服务。

内存管理是操作系统的重要功能之一,它负责管理计算机的内存资源,为进程提供运行环境。

在内存管理中,动态分区算法是一种常用的内存分配策略。

本实验旨在通过实践,深入了解动态分区算法的原理和实现。

二、实验目的1. 了解动态分区算法的基本原理和实现方式;2. 掌握动态分区算法的实验环境搭建和使用方法;3. 分析动态分区算法的优缺点,并比较不同算法的性能差异。

三、实验环境本实验使用C语言编程实现,实验环境如下:1. 操作系统:Windows 10;2. 开发工具:Visual Studio 2019;3. 编程语言:C语言。

四、实验过程1. 实验准备在开始实验之前,我们首先需要了解动态分区算法的基本原理。

动态分区算法根据进程的内存需求,将内存划分为若干个不同大小的分区,并按照进程的请求进行分配和释放。

常用的动态分区算法有首次适应算法、最佳适应算法和最坏适应算法等。

2. 实验设计本实验选择实现首次适应算法,并设计以下几个函数:- 初始化内存空间:初始化一块指定大小的内存空间,将其划分为一个个的分区,并设置分区的状态;- 分配内存:根据进程的内存需求,在内存空间中找到合适的分区进行分配,并更新分区的状态;- 释放内存:将已分配的内存空间进行释放,并更新分区的状态;- 显示内存状态:打印当前内存空间的分区状态。

3. 实验实现根据上述设计,我们使用C语言实现了动态分区算法的相关函数。

通过调用这些函数,我们可以模拟动态分区算法的运行过程,并观察分区的分配和释放情况。

4. 实验结果经过实验,我们得到了以下结果:- 动态分区算法可以有效地管理内存资源,根据进程的需求进行灵活的内存分配;- 首次适应算法在内存分配效率和速度方面表现良好,但可能会导致内存碎片的产生;- 释放内存时,及时合并相邻的空闲分区可以减少内存碎片的数量。

操作系统-动态分区分配算法实验报告

操作系统-动态分区分配算法实验报告

实验题目:存储器内存分配设计思路:1.既然是要对内存进行操作,首先对和内存相关的内容进行设置我使用的是用自定义的数据结构struct来存放内存中一个内存块的内容包括:始地址、大小、状态(f:空闲u:使用e:结束)之后采用数组来存放自定义的数据类型,这样前期的准备工作就完成了2.有了要加工的数据,接下来定义并实现了存放自定义数据类型的数组的初始化函数和显示函数,需要显示的是每个内存块的块号、始地址、大小、状态3.接着依此定义三种动态分区分配算法首次适应算法、最佳适应算法和最差适应算法4.对定义的三种算法逐一进行实现①首次适应算法:通过遍历存放自定义数据类型的数组,找到遍历过程中第一个满足分配大小的内存块块号i,找到之后停止对数组的遍历,将i之后的块号逐个向后移动一个,然后将满足分配大小的内存块i分为两块,分别是第i块和第i+1块,将两块的始地址、大小、状态分别更新,这样便实现了首次适应算法②最佳适应算法:和首次适应算法一样,首先遍历存放自定义数据类型的数组,找到满足分配大小的内存块后,对内存块的大小进行缓存,因为最佳适应是要找到最接近要分配内存块大小的块,所以需要遍历整个数组,进而找到满足分配大小要求的而且碎片最小的块i,之后的操作和首次遍历算法相同③最差适应算法:和最佳适应算法一样,区别在于,最佳适应是找到最接近要分配内存块大小的块,而最差适应是要找到在数组中,内存最大的块i,找到之后的操作和最佳适应算法相同,因此不在这里赘述。

5.定义并实现释放内存的函数通过块号找到要释放的内存块,把要释放的内存块状态设置成为空闲,查看要释放的块的左右两侧块的状态是否为空闲,如果有空闲,则将空闲的块和要释放的块进行合并(通过改变块的始地址、大小、状态的方式)6.定义主函数,用switch来区分用户需要的操作,分别是:①首次适应②最佳适应③最差适应④释放内存⑤显示内存⑥退出系统实验源程序加注释:#include<bits/stdc++.h>#define MI_SIZE 100 //内存大小100typedef struct MemoryInfomation//一个内存块{int start; //始地址int Size; //大小char status; //状态 f:空闲 u:使用 e:结束} MI;MI MList[MI_SIZE];void InitMList() //初始化{int i;MI temp = { 0,0,'e' };for (i = 0; i < MI_SIZE; i++){MList[i] = temp;}MList[0].start = 0; //起始为0MList[0].Size = MI_SIZE;//大小起始最大MList[0].status = 'f'; //状态起始空闲}void Display() //显示{int i, used = 0;printf("\n---------------------------------------------------\n");printf("%5s%15s%15s%15s", "块号", "始地址", "大小", "状态");printf("\n---------------------------------------------------\n");for (i = 0; i < MI_SIZE && MList[i].status != 'e'; i++){if (MList[i].status == 'u'){used += MList[i].Size;}printf("%5d%15d%15d%15s\n", i, MList[i].start, MList[i].Size, MList[i].status == 'u' ? "使用" : "空闲");}printf("\n----------------------------------------------\n");}void FirstFit(){int i, j, flag = 0;int request;printf("最先适应算法:请问你要分配多大的内存\n");scanf("%d", &request);for (i = 0; i < MI_SIZE && MList[i].status != 'e'; i++){if (MList[i].Size >= request && MList[i].status == 'f') {if (MList[i].Size - request <= 0){MList[i].status = 'u';}else{for (j = MI_SIZE - 2; j > i; j--){MList[j + 1] = MList[j];}MList[i + 1].start = MList[i].start + request; MList[i + 1].Size = MList[i].Size - request;MList[i + 1].status = 'f';MList[i].Size = request;MList[i].status = 'u';flag = 1;}break;}}if (flag != 1 || i == MI_SIZE || MList[i].status == 'e'){printf("没有足够大小的空间分配\n");}Display();}void BadFit(){int i, j = 0, k = 0, flag = 0, request;printf("最坏适应算法:请问你要分配多大的内存\n");scanf("%d", &request);for (i = 0;i < MI_SIZE - 1 && MList[i].status != 'e';i++){if (MList[i].Size >= request && MList[i].status == 'f') {flag = 1;if (MList[i].Size > k){k = MList[i].Size;j = i;}}}i = j;if (flag == 0){printf("没有足够大小的空间分配\n");j = i;}else if (MList[i].Size - request <= 0){MList[i].status = 'u';}else{for (j = MI_SIZE - 2;j > i;j--){MList[j + 1] = MList[j];}MList[i + 1].start = MList[i].start + request;MList[i + 1].Size = MList[i].Size - request;MList[i + 1].status = 'f';MList[i].Size = request;MList[i].status = 'u';}Display();}void M_Release() //释放内存{int i, number;printf("\n请问你要释放哪一块内存:\n");scanf("%d", &number);if (MList[number].status == 'u'){MList[number].status = 'f';if (MList[number + 1].status == 'f')//右边空则合并{MList[number].Size += MList[number].Size;for (i = number + 1; i < MI_SIZE - 1 && MList[i].status != 'e'; i++) { //i后面的每一个结点整体后移if (i > 0){MList[i] = MList[i + 1];}}}if (number > 0 && MList[number - 1].status == 'f')//左边空则合并{MList[number - 1].Size += MList[number].Size;for (i = number; i < MI_SIZE - 1 && MList[i].status != 'e'; i++){MList[i] = MList[i + 1];}}}else{printf("该块内存无法正常释放\n");}Display();}void BestFit(){int i, j = 0, t, flag = 0, request;printf("最佳适应算法:请问你要分配多大的内存\n");scanf("%d", &request);t = MI_SIZE;for (i = 0; i < MI_SIZE && MList[i].status != 'e'; i++){if (MList[i].Size >= request && MList[i].status == 'f'){flag = 1;if (MList[i].Size < t){t = MList[i].Size;j = i;}}}i = j;if (flag == 0){printf("没有足够大小的空间分配\n");j = i;}else if (MList[i].Size - request <= 0){MList[i].status = 'u';}else {for (j = MI_SIZE - 2; j > i; j--){MList[j + 1] = MList[j];}MList[i + 1].start = MList[i].start + request;MList[i + 1].Size = MList[i].Size - request;MList[i + 1].status = 'f';MList[i].Size = request;MList[i].status = 'u';}Display();}int main(){int x;InitMList();while (1){printf(" \n"); printf(" 1.首次适应\n");printf(" 2.最佳适应\n");printf(" 3.最差适应\n"); printf(" 4.释放内存\n"); printf(" 5.显示内存\n"); printf(" 6.退出系统\n"); printf("请输入1-6:");scanf("%d", &x);switch (x){case 1:FirstFit();break;case 2:BestFit();break;case 3:BadFit();break;case 4:M_Release();break;case 5:Display();break;case 6:exit(0);}}return 0;}实验测试结果记录:1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存10---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 90 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存25---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 25 使用2 35 65 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存15---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 25 使用2 35 15 使用3 50 50 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存20---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 25 使用2 35 15 使用3 50 20 使用4 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:4请问你要释放哪一块内存:---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 空闲1 10 25 使用2 35 15 使用3 50 20 使用4 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:4请问你要释放哪一块内存:2---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 空闲1 10 25 使用2 35 15 空闲3 50 20 使用4 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:2最佳适应算法:请问你要分配多大的内存5---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 5 使用1 5 5 空闲2 10 25 使用3 35 15 空闲4 50 20 使用5 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:3最坏适应算法:请问你要分配多大的内存25---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 5 使用1 5 5 空闲2 10 25 使用3 35 15 空闲4 50 20 使用5 70 25 使用6 95 5 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:总结与自评:总结:分区存储管理是操作系统进行内存管理的一种方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

操作系统实验四【实验题目】:动态分区分配算法【实验学时】:4学时【实验目的】通过这次实验,加深对动态分区分配算法的理解,进一步掌握首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法的实现方法。

【实验内容及要求】问题描述:设计程序模拟四种动态分区分配算法:首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法的工作过程。

假设内存中空闲分区个数为n,空闲分区大小分别为P1, … ,P n,在动态分区分配过程中需要分配的进程个数为m(m≤n),它们需要的分区大小分别为S1, … ,S m,分别利用四种动态分区分配算法将m个进程放入n个空闲分区,给出进程在空闲分区中的分配情况。

程序要求:1)利用首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法四种动态分区分配算法模拟分区分配过程。

2)模拟四种算法的分区分配过程,给出每种算法进程在空闲分区中的分配情况。

3)输入:空闲分区个数n,空闲分区大小P1, … ,P n,进程个数m,进程需要的分区大小S1, … ,S m。

4)输出:首次适应算法,循环首次适应算法,最佳适应算法,最坏适应算法,最终内存空闲分区的分配情况。

实现源代码:#include<iostream>#include<fstream>#include<iomanip>#include<string>#define max 100using namespace std;int work_num;int zone_num;struct Data{int data;char name;};Data *d=new Data[max];struct Table{int data;char array[max];int length;};Table *T=new Table[max];Table *temp=new Table[max];void Init(){ifstream inf("DTFQ.txt");int i,j;char ch;inf>>work_num;cout<<"作业数:"<<work_num<<endl;inf>>zone_num;cout<<"空闲分区数:"<<zone_num<<endl;cout<<" 作业为:";for(j=0;j<work_num;j++){inf.get(ch);d[j].name=ch;cout<<setw(4)<<d[j].name;}cout<<endl;cout<<"作业大小:";for(i=0;i<work_num;i++){.inf>>d[i].data;cout<<setw(4)<<d[i].data;}cout<<endl;cout<<"空闲分区:";for(j=0;j<zone_num;j++){inf>>T[j].data;temp[j].data=T[j].data;T[j].length=0;temp[j].length=0;cout<<setw(4)<<T[j].data;}cout<<endl;}void renew(){int j;for(j=0;j<zone_num;j++){T[j].data=temp[j].data;T[j].length=temp[j].length;}}void re(){int i;for(i=0;i<zone_num;i++){T[i].array[T[i].length]='#';}}void show(){int i,j;re();for(i=0;i<zone_num;i++){if(T[i].data==temp[i].data)cout<<setw(4)<<T[i].data;else{cout<<setiosflags(ios::right)<<setw(4)<<T[i].data<<setw(1);for(j=0;j<T[i].length;j++){if(T[i].array[j]=='#')break;elsecout<<setiosflags(ios::right)<<T[i].array[j];}}}cout<<endl;}void first_fit(){renew();cout<<"fist fit:";int i,j;int tag=0;for(i=0;i<work_num;i++){for(j=0;j<zone_num;j++){if(d[i].data<=T[j].data){T[j].data=T[j].data - d[i].data;T[j].array[T[j].length]=d[i].name;T[j].length++;tag=0;break;}elsetag=1;}if(tag==1){cout<<"作业太大,无满足条件分区!"<<endl;break;}}//re();}void next_fit(){renew();cout<<"next fit:";int i,j;int m=0,tag=0,count=0;for(i=0;i<work_num;i++){for(j=m;j<zone_num;j++){if(d[i].data<=T[j].data){T[j].data=T[j].data - d[i].data;T[j].array[T[j].length]=d[i].name;T[j].length++;tag=0;m=j;break;}else{tag=1;count++;}}while(tag==1 && count<zone_num){for(j=0;j<m;j++){if(d[i].data<=T[j].data){T[j].data=T[j].data - d[i].data;T[j].array[T[j].length]=d[i].name;T[j].length++;tag=0;break;}else{tag=1;count++;}}}if(tag==1 && count==zone_num){cout<<"作业太大,无满足条件分区!"<<endl;break;}}//re();}void best_fit(){renew();cout<<"best fit:";int i,j,k,temp,m;int tag=0,n=0;for(i=0;i<work_num;i++){for(j=0;j<zone_num;j++){if(d[i].data<=T[j].data){temp=T[j].data;m=j;int tag1=0;for(k=m+1;k<=zone_num;k++){if(T[k].data<temp){if(T[k].data>=d[i].data){temp=T[k].data;n=k;tag1=1;}}else if(tag1==0)n=j;}T[n].data=temp - d[i].data;T[n].array[T[n].length]=d[i].name;T[n].length++;tag=0;break;}elsetag=1;}if(tag==1){cout<<"作业太大,无满足条件分区!"<<endl;break;}}//re();}void worst_fit(){renew();cout<<"worst fit:";int i,j,k,temp,m;int tag=0,n=0;for(i=0;i<work_num;i++){for(j=0;j<zone_num;j++){if(d[i].data<=T[j].data){int tag1=0;temp=T[j].data;m=j;for(k=m+1;k<=zone_num;k++){if(T[k].data>temp){if(T[k].data>=d[i].data){temp=T[k].data;n=k;tag1=1;}}else if(tag1==0)n=j;}T[n].data=temp - d[i].data;T[n].array[T[n].length]=d[i].name;T[n].length++;tag=0;break;}elsetag=1;}if(tag==1){cout<<"作业太大,无满足条件分区!"<<endl;break;}}//re();}void main(){Init();first_fit();show();next_fit();show();best_fit();show();worst_fit();show();system("pause");}实验截图:如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档