数据挖掘技术在我国银行业中的应用
数据挖掘技术在银行业中的应用

偏差往 往包含很 多潜在 的知 做 出前瞻的、 基于知识的决策 。数据挖掘 差很有意义。
中图分类号:8 文献标识码: F3 A 收录 日期 :0 2 3月 1 21年 3日
一
的 目标是从数 据库 中发现 隐含 的、 有意义 识 , 如分类 中的反常 实例 、 不满足规 则的
的知识, 主要有 以下五类 功能: 特例 、观测结果与模型预测值 的偏差 、 量
就称 为关联。 关联可分为简单关联、 技术 。以信用评分为例 , 通过 由数据挖掘 据中发现有用 的令人感 兴趣 的信 息, 因此 律性 ,
因果关联 。分析是否关联 的 目 模型确定 的权重, 给每项 申请 的各指标打 哪种信息是我们感兴趣 的, 就成 了数据挖 时序关联、 掘的首要 问题 。 的是找出数据仓库 中隐藏 的关联 网。 时 分 ,加总得到该 申请人 的信用评 分情 况。 有
原始数据库中抽取一组数据 。 数据预处理 价 值 的 知 识 。
一
消费行为 。通过建立信用欺诈模 型, 帮助
般 包 括 消 除 噪 声 、 除 重 复 记 录 、 成 消 完
3划分聚类。 、 数据仓库 中的记录可被 银行 发 现 具 有 潜 在 欺诈 性 的 事件 , 展 欺 开 ( ) 二 客户管理 。 在银 行客户管理生命 1获取客户。 、 发现和开拓新客户对任
即聚类 。应 诈侦查分析, 防和控制资金非法流失。 预 数据类型 的转换等 。 数据变换 的 目的是消 划分为一系列有意义 的子集 ,
减数据的维数, 即从初始特 征中找出真正 用聚类 技术可 以增 强人们对 客观现 实 的
有用 的特征。 聚类技术主要包 括传 统的模式识别方 3数据挖掘 。 、 根据对 问题 的定义 明确 件 。
数据挖掘技术在金融行业的应用

数据挖掘技术在金融行业的应用随着金融业的不断发展和技术的进步,数据挖掘技术在金融行业中得到了越来越多的应用。
本文将从金融行业的不同领域出发,介绍数据挖掘技术在金融行业中的应用情况。
1. 证券投资领域数据挖掘技术在证券投资领域的应用包括预测股票价格、构建投资组合和判断投资风险等方面。
预测股票价格是证券投资领域中最常见的问题之一,而数据挖掘技术可以通过对历史股票价格的分析,构建股票价格预测模型,并对未来股票价格进行预测。
除此之外,数据挖掘技术还可以对证券市场的走势进行分析,以帮助投资者制定更优秀的投资计划。
2. 银行业领域在银行业领域,数据挖掘技术主要应用于信用评估、反欺诈和风险分析等方面。
银行需要对客户的信用情况进行评估,以决定是否给予贷款或信用卡等产品,而数据挖掘技术可以通过对客户的历史信用记录、资产和负债情况等数据进行分析,来预测客户的未来信用表现。
另外,数据挖掘技术还可以帮助银行识别那些可能存在欺诈的客户,并为银行减少欺诈风险提供支持。
3. 保险行业领域在保险行业领域,数据挖掘技术主要应用于保险产品的定价和风险评估等方面。
与银行业类似,保险公司也需要对客户的风险情况进行评估来制定保险产品价格,而数据挖掘技术可以通过对客户的历史理赔记录、家庭收入情况以及居住、就医等基础信息进行分析,来评估客户的风险水平。
此外,数据挖掘技术还可以用于预防欺诈等问题,提高保险公司的公平性和收益率。
4. 金融市场监管领域金融市场监管领域中,数据挖掘技术可以帮助政府机构更好的监管金融市场,提高市场透明度。
例如,在监管机构中的数据挖掘技术可以用来检测非法市场操纵行为,监控恶意交易以及检测其他违法行为。
此外,数据挖掘技术还可以用于对金融机构的规范化管理和决策支持。
5. 其他领域除了以上几个领域以外,数据挖掘技术在金融行业中还可以应用于风险控制、市场分析、数据可视化以及客户关系管理等方面。
其中,数据挖掘技术的应用可以帮助金融机构更好的管理客户关系,提高客户满意度、提供更好的金融产品和服务,提高机构的利润率和市场竞争力。
信息保护的重要手段——数据挖掘——以银行业环境为例

率将下 降到 4 %,基尼 系数将从 2 0 0 8年 的 05 4下 降到 04 8 接 . 4 .8 ,
近发达 国家的水平 。 三 、 我 国 的 借 鉴 对
家统计 的数 据 ,0 4年至 2 0 20 0 8年 ,巴西 的平 均工 资增长 1 -%, 73 但是 同期 占总人 数 1 %的低 收入劳动 者的工 资上涨 了 3 %, 0 4 占总 人数 1%的高收 入者 的工资 仅上涨 1 .%, 于全 国工资 平均 增 0 2 4 低 长率 。2 0 0 5年 以来 ,高收入 者 占全 国工资 总额 的 比例 逐年下 降。
信 息保 护方 法。 数据 挖掘在 当代信 息爆炸 时代 可 以说是 二种 的信
息 价 值 增 值 手 段 , 是 同 时 它 也 是 一 种 必要 的 信 息 保 护 方 法 。 信 但
息 的泄露 或 者对所 存在 的有 价值信 息视 而不见被 竞 争者 利 用就
会 是 造 成 一 定 的 损 失 甚 至 是 灾 难 性 的 后 果 。 特 别 是 对 于银 行 业 .
每 年 提 高 最 低 工 资 , 时 限 制 高 收 入 者 的 工 资 涨 幅 也 是 巴 西 同 政 府 缩 小 贫 富 差 距 的 重 要 措 施 。2 0 0 3年 巴 西 最 低 工 资 额 增 幅 已 达 1 5 , 除 通 货 膨 胀 因 素 的 实 际 增 幅 达 到 5 . %。 据 巴 西 国 5% 扣 34 6
一
( 建 立和完 善社会保 障体系 四)
巴 西 实 行 全 民 免 费 医 疗 制 度 , 公 立 医 院 看 病 、 术 、 医 院 在 手 拿
是 强 化 对 高 收 入 阶 层 的 个 人 所 得 税 管 理 ,健 全 税 收 法 制 ,
银行工作中的数据挖掘方法与案例分享

银行工作中的数据挖掘方法与案例分享在当今信息爆炸的时代,数据已经成为各行各业的重要资源。
银行作为金融行业的重要组成部分,也不例外。
银行拥有大量的客户数据、交易数据等,利用这些数据进行数据挖掘分析,可以帮助银行更好地了解客户需求、优化业务流程、提高风险控制能力等。
本文将介绍银行工作中常用的数据挖掘方法,并分享一些实际案例。
一、关联规则挖掘关联规则挖掘是一种常见的数据挖掘方法,它可以帮助银行发现不同变量之间的关联关系。
例如,银行可以利用关联规则挖掘分析客户的消费习惯,从而精准地推送相关产品和服务。
此外,关联规则挖掘还可以用于分析信用卡交易数据,帮助银行发现异常交易行为,提高风险控制能力。
案例分享:某银行利用关联规则挖掘分析信用卡交易数据,发现了一组异常交易行为。
这些交易都发生在深夜,并且金额较大,与持卡人平时的消费习惯明显不符。
通过进一步调查,银行发现这些交易是由盗刷者所为。
及时发现并阻止了这些异常交易,银行成功保护了客户的资金安全。
二、聚类分析聚类分析是一种常用的无监督学习方法,它可以将数据集中相似的样本归为一类。
在银行工作中,聚类分析可以帮助银行发现不同客户群体的特征和行为模式,为精准营销和定制化服务提供依据。
案例分享:某银行利用聚类分析对客户进行分群,发现了两个明显的客户群体:一类是年轻人,他们更倾向于使用移动支付和线上银行服务;另一类是中老年人,他们更喜欢传统的网点服务。
基于这一发现,银行针对不同客户群体推出了不同的产品和服务,提高了客户满意度和业务收入。
三、决策树算法决策树算法是一种常用的监督学习方法,它可以根据已有的数据建立决策树模型,用于预测和分类。
在银行工作中,决策树算法可以帮助银行进行风险评估和信用评级。
案例分享:某银行利用决策树算法对客户进行信用评级,根据客户的个人信息、财务状况等指标,预测客户的信用状况。
通过信用评级,银行可以更好地判断客户的还款能力,从而制定相应的贷款政策和利率。
银行业数据挖掘

银行业数据挖掘一、引言数据挖掘(DataMining)是一种新的商业信息处理技术,产生于20世纪80年代的美国,首先应用在金融、电信等领域,主要特点是对大量数据进行抽取、转换、分析和模型化处理,从中提取出有助于商业决策的关键性数据。
银行信息化的迅速发展,产生了大量的业务数据。
从海量数据中提取出有价值的信息,为银行的商业决策服务,是数据挖掘的重要应用领域。
汇丰、花旗和瑞士银行是数据挖掘技术应用的先行者。
如今,数据挖掘已在银行业有了广泛深入的应用。
二、数据挖掘在银行业应用的主要方面现阶段,数据挖掘在银行业中的应用,主要可分为以下几个方面。
(一)风险管理数据挖掘在银行业的重要应用之一是风险管理,如信用风险评估。
可通过构建信用评级模型,评估贷款申请人或信用卡申请人的风险。
一个进行信用风险评估的解决方案,能对银行数据库中所有的账户指定信用评级标准,用若干数据库查询就可以得出信用风险的列表。
这种对于高/低风险的评级或分类,是基于每个客户的账户特征,如尚未偿还的贷款、信用调降报告历史记录、账户类型、收入水平及其他信息等。
对于银行账户的信用评估,可采用直观量化的评分技术。
将顾客的海量信息数据以某种权重加以衡量,针对各种目标给出量化的评分。
以信用评分为例,通过由数据挖掘模型确定的权重,来给每项申请的各指标打分,加总得到该申请人的信用评分情况。
银行根据信用评分来决定是否接受申请,确定信用额度。
过去,信用评分的工作由银行信贷员完成,只考虑几个经过测试的变量,如就业情况、收入、年龄、资产、负债等。
现在应用数据挖掘的方法,可以增加更多的变量,提升模型的精度,满足信用评价的需求。
通过数据挖掘,还可以侦查异常的信用卡使用情况,确定极端客户的消费行为。
根据历史统计数据,评定造成信贷风险客户的特征和背景,预防可能造成风险损失的客户。
在对客户的资信调查和经营预测的基础上,运用系统的方法对信贷风险的类型和原因进行识别、估测,发现引起贷款风险的诱导因素,有效地控制和降低信贷风险的发生。
大数据背景下数据挖掘技术在银行中的应用

大数据背景下数据挖掘技术在银行中的应用
随着数字化时代的到来,数据量也在快速增长,为了更好的处理这些数据,大数据技
术被广泛应用。
在银行业中,大数据技术也得到了广泛应用,数据挖掘技术便是其中之一。
数据挖掘技术是利用计算机技术和统计学方法,从大量数据中挖掘出有价值的信息和
知识的过程。
在银行业中,数据挖掘技术主要应用于以下领域:
1、客户关系管理
银行可以通过采集客户的信息,如姓名、年龄、收入、职业等数据,然后通过数据挖
掘技术分析,得到客户的趋势和偏好,进而为客户提供个性化的服务,提高客户满意度和
忠诚度。
2、风险控制
银行需要对风险进行有效地管理和控制,数据挖掘技术可以帮助银行对风险因素进行
分析和预测。
例如,银行可以通过数据挖掘技术确定逾期贷款的客户的特征和贷款风险,
进而调整贷款政策和风险控制措施。
3、市场营销
银行可以通过数据挖掘技术,分析市场和竞争对手的信息,进而确定自己的营销策略
和目标客户群体。
例如,银行可以通过数据挖掘技术分析顾客在某个时间段频繁出现的地方,推出促销活动等。
4、信用评估
银行可以通过数据挖掘技术,分析客户的历史支付行为,从而评估客户的信用等级和
借贷能力。
例如,可以利用数据挖掘技术预测客房是否会申请贷款,并为申请者提供更优
惠的利率和更高的额度。
综上所述,数据挖掘技术在银行中的应用范围广泛,不仅可以帮助银行提高效率和减
少风险,还可以为银行提供个性化服务和提高客户满意度,进而增加银行的收益。
因此,
数据挖掘技术已成为银行业中的重要工具。
数据挖掘在金融领域的应用

数据挖掘在金融领域的应用随着社会的发展和技术的进步,大量的数据积累在了各个领域中。
现代金融领域也不例外,金融领域中所涉及的各种交易、投资和金融产品的数据量非常庞大。
如何从这些数据中获取价值是金融领域中的一个重要问题。
这时,数据挖掘技术就可以发挥作用了。
数据挖掘是一种通过运用各种算法和技术来从海量数据中提取有用信息的方法。
在金融领域中,数据挖掘有着广泛的应用。
下面我将介绍数据挖掘在金融领域中的应用。
1.风险评估在金融领域中,风险评估是非常重要的一项工作。
数据挖掘技术可以发现交易的异常情况,这样就可以及时发现和控制风险。
例如,通过挖掘贷款数据,可以确定哪些贷款客户是高风险客户。
在评估这些客户时,金融机构可以将更多的关注点放在这些风险客户身上,从而减少整体的风险。
2.推荐系统推荐系统是一种利用用户的行为数据来对用户进行推荐的系统。
在金融领域中,推荐系统可以用来推荐各种金融产品,以此增加销售量。
例如,银行可以根据用户的借贷数据来推荐适合用户的信用卡和贷款产品。
3.市场分析在金融市场中,投资者需要对市场走势有清晰的了解。
通过挖掘市场数据,可以预测市场价格的波动情况和趋势。
金融机构可以利用这些信息来作出投资决策,从而获得更高的回报。
4.欺诈检测欺诈行为是金融领域中的常见问题。
数据挖掘技术可以通过分析欺诈者行为的模式来识别这些欺诈行为。
金融机构可以通过掌握这些信息来更好地保护客户资产。
例如,如果发现有人多次使用相同的信用卡来购买高价值商品,就可以怀疑这是一种欺诈行为。
5.客户关系管理金融机构需要保持与客户的联系以促进业务发展。
数据挖掘技术可以通过分析客户的交易历史和行为模式来确定客户需求。
金融机构可以利用这些信息来定制更适合客户的金融产品和服务,从而提高客户的满意度,增加客户黏性。
6.投资组合管理投资组合管理是指将不同的资产进行组合,以实现更高的投资回报率。
数据挖掘技术可以帮助金融机构优化投资组合的结构。
例如,通过分析市场数据可以确定哪种资产在特定的市场条件下表现最好,从而帮助投资人更好地进行配置。
金融领域中的数据挖掘应用

金融领域中的数据挖掘应用在当今快速发展的信息时代中,数据挖掘成为了各个行业中最常用的分析工具之一。
金融领域中的数据挖掘应用更是具有重要的意义,不断推动着整个金融体系的进步。
本文将深入探讨金融领域中的数据挖掘应用,探讨其应用场景和实际意义。
一、金融领域中的数据挖掘应用场景1.风险控制在金融领域中,风险控制是最为重要的部分之一。
数据挖掘技术可以帮助银行识别客户的信用风险,建立起有效的信用评估模型以及辨别欺诈行为。
数据挖掘技术在控制风险方面的应用是深度切实的。
比如个人信用评分,就是运用了数据挖掘技术,通过应用量化分析方法,建立起客户信用评估体系,判定客户的信用评分,针对评分进行区分性授信,为银行提供参考。
2.贷后管理贷后管理也是金融领域大规模应用数据挖掘技术的方面之一。
将贷款数据与客户数据库结合,发现贷款客户的特征属性,如客户的年龄、性别、工作、收入等信息,进而观察其还款记录、欠款情况以及所使用的产品信息等等。
通过对数据的挖掘,对客户制定出完整的还款计划,减少因个体“非理性”而产生的逾期情况,从而有效提高银行的服务质量和真实利润。
3.资产配置另外,数据挖掘技术在资产配置方面也有着广泛的应用。
金融机构可以运用数据挖掘技术,识别优秀的基金经理、股票投资机会、证券市场趋势等,帮助客户实现更具效益的投资配置,调整资产分配。
银行通过具体的数据挖掘技术,追踪并研究证券市场、行业变化和公司经营情况,为客户提供投资建议,提高客户回报率。
二、金融领域中数据挖掘应用的意义1. 提高效率数据挖掘技术不仅能够为银行在风险控制、信用评估、投资分析、客户关系等方面提供全面的支持,而且可以极大地提高银行的效率。
金融机构通过分析客户和业务数据,深度挖掘出数据背后的价值,准确的做出决策,全面提高银行的效率。
2.降低成本数据挖掘技术的应用,可以降低金融机构的运营成本。
比如,银行可以通过数据挖掘技术自动管理客户关系,自动还款,省去了人工的人力成本和问题的可能性,降低了运营成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘技术在我国银行业中的应用
发表时间:2018-05-08T09:30:18.120Z 来源:《知识-力量》2018年2月下作者:郭晓雨李玥[导读] 在如今这个社会,计算机科学的应用已经渗透到了经济生活中的各个方面,并大幅度地提高了我们生活的质量和办事的效率
郭晓雨李玥
(吉林大学)
摘要:在如今这个社会,计算机科学的应用已经渗透到了经济生活中的各个方面,并大幅度地提高了我们生活的质量和办事的效率,促进了经济的快速增长。
尤其是对于银行业来说,每天都面对着众多的数据,来自客户的,来自社会的或者是来自市场的,这些数据如果没有被合理的采集与分类,可能就会形成一定的“数据垃圾”,对银行业来说不但没有用处,更是一种负担,因此“数据挖掘技术”的出现很好的解决了这一难题并且被应用在了银行的信用评级,客户交流,监管等许多方面,并且取得了十分不错的效果。
关键词:数据挖掘技术商业银行信用评估
一、数据挖掘技术的综述
数据挖掘过程实际上就是从大量的,不完全有效的,有噪点的,或者模糊的,随机的数据库中识别出有效的,有用的信息的过程,这一过程可以涉及到众多学科,是一门交叉型新兴学科。
同时,不像SQL仅仅将数据进行规整,数据挖掘技术是对查询的内容进行模式的总结和内在规律的搜索,以此来寻求因果与预测未来。
实际上,数据挖掘都是要运用某种特定的工具来实现的,因此对数据挖掘工具的选择也是至关重要的,数据挖掘工具一般分为两种:专用型和通用性。
通用型数据挖掘工具是最被广泛运用的,也占有最大的市场,因为可用于大部分的数据,因此操作比较方便,专用型数据挖掘工具则是针对某种特定的挖掘过程,特殊的数据,在选择数据挖掘工具的时候要着重考虑这种工具对于此问题的处理能力和工具可以产生的模式种类的数量。
二、银行业中对个人信用评级体系的建立
商业银行的经营状况与其所承担的风险是息息相关,因此对其客户进行评级在这之中显得至关重要,从客户的收入,历史信用记录,职业,家庭等方面进行综合的考虑来估计其贷款偿还的可能性,如果客户的风险过大,那么这个客户所带来的负收益的可能性就会大于其正收益的可能性,银行就可以对是否接受这名顾客的业务进行评估,而影响个人信用评级的主要因素有如下: 1.个人收入:个人收入是银行对个人信用评级的关键要素,但是并不仅仅限于当事人当前的收入的多少,收入的稳定性和对未来收入的预测也是一项考量标准。
2.家庭:因为在借款人没有能力偿还还款的时候,家庭成员有很大的可能性为其还款,同时家庭的整体的教育环境也影响着借款人的道德修养和对法律的了解程度,简介影响着贷款人还款的可能性。
3.个人财产状况:当借款人流动资产不足以偿还贷款的时候,其固定资产比如房子,车辆也可以做为抵押或者出售其固定资产来被迫履行这一义务,因此当借款人的个人财产金额大的情况下,他的信用额度也会较高。
4.就职状况:一个人的职业的具体情况和其偿还贷款的能力也息息相关,对于一个自由职业的人来说,由于其收入的波动,就会有更大的几率拖欠贷款,但是对于那些例如公务员固定的职业,他们得到信用贷款的可能性就会更大一些。
三、数据挖掘方法在银行中的具体应用
其实数据挖掘技术在银行业的发展是相当重要的,因为对于银行业来说,数据量是非常大的,并且很杂乱,因此通过数据挖掘技术可以从大量繁琐的数据中得到有效的信息并且减少处理过程中不必要的麻烦,也提高了银行业运作的整体的效率。
比如用于对客户的信用进行评估以此来减少风险的发生,从而提高银行的效率与盈利,并且也可以有效的进行与客户之间关系的管理。
在银行业中,根据客户的基本信息,贷款情况和还款情况可以对信用贷款的风险进行评估,在我国,通常可以将贷款分为五类,又称为“五级分类制度”:正常,关注,次级,可疑和损失。
其中正常是指有很大的几率会按时还款的贷款,“关注”等级中存在着一些不利因素,但是还不能确定这些因素是否会对贷款的偿还造成影响,次级指明出现了明显的问题来阻碍贷款的正常还款,当到达了“损失”级别的时候,意味着贷款在正常情况下是无法被归还的,即使归还,可能也只是很少的一小部分。
(一)决策树模型
决策树算法因为简单高效的特点,是数据挖掘算法中最被广泛应用的一种方法。
决策树算法中很重要的一种方法是ID3算法,这种算法首先要找出最有判别力的属性,然后对数据进行划分成多个子集,然后再在每个子集中找出最具有判断力的属性,不断地划分,直到每个子集中包含的数据类型完全一致为止。
首先明确的是对于大部分银行来说,内部的数据来源并不是唯一的渠道,还可以从外部调用到大范围的数据,用这些数据进行挖掘能得到更加有效地信息。
(二)神经网络模型
神经网络模型类似于决策树结构,同样是利用分割后的训练数据结构建构的。
在建构的过程中,需要选择快速建模方式,通常设定准确性Alpha为90%作为终止条件。
然后利用测试数据集中进行测试,对模型进行评估,得到一个最佳的模型。
(三)Logistic模型
同样也是经过分割后的“训练数据集”,在选择模型区的时候选择Logistic节点,进行建模分析,在建模过程中,选择专家模式并且进行相应的参数设置,之后进行数据集的测试,评估该模型,获得最佳模型。
(四)对三种模型的对比分析
1、模型的准确率
Logistic模型的准确率是最高的,神经网络模型的准确率是最低的,但是实际上,三种模型的准确率的差距并不是很大,因此这三种方法在准确率方面并不会有较大的影响。
2、变量的重要性的不同
三种模型对于数据集中的变量的重要性是不同的,例如在决策树模型和Logistic模型中,影响最大的变量是借款人的逾期状况,但是神经系统模型中,较为重要的变量则是年龄,年收入等,因此差距较大。
四、结论
银行业在整个金融行业的地位,业务的特殊性以及竞争的激烈性都决定了其对于计算机的依赖,尤其是对于我国这样一个人口大国来说,人口的数量众多造成了相当大的数据的存储量,因此数据挖掘技术显得尤为重要。
同时,数据挖掘技术虽然目前在我国已经取得了部分应用,并取得了一定的成效,但是仍然存在着许多严重的问题,比如对于数据收集后的预处理的问题,以及数据挖掘过程后的可视化,从事人员的专业化程度不够高这些问题,随着人们对数据挖掘过程的重视,将会有越来越多的专业人士从事这些方面的研究并且也会有越来越多的数据挖掘方法出现,同时数据挖掘也会被应用与更多的领域中去,取得更显著的成果。
参考文献
[1]陈京明著.数据仓库与数据挖掘技术[M].北京:电子工业出版,2004.8.
[2]Mehmed Kantardzic.数据挖掘---概念、模型、方法和算法[M].陈茵,程雁译北京:清华大学出版社.2003.
[3]Pearl J.Data Mining with Graphical Models[D].Computer Science Dept.Standford University.2000.
[4]王秀慧,许彩欣。
决策树在贷款客户信用评估中的应用[J].现代计算机(专业版),2011,(9):44-48.
[5]冯萍等.数据挖掘技术以及在营销中的应用.北京轻工学院学报(第19卷第1期),2001.3.
[6]李凤慧.面向电子商务的Web数据挖掘的研究[D]:[山东科技大学硕士论文].青岛:山东科技大学,2004,44-49.
作者简介:郭晓雨(1996年8月—),女,陕西省西安市人,吉林大学金融专业本科生李玥(1996年1月—),女,北京市人,吉林大学金融专业本科生。