2018-2019学年湖北省武汉二中广雅中学九年级(下)训练数学试卷(七)( 解析版)
2018-2019学年湖北省武汉二中广雅中学九年级(下)段测数学试卷(七)(解析版)

2018-2019学年武汉二中广雅中学九年级(下)段测数学试卷(七)一.选择题(共10小题)1.8的倒数是()A.﹣8B.8C.﹣D.2.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.3.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼4.一个空心的圆柱如图,那么它的左视图是()A.B.C.D.5.如图,已知▱ABCD三个顶点坐标是A(﹣1,0)、B(﹣2,﹣3)、C(2,﹣1),那么第四个顶点D的坐标是()A.(3,1)B.(3,2)C.(3,3)D.(3,4)6.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=607.将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()A.B.C.D.8.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.69.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5B.6C.2D.310.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.至少有3个D.有无穷多个二.填空题(共6小题)11.16的平方根是.12.对于一组统计数据3,3,6,5,3.这组数据的中位数是.13.计算:(1﹣)•=14.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为.15.如图,已知直线y=2x﹣2与反比例函数y=(k≠0)的图象交于A、B两点,点A的横坐标为2.(1)k的值为;(2)将直线AB绕点A旋转45°,与反比例函数图象交于另一点C,则点C的坐标是.16.如图,已知等腰直角△ABC中,∠BAC=90°,AD⊥BC于点D,AB=5,点E是边AB上的动点(不与A,B点重合),连接DE,过点D作DF⊥DE交AC于点F,连接EF,点H在线段AD上,且DH=AD,连接EH,HF,记图中阴影部分的面积为S1,△EHF 的面积记为S2,则S1=,S2的取值范围是.三.解答题(共8小题)17.计算:(1)﹣a4•a3•a+(a2)4﹣(﹣2a4)2(2)(a2b2)3÷(﹣ab3)218.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.19.某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图(1)D组的人数是人,补全频数分布直方图,扇形图中m=;(2)本次调查数据中的中位数落在组;(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?20.如图,在正方形网格中有一条线段AB(网格中每个小正方形的边长均为1个单位),其端点A、B均在小正方形的顶点上.(1)在图中画出面积为4的等腰△ABC,且点C在小正方形的顶点上(画出一种即可);(2)在图中画出平行四边形AEBD,且点D和点E均在小正方形的顶点上,tan∠EBD =2,连接CE,请直接写出线段CE的长(画出一种即可).21.已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.22.在“5•12”汶川大地震3周年之际,宜宾市A,B两个蔬菜基地决定向汶川C,D两个乡镇调运新鲜蔬菜.已知A蔬菜基地有蔬菜220吨,B蔬菜基地有蔬菜280吨,且得知C镇需蔬菜240吨,D镇需蔬菜260吨,现将A,B两个蔬菜基地的蔬菜全部调往C,D 两个乡镇,从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D 两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为X吨.(1)设A,B两个蔬菜基地的总运费为W元,写出W与X之间的函数关系式;(2)求总运费最小的调运方案.23.如图1,在矩形ABCD中,AD=12,E为BC的中点,作DF⊥AE,垂足为F.(1)求证:△ABE∽△DF A;(2)如图2,若点F在线段AE的延长线上,求线段AB的取值范围;(3)如图3,若F在线段AE上,DF与AC交于点H,且=,求线段AB的长.24.阅读材料:我们知道,抛物线y=ax2+bx+c的表达式都可以化成y=a(x﹣h)2+k的形式,其中(h,k)为抛物线的顶点,已知抛物线y=a(x﹣h)2+k与y轴交于点A,它的顶点为B,点A,B关于原点O的对称点分别是点C,D,若点A,B,C,D中任何三个都不在同一直线上,则定义四边形ABCD为抛物线y=a(x﹣h)2+k的友好四边形,直线AB为抛物线y=a(x﹣h)2+k的友好直线.解决问题:(1)如图1,求抛物线y=(x﹣2)2+1的友好直线AB的解析式,并直接写出该抛物线的友好四边形ABCD的面积;(2)如图2,若抛物线y=a(x﹣h)2+k(h>0)的友好直线是y=x﹣3,友好四边形的面积为12,求此抛物线的解析式;拓展延伸:(3)如图3,若抛物线y=a(x﹣h)2+k的友好直线是y=﹣2x+m(m>0),探究下列问题:①若抛物线y=a(x﹣h)2+k的友好四边形ABCD是菱形,求此时抛物线的顶点坐标,用含m的代数式表示;②若抛物线若y=a(x﹣h)2+k的友好四边形ABCD是矩形,求此时抛物线的顶点坐标,用含m的代数式表示.参考答案与试题解析一.选择题(共10小题)1.8的倒数是()A.﹣8B.8C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.2.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.3.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选:B.4.一个空心的圆柱如图,那么它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:C.5.如图,已知▱ABCD三个顶点坐标是A(﹣1,0)、B(﹣2,﹣3)、C(2,﹣1),那么第四个顶点D的坐标是()A.(3,1)B.(3,2)C.(3,3)D.(3,4)【分析】过B作BE⊥x轴于E,过D作DM⊥x轴于M,过C作CF⊥BE于F,DM和CF交于N,求出△DCN≌△BAE,根据全等三角形的性质得出BE=DN,AE=CN,根据A、B、C的作求出OM和DM即可.【解答】解:过B作BE⊥x轴于E,过D作DM⊥x轴于M,过C作CF⊥BE于F,DM和CF交于N,则四边形EFNM是矩形,所以EF=MN,EM=FN,FN∥EM,∴∠EAB=∠AQC,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴∠AQC=∠DCN,∴∠DCN=∠EAB,在△DCN和△BAE中∴△DCN≌△BAE,∴BE=DN,AE=CN,∵A(﹣1,0)、B(﹣2,﹣3)、C(2,﹣1),∴CN=AE=2﹣1=1,DN=BE=3,∴DM=3﹣1=2,OM=2+1=3,∴D的坐标为(3,2),故选:B.6.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=60【分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x﹣2y+(20﹣x﹣y)×0=60.故选:C.7.将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()A.B.C.D.【分析】画树状图展示所以16种等可能的结果数,再找出两次摸出的球上的汉字组成“青春”的结果数,然后根据概率公式求解.【解答】解:根据题意画图如下:共有16种等可能的结果数,其中两次摸出的球上的汉字组成“青春”的结果数为2,所以两次摸出的球上的汉字组成“青春”的概率是=;故选:A.8.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5B.6C.2D.3【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=320,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接OF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2.故选:C.10.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.至少有3个D.有无穷多个【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),即可求得点P的坐标,从而可以解答本题.【解答】解:∵对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),∴x02﹣16≠a(x0﹣3)2+a(x0﹣3)﹣2a∴(x0﹣4)(x0+4)≠a(x0﹣1)(x0﹣4)∴(x0+4)≠a(x0﹣1)∴x0=﹣4或x0=1,∴点P的坐标为(﹣7,0)或(﹣2,﹣15)故选:B.二.填空题(共6小题)11.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.12.对于一组统计数据3,3,6,5,3.这组数据的中位数是3.【分析】根据中位数的定义直接解答即可.【解答】解:把这些数从小到大排列为3,3,3,5,6,则这组数据的中位数是3;故答案为:3.13.计算:(1﹣)•=【分析】先计算括号内分式的减法,再计算乘法即可得.【解答】解:原式=(﹣)•=•=,故答案为:.14.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为30°或150°或90°.【分析】分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.【解答】解:①BC为腰,∵AD⊥BC于点D,AD=BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为:30°或150°或90°.15.如图,已知直线y=2x﹣2与反比例函数y=(k≠0)的图象交于A、B两点,点A的横坐标为2.(1)k的值为,4;(2)将直线AB绕点A旋转45°,与反比例函数图象交于另一点C,则点C的坐标是(2,2)或(﹣6,﹣).【分析】(1)根据已知条件得到A(2,2),把A(2,2)代入y=即可得到结论;(2)令k AB=2=tanα,k AC=tan(α﹣45°)==,设直线AC的解析式为:y=x+b,求得直线AC的解析式y=x+,解方程组即可得到结论.【解答】解:(1)∵点A的横坐标为2,代入y=2x﹣2求得点A的纵坐标为2,∴A(2,2),把A(2,2)代入y=得k=4;故答案为:4;(2)令k AB=2=tanα,k AC=tan(α﹣45°)==,设直线AC的解析式为:y=x+b,∵直线AC经过点A,∴y=x+,解得,.∴点C的坐标是(2,2)或(﹣6,﹣),故答案为:(2,2)或(﹣6,﹣).16.如图,已知等腰直角△ABC中,∠BAC=90°,AD⊥BC于点D,AB=5,点E是边AB上的动点(不与A,B点重合),连接DE,过点D作DF⊥DE交AC于点F,连接EF,点H在线段AD上,且DH=AD,连接EH,HF,记图中阴影部分的面积为S1,△EHF 的面积记为S2,则S1=,S2的取值范围是≤S2<.【分析】作EM⊥BC于M,作FN⊥AD于N,根据题意可证△ADF≌△BED,可得△DFE 是等腰直角三角形.可证△BME≌△ANF,可得NF=BM.所以S1=HD×BD,代入可求S1.由点E是边AB上的动点(不与A,B点重合),可得DE垂直AB时DE最小,即≤DE<,且S2=S△DEF﹣S1,代入可求S2的取值范围【解答】解:作EM⊥BC于M,作FN⊥AD于N,∵EM⊥BD,AD⊥BC∴EM∥AD∵△ABC是等腰直角三角形,AD⊥BC,AB=5∴∠B=∠C=45°=∠BAD=∠DAC,BD=CD=AD=∵DF⊥DE∴∠ADF+∠ADE=90°且∠ADE+∠BDE=90°∴∠ADF=∠BDE且AD=BD,∠B=∠DAF=45°∴△ADF≌△BDE,∴AF=BE,DE=DF∴△DEF是等腰直角三角形,∵AF=BE,∠B=∠DAF=45°,∠EMB=∠ANF=90°∴△BME≌△ANF∴NF=BM∵S1=S△EHD+S△DHF=HD×MD+HD×FN=×AD×(BM+MD)=AD2=∵点E是边AB上的动点∴≤DE<∵S2=S△DEF﹣S1=DE2﹣∴≤S2<三.解答题(共8小题)17.计算:(1)﹣a4•a3•a+(a2)4﹣(﹣2a4)2(2)(a2b2)3÷(﹣ab3)2【分析】(1)首先计算同底数幂的乘法、幂的乘方、积的乘方,再合并同类项即可;(2)首先计算积的乘方,再算单项式除法即可.【解答】解:(1)原式=﹣a8+a8﹣4a8,=﹣4a8;(2)原式=a6b6÷a2b6=a4.18.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.【分析】运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.【解答】解:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义),∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°,∴AB∥CD(同旁内角互补,两直线平行).19.某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图(1)D组的人数是16人,补全频数分布直方图,扇形图中m=84°;(2)本次调查数据中的中位数落在C组;(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?【分析】(1)根据百分比=,圆心角=360°×百分比,计算即可;(2)根据中位数的定义计算即可;(3)用一半估计总体的思考问题即可;【解答】解:(1)由题意总人数=6÷10%=60(人),D组人数=60﹣6﹣14﹣19﹣5=16(人).B组的圆心角为360°×=84°.故答案为16、84°;(2)本次调查数据中的中位数落在C组.故答案为C;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有4500×=3000(人).20.如图,在正方形网格中有一条线段AB(网格中每个小正方形的边长均为1个单位),其端点A、B均在小正方形的顶点上.(1)在图中画出面积为4的等腰△ABC,且点C在小正方形的顶点上(画出一种即可);(2)在图中画出平行四边形AEBD,且点D和点E均在小正方形的顶点上,tan∠EBD =2,连接CE,请直接写出线段CE的长(画出一种即可).【分析】(1)因为AB为底、面积为4的等腰△ABC,所以点C在线段AB的垂直平分线上,由此即可画出图形;(2)首先根据tan∠EBD=2的值确定点D的位置,由此即可解决问题,利用勾股定理计算CE的长;【解答】解:(1)如图所示,△ABC即为所求:(2)平行四边形AEBD如图所示,平行四边形AEBD即为所求:CE=.21.已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.22.在“5•12”汶川大地震3周年之际,宜宾市A,B两个蔬菜基地决定向汶川C,D两个乡镇调运新鲜蔬菜.已知A蔬菜基地有蔬菜220吨,B蔬菜基地有蔬菜280吨,且得知C镇需蔬菜240吨,D镇需蔬菜260吨,现将A,B两个蔬菜基地的蔬菜全部调往C,D 两个乡镇,从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D 两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为X吨.(1)设A,B两个蔬菜基地的总运费为W元,写出W与X之间的函数关系式;(2)求总运费最小的调运方案.【分析】(1)从B地运往C处的蔬菜为x吨,则从B地运往D处的蔬菜为(280﹣x)吨,从A地运往C处的蔬菜为(240﹣x)吨,从A地运往D处的蔬菜为[220﹣(240﹣x)]吨,然后分别乘以运费得到总运费,即W=(240﹣x)×20+[220﹣(240﹣x)]×25+15x+(280﹣x)×18,再进行整理即可,再利用运往各地的蔬菜都为非负数可得到x的取值范围;(2)由于W=2x+9340,根据一次函数性质得到k=2>0,则y随x的增大而增大,在x 的范围内取最小值,得到从B地运往C处的蔬菜吨数,从而得到调运方案.【解答】解:根据题意得:W=(240﹣x)×20+[220﹣(240﹣x)]×25+15x+(280﹣x)×18=2x+9340,∵,∴20≤x≤240,(2)W=2x+9340,∵k=2>0,∴y随x的增大而增大,∴当x=20时,W最小,最小值为9380,A市运往C镇220吨,此时调运方案为:A市运往C镇220吨,A市运往D镇0吨,B市运往C镇20吨,B市运往D镇260吨.23.如图1,在矩形ABCD中,AD=12,E为BC的中点,作DF⊥AE,垂足为F.(1)求证:△ABE∽△DF A;(2)如图2,若点F在线段AE的延长线上,求线段AB的取值范围;(3)如图3,若F在线段AE上,DF与AC交于点H,且=,求线段AB的长.【分析】(1)根据两角对应相等的两个三角形相似即可证明.(2)由△ABE∽△DF A得到=,AF=,求出AE=AF时,AB的值即可解决问题.(3)由△ADH∽△CHM得到==,求出CM、ME,设AB=a,则有AE=,EF=,由△MFE∽△ABE列出方程即可解决.【解答】(1)证明:如图1中,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC∵DF⊥AE∴∠AFD=∠B=90°,∵AD∥BC∴∠DAF=∠BEA,∴△ABE∽△DF A.(2)如图2中,解:∵△ABE∽△DF A∴=,AF=,当AF=AE=6时△ABE和△DCE为等腰直角三角形,可得AB=6.当点F在线段AE的延长线时0<AB<6.(3)如图3中,当AB>6时,延长DF交BC于点M∵AD∥BC∴△ADH∽△CHM∴==,∴CM=,则有ME=,∵AD∥ME∴△ADF∽△EMF∴==,设AB=a,则有AE=,EF=,∵∠FEM=∠AEB,∠MFE=∠B=90°∴△MFE∽△ABE,∴=∴=,∴a2+36=80,∴a=2,即AB=2,24.阅读材料:我们知道,抛物线y=ax2+bx+c的表达式都可以化成y=a(x﹣h)2+k的形式,其中(h,k)为抛物线的顶点,已知抛物线y=a(x﹣h)2+k与y轴交于点A,它的顶点为B,点A,B关于原点O的对称点分别是点C,D,若点A,B,C,D中任何三个都不在同一直线上,则定义四边形ABCD为抛物线y=a(x﹣h)2+k的友好四边形,直线AB为抛物线y=a(x﹣h)2+k的友好直线.解决问题:(1)如图1,求抛物线y=(x﹣2)2+1的友好直线AB的解析式,并直接写出该抛物线的友好四边形ABCD的面积;(2)如图2,若抛物线y=a(x﹣h)2+k(h>0)的友好直线是y=x﹣3,友好四边形的面积为12,求此抛物线的解析式;拓展延伸:(3)如图3,若抛物线y=a(x﹣h)2+k的友好直线是y=﹣2x+m(m>0),探究下列问题:①若抛物线y=a(x﹣h)2+k的友好四边形ABCD是菱形,求此时抛物线的顶点坐标,用含m的代数式表示;②若抛物线若y=a(x﹣h)2+k的友好四边形ABCD是矩形,求此时抛物线的顶点坐标,用含m的代数式表示.【分析】(1)将x=0代入y=(x﹣2)2+1,得到与y轴的交点A的坐标,顶点B的坐标,设抛物线y=(x﹣2)2+1的友好直线AB的表达式为y=kx+b,即可得出解析式,根据面积公式求得抛物线的友好四边形ABCD的面积;(2)作BE⊥AC于点E,由题意得四边形ABCD是平行四边形,求得直线y=x﹣3与y 轴的交点A的坐标,得出点C的坐标,则AC=6,由友好四边形的面积为12,得BE的长,得点B坐标,抛物线过点A,即可得出抛物线的解析式;(3)①根据抛物线y=a(x﹣h)2+k的友好四边形ABCD是菱形,由菱形的性质得AC ⊥BD,OA=OC,OB=OD,得点B的坐标为(h,0),根据点B在直线y=﹣2x+m上,把y=0代入得x=,从而得出抛物线顶点B的坐标;②根据抛物线y=a(x﹣h)2+k的友好四边形ABCD是矩形,直接得出抛物线顶点B的坐标.【解答】解:(1)将x=0代入y=(x﹣2)2+1,得y=5.则抛物线y=(x﹣2)2+1与y轴的交点A的坐标为(0,5).抛物线y=(x﹣2)2+1的顶点B的坐标为(2,1).设抛物线y=(x﹣2)2+1的友好直线AB的表达式为y=kx+b,则,解得,∴抛物线y=(x﹣2)2+1的友好直线AB的表达式为y=﹣2x+5.抛物线y=(x﹣2)2+1的友好四边形的面积为20.(2)如图1,抛物线y=a(x﹣h)2+k的顶点为B(h,k),作BE⊥AC于点E,由题意得四边形ABCD是平行四边形,直线y=x﹣3与y轴的交点A的坐标为(0,﹣3),所以,点C的坐标为(0,3),可得:AC=6.∵平行四边形ABCD的面积为12,∴S△ABC=6即S△ABC=AC•BE=6,∴BE=2,∵h>0,即顶点B在y轴的右侧,∴h=2.∵点b在直线y=x﹣3上,∴顶点B的坐标为(2,﹣1),又抛物线经过点A(0,﹣3),∴a=﹣,∴抛物线表达式为y=﹣(x﹣2)2﹣1.(3)①当抛物线y=a(x﹣h)2+k的友好四边形ABCD是菱形时,如图2.AC⊥BD,OA=OC,OB=OD,∵AC在y轴上,AC⊥BD,∴此时BD在x轴上,∴点B的坐标为(h,0).∵点B在直线y=﹣2x+m上,∴把y=0代入y=﹣2x+m,得x=.∴抛物线顶点B的坐标为(,0).②当抛物线y=a(x﹣h)2+k的友好四边形ABCD是矩形时,如图3.∴抛物线顶点B的坐标为B(m,﹣m).。
武汉二中广雅中学2023-2024学年九年级数学期末试卷

武汉二中广雅中学2023-2024学年九年级数学期末试卷一、选择题(共10小题,每小题3分,共30分)1.一元二次方程4x 2-6x =1化成一般式后,其常数项为-1,则二次项、一次项分别是( ) A .4,-6 B .4x 2,-6x C .4,6 D .4x 2,6x 2.“守株待兔”这个事件是( )A .不可能事件B .确定事件C .必然事件D .随机事件3.下列各盘绕形状绕不同的函数绘制配的,其中是中心对称图形的是( )A .B .C .D .4.用配方法解一元三次方程x 2-6x -8=0配方后得到的方程是( ) A .(x +6)2=28 B .(x -6)2=28 C .(x +3)2=1 D .(x -3)2=1 5.已知⊙O 的半径为4,PO =4,则过P 点的直线l 与⊙O 的位置关系是( )A .相离B .相交C .相切D .相交或相切6.某电影第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达10亿元,若把增长率记作x ,影方程可以列为( )A .3(1+x )=10B .3(1+x )2=10C .3+3(1+x )2=10D .3+3(1+x )+3(1+x )2=107.平面直角坐标系中,抛物线y =x 2+2x 经变换得到拖物线y =x 2-2x ,则这个变换是( )A .向左平移2个单位B .向右平移2个单位C .向左平移4个单位D .向右平移4个单位8.如图,在平面直角坐标系中,矩形ABCO 的两边与坐标轴重合, OA =2,OC =1.将矩形ABCO 绕点O 顺时针旋转,每次旋转90°,则第2024次旋转结束时,点B 的坐标是( )A .(2,1)B .(-1,2)C .(-2,1)D .(1,-2)9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE , AF ,EF ,∠EAF =45°.若∠BAE =α,则∠FEC 一定等于( )A .2αB .90°-2αC .45°-αD .90°-αA B CDE F10.已知二次函数y =ax 2+bx (a ≠0),经过点P (t ,2).当y ≤-1时,x 的取值范围为m -1≤x ≤-3-m .则如下四个值中有可能为t 的是( )A .-2B .-3C .-4D .-5二、填空题(共6小题,每小题3分,共18分)11.在平面直角坐标系中,与点P (2,-3)关于原点对称的点的坐标是__________.12.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为__________.13.一个盒中有10枚黑棋子和若干枚白棋子,这些棋子除颜色外无其他差别.从盒中随机取出一枚棋子,记下颜色,再放回盒中.不断重复上述过程,一共取了300次,其中有100次取到黑棋子,由此估计盒中约有_______枚白棋子.14.用一个圆心角为150°,半径为4的的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为_________.15.如图,已知⊙O 的半径为4,AB 所对的圆心角∠AOB =60°,点C 为AB 的中点,点D 为半径OB 上一动点.将△CDB 沿CD 翻折得到△CDE ,若点E 落在半径OA 、OB 、AB 围成的封闭图形内部(不包括边界),则OD 的取值范围为___________.16.定义[a ,b ,c ]为二次函数y =ax 2+bx +c (a ≠0)的特征数,下面给出特征数为[2m ,1-m ,-1-m ]的函数结论,其中正确的结论是________.(填写序号) ①当m ≠0时,点(1,0)一定在函数的图象上; ②当m >0时,函数图象截x 轴所得的线段长度大于32; ③当m <0时,函数在x <14时,y 随x 的增大而增大; ④若抛物线的顶点与抛物线与x 轴两交点组成的三角形为等腰直角三角形,则m =13三、解答题(共8小题,共72分) 17.已知;关于x 的方程x 2+kx -1=0,(1)求证;无论k 为何值时,方程始终有两个不相等的实数根; (2)若k =2,且方程的两个根分别是α与β,求α+β-αβ的值.ABCDEO18.如图,将△ABC 绕A 点逆时针旋转得到△AEF ,点E 恰好落在BC 上,若∠ABC = 70°,∠ACB =28°,求∠FGC 的度数.19.已知电流在一定时间段内正常通过电子元件的概率是0.5,(提示;在一次试验中,每个电子元件的状态有两种可能;通电、断开,并且这两种状态的可能性相等.)(1)如图1,在一定时间段内,A 、B 之间电流能够正常通过的概率为______.(2)如图2,请用列举的方法(列表或画树状图)求在一定时间段内,C 、D 之间电流能够正常通过的概率.20.如图1,⊙O 是△ABC 的外接圆,连接AO ,若∠BAC +∠OAB =90°(1)求证;AB =BC ;(2)如图2,作CD ⊥AB 交于D ,AO 的延长线交CD 于E ,若AO =3,AE =4,求线段AC 的长.ABCEG图1图 221.如图,在7×6的网格中A 、B 、C 三点均为格点,请仅用无刻度的直尺作图,作图过程用虚线表示,作图结果用实线表示.(1)在图1中,画AC 的中点D ,再作出△ABC 的高CH ;(2)在图2中,在BC 上画点E ,使得CE ∥AB ,再在AB 上画点F ,使得AC =AF .22.如图,用长32米的竹篱笆围成一个矩形院墙,其中一面靠墙,墙长14米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x 米,院墙的面积为S 平方米. (1)直接写出S 与x 的函数关系式;图 1图 2图 1CA BBAC图 2(2)若院墙的面积为120平方米,求x 的值;(3)若在墙的对面再开一个宽为a (a <3)米的门,且面积S 的最大值为154平方米,求a 的值.23.在等边△ABC 中,(1)如图1,D 为△ABC 外一点,∠BDC =120°.求证;AD =DB +DC ;(2)如图2,D 为AB 边上一动点,连CD ,将CD 绕着D 逆时针旋转120°得到DE ,连 BE ,取 BE 中点 F ,连 DF , 猜想 AD 与 DF 的数量关系,并证明你的猜想;(3)如图3,∠POQ =60°,过C 作CD ⊥OP 于D ,作CE ⊥OQ 于E ,(OD >OA ,OE >OB ),若AD =nBE ,求OAOB的值.(用含n 的代数式表示)24.如图1,抛物线y =x 2+bx 与x 轴交于点A ,与直线y =x 交于点B (4,4),点C (0,4)在y 轴上.点P 从点B 出发,沿线段BO 方向匀速运动,运动到点O 时停止. (1)求抛物线y =x 2+bx 的解析式;图 12 ma2 m 图 2图 1D ABCCBAD图 2EF图 3QP DB OE A(2)当BP =1中过点P 作PD ⊥AO 交抛物线于点D ,连接PC ,OD ,判断四边形OCPD 的形状,并说明理由.(3)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正方向匀速运动,点P 停止运动时点Q 也停止运动.连接BQ ,PC ,求CP +BQ 的最小值.图 1图 2。
湖北省武汉市武昌区八校2018—2019学年度第二学期三月联合测试九年级数学试卷

2018—2019学年度第二学期部分学校九年级三月联合测试数学试卷一、 选择题(共10小题,每小题3分,共30分) 1. 计算-1+4是A. 3-B. 5-C. 3D. 52.A. 1x ≥B. 1x ≤C. 1x ≥-D. 1x ≤-3. 某校在“校园十佳歌手”比赛中,六位评委给1号选手的评分如下:90,96,91,96,95,94那么这组数据的众数和中位数分别是A. 96,95B. 96,94.5C. 95,94.5D. 95,95 4. 点()2,3P -关于x 轴对称的点的坐标是A. ()2,3--B. ()2,3-C. ()3,2--D. ()3,2- 5.下面是从不同的方向看一个物体得到的平面图形,则该物体的形状是 A. 圆锥 B.圆柱 C.三棱锥 D. 三棱柱6.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率是 A.15 B. 25 C. 35 D. 457.以方程组23327x y x y +=-⎧⎨-=⎩的解为坐标的点在A. 第一象限B.第二象限C.第三象限D.第四象限 8.观察下列等式:90+1=1,91+2=11,92+3=21,93+4=31⨯⨯⨯⨯,根据以上规律得出92019+2020⨯的结果是A. 20181B. 20191C. 20201D. 202119. 在平面直角坐标系中,将二次函数21y x =-的图象M 沿x 轴翻折,把所得的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N ,若一个点的横坐标与纵坐标均为整数,那么该点称为整点,则M 与N 所围成的封闭图形内(包括边界)整点的个数是A. 17B. 25C. 16D. 3210.如图, BC 是O 的直径,AB 切O 于点B ,8AB BC ==,点D 在O 上,DE AD ⊥交BC 于E ,3BE CE =, 则AD 的长是A.17B.17C.D.二、填空题(共6小题,每小题3分,共18分) 11的结果是12.从一副洗匀的普通扑克牌(共54张)中随机抽取一张,则抽出黑桃的概率是 13.计算22244x x x+--= 14.如图,把菱形ABCD 沿AB 折叠,B 落在BC 上的点E 处,若040BAE ∠=,则E D C ∠的大小是15. 如图直线y x =向右平移m 个单位后得直线l ,l 与函数()30y x x=相交于点A ,与x轴相交于点B ,则22OA OB -=16.如图,00015,37.5,75,ABC ACB DAC ∠=∠=∠=2DC =,则BD 的长为HEDCBADCBA第10题图 第14题图第16题图第15题图三、解答题(共8小题,共72分) 17(8分)计算()232522x x x x x ⋅+-÷18(8分)如图,,BGH DHG A C ∠=∠∠=∠,求证:E F ∠=∠19(8分)学校为了了解该校学生对“军运会”的熟悉程度,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为,,A B C 三类,A 表示“非常熟悉”, B 表示“比较熟悉”, C 表示“不熟悉”,得到如下统计图,请根据图中提供的信息,解答下列问题:⑴本次随机调查的人数是 人;⑵扇形图中C 类所对应的圆心角的度数为 度;⑶若该校共有1500人,请你估计该校B 类学生的人数。
2018~2019学年度武汉市部分学校九年级调研测试数学试卷(含答案)

2018~2019学年度武汉市部分学校九年级调研测试数学试卷考试时间:2019年1月17日14:00~16:00一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( )A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于125.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( )A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )A .12.5寸B .13寸C .25寸D .26寸7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( )A .61B .83C .85D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形面积是( )A .63π-B .623π-C .823π-D .33π- 9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a ,则该方程的一个正根是( ) A .AC 的长 B .BC 的长 C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( )A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________.12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____.13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,童威为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……,不断重复上述过程,童威共摸了100次,其中20次摸到黑球,根据上述数据,可估计口袋中的白球大约有___________个.14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm 、宽为20 cm ,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41.为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为____________________.15.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m .16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________.三、解答题(共8题,共72分)17.(本题8分)解方程:x 2-3x -1=0.18.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD .19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A 、B 、C 、D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E 、F 、G 、H ),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A 、B 、E 、F )这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C 、D 、G 、H )这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率.20.(本题8分)如图,在边长为1的正方形网格中,A (1,7)、B (5,5)、C (7,5)、D (5,1).(1) 将线段AB 绕点B 逆时针旋转,得到对应线段BE .当BE 与CD 第一次平行时,画出点A 运动的路径,并直接写出点A 运动的路径长;(2) 线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线;(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件.(1) 求出y与x的函数关系式;(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润.23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,AB=CE =62,连接BE,P为BE的中点,连接PD、AD.(1) 为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系;(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 如图3,若∠ACD=45°,求△P AD的面积.24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A、B两点(点A在点B的左边),交y轴负半轴于点C.(1) 如图1,m=3.①直接写出A、B、C三点的坐标;②若抛物线上有一点D,∠ACD=45°,求点D的坐标.(2) 如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N两点,求证:OM·ON是一个定值.。
武汉二中广雅中学 2018~2019 学年度下学期九年级数学训练卷(四)

⎨-4x + 5 y=a武汉二中广雅中学2018~2019 学年度下学期九年级数学训练卷(四)一、选择题(本大题共小10 题,每小题3 分,共30 分)1.在数:3,-2,0,-5中,最小的数是()2A.3 B.-2 C.0 D.-5 22.当分式1x - 3有意义时,x 应该满足()A.x=3 B.x≠3 C.x>3 D.x<33.武汉市某中学九(11)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:筹款金额(元)51015202530人数371111135A.11,20 B.25,11 C.20,25 D.25,204.在平面直角坐标系中,点A(1,3)关于原点O 对称点A'的坐标为()A.(-1,3)B.(1,-3)C.(3,1)D.(-1,-3)5.如图所示的几何体的主视图为()A.B.C.D.6.在一个口袋中有4 个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()A.13B.23C.14D.157.已知关于x,y 的二元一次方程组⎧5x - 7 y = 3a,且x,y 满足x-2y=0,则a 的值为()⎩A.2 B.-4 C.0 D.58.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、…,若最后三个数的和为768,则n 为()A.9 B.10 C.11 D.129.二次函数y=x2+bx 的图象如图,对称轴为x=1,若关于x 的一元二次方程x2+bx-2t=0(t 为实数)在-1<x≤4 的范围内有解,则t 的取值范围是()A.-0.5≤t<1.5 B.1.5≤t≤4 C.-0.5≤t≤4 D.1.5≤t<410.如图,正方形ABCD 中,E 为AB 上一点,AF⊥CE 于点F,已知DF=5EF=5,过C、D、F 的⊙O 与边AD 交于点G,则DG=()3 12 3 二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)11.×=.12.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是. 13.化简a(a +1)2+1 (a +1)2的结果为.14.如图,在正方形 ABCD 的外侧,作等边三角形 ADE ,则∠DEB 的度数为 .15.如图,直线 y =3x 交双曲线 y = k(x >0)于点 D ,点A 在直线上,且 OD =AD ,过 A 作 AC ∥y 轴交 x双曲线 y = k(x >0)于 C ,交 x 轴于 E ,且 S x 四边形 OECD =21,则 k =.16.如图,△ABC 中,BD 是中线,AE 是高,BD 交 AE 于点 F ,FG ∥AB ,交 BE 于点 G ,若 AE =BD , DF =5,GE = ,则 BF = . 三、解答题(本大题共 8 小题,共 72 分) 17.(8 分)计算:a 3·a 4·a +(a 2)4.18.(8 分)如图,已知 CB ∥DE ,∠B +∠D =180°,求证:AB ∥CD .19.(8 分)某中学学生会为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行了问卷调查(要求每位学生只能填写一种自己喜欢的球类);并将调查结果绘制成如下的两幅不完整的统计图. 请根据图中提供的信息,解答下列问题.(1)参加调查的人数共有 人;在扇形图中,表示“其他”的扇形圆心角为 度;(2)将条形图补充完整; (3)若该校有 5000 名学生,则估计喜欢篮球的学生有 人.37 5 20.(8 分)如图,每个小正方形的边长为1,四边形ABCD 的每个顶点都在格点(小正方形的顶点)上,且AD =,CD=2 .(1)在图中补齐四边形ABCD;(2)直接写出四边形ABCD 的面积为;(3)连AC,求tan∠ACB.21.(8 分)如图,AB 是半圆O 的直径,D 为弦BC 的中点,E 为OD 延长线上一点且满足∠OBC=∠OEC.(1)求证:CE 为⊙O 的切线;(2)若四边形ACED 是平行四边形,求sin∠BAD 的值.22.(10 分)某商店销售A 型和B 型两种电器,若销售A 型电器20 台,B 型电器10 台可获利13000 元,若销售A 型电器25 台,B 型电器5 台可获利12500 元.(1)求销售A 型和B 型两种电器各获利多少元?(2)该商店计划一次性购进两种型号的电器共100 台,其中B 型电器的进货量不超过A 型电器的2 倍,该商店购进A 型、B 型电器各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A 型电器出厂价下调a(0<a<200)元,且限定商店最多购进A 型电器60 台,若商店保持同种电器的售价不变,请你根据以上信息,设计出使这100 台电器销售总利润最大的进货方案.23.(10 分)已知,正方形ABCD中,AB=8,点P 是射线BC 上的一动点,过点P 作PE⊥PA 交直线CD于E,连AE.(1)如图1,若BP=2,求DE 的长;(2)如图2,若AP 平分∠BAE,连PD,求tan∠DPE 的值;(3)直线PD、直线AE交于点F,若BC=4PC,则AF=.(直接写出结果)EF24.(12 分)如图,平面直角坐标系中,抛物线y=-4(x-3a)(x+a)交x 轴分别于点A、B(点B 在x 轴负3半轴,OA>OB),交y轴于点C,OC=4OB,连接AC.点P从点A出发向点O运动,点Q从点A出发向点C 运动.(1)求a 的值;(2)点P、Q 都以每秒1 个单位的速度运动,运动t 秒时,点A 关于直线PQ 对称的点E 恰好在抛物线上,求t 的值;(3)点P 以每秒1 个单位的速度运动,点Q 以每秒5个单位的速度运动,直线PQ 交抛物线于点M,当△3CMA 的内心在直线PQ 上时,求点M 的坐标.。
湖北省武汉二中广雅中学2019-2020学年中考数学模拟试卷

湖北省武汉二中广雅中学2019-2020学年中考数学模拟试卷一、选择题1.若2是一元二次方程x 2+mx ﹣4m =0的一个根,则另一个根是( ) A .﹣4B .4C .﹣6D .62.已知△ABC ∽△DEF ,其中AB =6,BC =8,AC =12,DE =3,那么△DEF 的周长为( ) A.394B.263C.13D.263.据统计,截止2019年2月,长春市实际居住人口约4210000人,4210000这个数用科学记数法表示为( ) A.542.110⨯B.54.2110⨯C.64.2110⨯D.74.2110⨯4.下列说法中正确的是( ) A .两条对角线互相垂直的四边形是菱形 B .两条对角线互相平分的四边形是平行四边形 C .两条对角线相等的四边形是矩形D .两条对角线互相垂直且相等的四边形是正方形5.如图,△ABC 中,AB=AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE=2cm ,则AC 的长为 ( )A.cmB.4cmC.cmD.cm6.如图所示,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ∥BC ,EF 与AB 、CD 分别相交于点E 、F ,则△DOF 的面积与△BOA 的面积之比为( )A .1:2B .1:4C .1:8D .1:167.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8.已知抛物线()()y x a x a 1=+--(a 为常数,a 0≠).有下列结论:①抛物线的对称轴为1x 2=;②方程()()x a x a 11+--=有两个不相等的实数根;③抛物线上有两点P(x 0,m),Q(1,n),若m n <,则00x 1<<;其中,正确结论的个数为( ) A .0B .1C .2D .39.如图,菱形ABCD 的边长为1,点M 、N 分别是AB 、BC 边上的中点,点P 是对角线AC 上的一个动点,则MP PN +的最小值是( )A .12B .1CD .210.如图,菱形OABC 的一条边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA′B′C′的位置,若OA =2,∠C =120°,则点B′的坐标为( )A.)B.)C.(3D.(311.移动通信公司建设的钢架信号塔(如图1),它的一个侧面的示意图(如图2).CD 是等腰三角形ABC 底边上的高,分别过点A 、点B 作两腰的垂线段,垂足分别为B 1,A 1,再过A 1,B 1分别作两腰的垂线段所得的垂足为B 2,A 2,用同样的作法依次得到垂足B 3,A 3,….若AB 为3米,sin α=45,则水平钢条A 2B 2的长度为( )A .95米 B .2米 C .4825米 D .125米 12.已知点A (5,﹣2)与点B (x ,y )在同一条平行于x 轴的直线上,且B 到y 轴的距离等于4,那么点B 是坐标是( ) A .(4,﹣2)或(﹣4,﹣2) B .(4,2)或(﹣4,2) C .(4,﹣2)或(﹣5,﹣2) D .(4,﹣2)或(﹣1,﹣2)二、填空题 13.使代数式3xx +有意义的x 的取值范围是_______ . 14.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为______15.已知m ,n 是方程(x ﹣a )(x ﹣b )﹣1=0(其中a <b )的两根,且m <n ,则a ,b ,m ,n 的大小关系是_____.16.若(x+2)(x ﹣1)=x 2+mx ﹣2,则m =_____.1718.若x+3=5﹣y ,a ,b 互为倒数,则代数式12(x+y)+5ab =_____. 三、解答题19.为奖励表现优秀的学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元. (1)求文具袋和圆规的单价.(2)学校准备购买文具袋20个,圆规若干.文具店给出两种优惠方案: 方案一;购买一个文具袋送1个圆规.方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.若学校购买圆规100个,则选择哪种方案更合算?请说明理由.20.(问题)探究一次函数y =kx+k+1(k≠0)图象特点. (探究)可做如下尝试:y =kx+k+1=k (x+1)+1,当x =﹣1时,可以消去k ,求出y =1.(发现)结合一次函数图象,发现无论k 取何值,一次函数y =kx+k+1的图象一定经过一个固定的点,该点的坐标是 ;(应用)一次函数y =(k+2)x+k 的图象经过定点P . ①点P 的坐标是 ;②已知一次函数y =(k+2)x+k 的图象与y 轴相交于点A ,若△OAP 的面积为3,求k 的值.21.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别是()()()2,2,4,0,4,4A B C -.(1)请在图中,画出ABC ∆绕着点O 逆时针旋转90后得到的111A B C ∆,则111ACB ∠的正切值为 . (2)以点O 为位似中心,将ABC ∆缩小为原来的12,得到222A B C ∆,请在图中y 轴左侧,画出222A B C ∆,若点()P m n ,是ABC ∆上的任意一点,则变换后的对应点'P 的坐标是 .22.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=0.4m ,EF=0.2m ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,求树高。
2018-2019学年湖北省武汉二中广雅中学九年级(下)月考数学试卷(二)(解析版)

2018-2019学年湖北省武汉二中广雅中学九年级(下)月考数学试卷(二)一、选择题(本大题共10小题,共30.0分)1.在Rt△ABC中,∠C=90°,AC=3,BC=4,tan B=()A. B. C. D.2.在反比例函数y=图象的每一分支上,y都随x的增大而增大,则k的取值范围是()A. B. C. D.3.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A. 20B. 24C. 28D. 304.如图,在△ABC中,DE∥BC,若AD=3,DB=6,DE=2.5,则BC长为()A. 5B.C.D. 105.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,下列各组线段的比不能表示sin∠BCD的()A. B. C. D.6.如图,AB为⊙O的直径,△ACD内接于⊙O,∠BAD=3∠C,则∠C度数为()A.B.C.D.7.如图,在△ABC中,BC=12,tan A=,∠B=30°,则AB长为()A.12B. 14C. D.8.函数y=-的大致图象是()A.B.C.D.9.如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知折痕AE=25,且tan∠BAF=,则矩形ABCD的面积为()A. 300B. 400C. 480D. 50010.如图,半径为1的半圆O上有两个动点A、B,若AB=1,则四边形ABCD的面积最大值为()A. B.C. D.二、填空题(本大题共6小题,共18.0分)11.若(-3,-1)在反比例函数y=图象上,则k=______.12.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是______.13.如图,AB为⊙O的直径,点C为AB延长线上一点,过点C作CD切⊙O于点D,若AB=6,AC=10,则sin∠BCD=______.14.如图,一次函数y1=-x+4的图象与反比例函数的图象交于A,B两点,若y1<y2,则自变量x的取值范围为______.15.如图,在△ABC中,FG∥DE∥AB,DE、FG将△ABC分成面积相等的三部分,则=______.16.如图,AD∥BC,∠D=90°,AD=2,BC=4,在边DC上有点P,使△PAD和△PBC相似,若这样的点P有且仅有两个,则CD长为______.三、计算题(本大题共1小题,共6.0分)17.计算:sin60°+tan60°-2cos230°.四、解答题(本大题共7小题,共56.0分)18.如图,AD是Rt△ABC斜边上的高,若AB=4cm,BC=10cm,求BD的长.19.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有______人,在扇形统计图中,m的值是______;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.20.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)成正比例;1.5小时后(包括1.5小时)y与x成反比例.根据图中提供的信息,解答下列问题:(1)写出一般成人喝半斤低度白酒后,y与x之间的函数关系式及相应的自变量取值范围;(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上21:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.21.如图,PA、PB是⊙O的切线,A、B为切点,连AO并延长交⊙O于E,交PB的延长线于C,连PO交⊙O于D.(1)求证:BE∥PO;(2)连DB、DC,若DB∥AC,求tan∠ODC的值.22.如图,A(-,0),B(-,3),∠BAC=90°,C在y轴的正半轴上.(1)求出C点坐标;(2)将线段AB沿射线AC向上平移至第一象限,得线段DE,若D、E两点均在双曲线y=上,①求k的值;②直接写出线段AB扫过的面积.23.在Rt△ABC中,∠ACB=90°,AC=3,BC=4.(1)D、E分别是边AB、BC上一点,且BD=nBE,连接DE,连接AE,CD交于F.①如图1,若n=,求证:;②如图2,若∠ACF=∠AED,求n的值.(2)如图3,P是射线AB上一点,Q是边BC上一点,且AP=3BQ,若∠ARC=∠CAB,求线段BQ的长度.24.如图,抛物线y=ax2+bx的对称轴为y轴,且经过点(,),P为抛物线上一点,A(0,).(1)求抛物线解析式;(2)Q为直线AP上一点,且满足AQ=2AP.当P运动时,Q在某个函数图象上运动,试写出Q点所在函数的解析式;(3)如图2,以PA为半径作⊙P与x轴分别交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN 为等腰三角形时,求点P的横坐标.答案和解析1.【答案】A【解析】解:如图所示:∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴tanB==.故选:A.根据题意画出图形,进而利用锐角三角函数定义求出即可.此题主要考查了锐角三角函数定义,正确把握其定义是解题关键.2.【答案】D【解析】解:由题意可知:k-1<0,∴k<1故选:D.根据反比例函数的图象与性质即可求出k的范围.本题考查反比例函数的性质,解题的关键是熟练运用反比例函数的性质,本题属于基础题型.3.【答案】D【解析】解:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选:D.根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.4.【答案】C【解析】解:∵DE∥BC,∴△ADE∽△ABC.∴,即,解得BC=7.5.故选:C.根据已知可得△ADE∽△ABC,可得比例式,代入相关数据即可求解BC.本题主要考查相似三角形的判定和性质,正确找到对应线段的比是解题的关键.5.【答案】B【解析】解:∵CD⊥AB,∴∠CDA=∠CDB=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A,∴sin∠BCD=sinA===,即只有选项B错误,选项A、C、D都正确,故选:B.根据三角形内角和定理求出∠BCD=∠A,再解直角三角形得出即可.本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键,注意:在Rt△ACB中,∠C=90°,则sinA=,cosA=,tanA=,cotA=.6.【答案】B【解析】解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠BAD+∠B=90°,由圆周角定理得,∠B=∠C,∴∠BAD+∠C=90°,∵∠BAD=3∠C,∴3∠C+∠C=90°,解得,∠C=22.5°,故选:B.连接BD,根据圆周角定理得到∠ADB=90°,∠B=∠C,根据题意列式计算,得到答案.本题考查的是三角形的外接圆与外心,掌握圆周角定理、三角形内角和定理是解题的关键.7.【答案】D【解析】解:如图,作CH ⊥AB 于H .在Rt △BCH 中,∵∠BHC=90°,∠B=30°,BC=12, ∴CH=BC=6,BH=CH=6,在Rt △ACH 中,∵tanA==,∴AH=8, ∴AB=8+6,故选:D .如图,作CH ⊥AB 于H .解直角三角形分别求出BH ,AH 即可.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 8.【答案】D【解析】解:因为k=-2,y=-<0,所以它的两个分支分别位于第三、四象限.故选:D .根据反比例函数图象与系数的关系可直接进行判断. 主要考查了反比例函数的图象性质,反比例函数y=的图象是双曲线,当k >0时,它的两个分支分别位于第一、三象限;当k <0时,它的两个分支分别位于第二、四象限. 9.【答案】B【解析】解:∵四边形ABCD 是矩形, ∴∠B=∠C=∠D=90°,AB=CD , 由折叠的性质得:AF=AD ,EF=DE ,∠AFE=∠D=90°, ∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°, ∴∠BAF=∠EFC , ∴tan ∠BAF==tan ∠EFC==,设CE=3k ,则CF=4k , 由勾股定理得:EF=DE=5k , ∴CD=AB=8k ,∴BF=6k ,AF=BC=AD=10k ,在Rt △AFE 中,由勾股定理得:AF 2+EF 2=AE 2, 即(10k )2+(5k )2=252,解得:k=,∴AB=8,AD=10,∴矩形ABCD 的面积=AB×AD=8×10=400,故选:B .由矩形的性质得出,∴∠B=∠C=∠D=90°,AB=CD ,由折叠的性质得:AF=AD ,EF=DE ,∠AFE=∠D=90°,∠AFB+∠BAF=90°,证出∠BAF=∠EFC ,根据tan ∠EFC=,设CE=3k ,在Rt △EFC 中可得CF=4k ,EF=DE=5k ,根据∠BAF=∠EFC ,利用三角函数的知识求出AF ,然后在Rt △AEF 中利用勾股定理求出k ,代入矩形面积公式即可得出答案.此题考查了翻折变换的性质、矩形的性质、三角函数、勾股定理等知识;解答本题的关键是根据三角函数值,表示出每条线段的长度,然后利用勾股定理进行解答.10.【答案】C【解析】解:过点O 作OH ⊥AB 于点H ,连接OA ,OB ,分别过点A 、H 、B 作AE ⊥CD 、HF ⊥CD ,BG ⊥CD于点E 、F 、G ,∵AB=1,⊙O 的半径=1, ∴OH=,∵垂线段最短, ∴HF <OH , ∴HF=(AE+BG ),∴S 四边形ABCD =S △AOC +S △AOB +S △BOD=×1×AE+×1×+×1×BG=AE++BG=(AE+BG )+=HF+≤OH+=+=,故选:C .过点O 作OH ⊥AB 于点H ,连接OA ,OB ,分别过点A 、H 、B 作AE ⊥CD 、HF ⊥CD ,BG ⊥CD于点E、F、G,根据垂线段线段最短可知HF<OH,再由梯形的中位线定理可知,HF=(AE+BG),进而可得出结论.本题考查的是垂径定理的应用,根据题意作出辅助线,构造出等边三角形是解答此题的关键.11.【答案】3【解析】解:把(-3,-1)代入反比例函数y=得:-1=,解得:k=3,故答案为:3.把(-3,-1)代入反比例函数y=得到关于k的一元一次方程,解之即可.本题考查了反比例函数图象上点的坐标特征,正确掌握代入法是解题的关键.12.【答案】【解析】解:画树状图得:∵共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,∴至少有一辆汽车向左转的概率是:.故答案为:.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与至少有一辆汽车向左转的情况,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.13.【答案】【解析】解:连接OD,∵CD切⊙O于点D,∴OD⊥CD,∵AB=6,AC=10,∴OD=OB=3,BC=4,∴OC=7,∴sin∠BCD==,故答案为.连接OD,由AB=6,AC=10得出OD=OB=3,BC=4,则OC=7,根据切线的性质得出OD⊥CD,解直角三角形即可求得.本题考查了切线的性质以及解直角三角形,作出辅助线构建直角三角形是解题的关键.14.【答案】0<x<1或x>3【解析】解:联立方程组,解得,或,∴A(1,3),B(3,1),根据图形,当0<x<1或x>3时,一次函数图象在反比例函数图象上方,y1<y2.故答案为:0<x<1或x>3.先求出交点坐标,再根据图形,找出一次函数图象在反比例函数图象下方的x的取值范围即可.本题考查了反比例函数一次函数的交点问题,联立方程组是求函数图象交点的坐标方法.15.【答案】【解析】解:由已知可得△CFG面积与△CDE面积比为1:2,△CFG面积与△CAB面积比为1:3,根据相似三角形的性质面积比等于相似比的平方可得:,,所以,即=.故答案为.由已知可得△CFG面积与△CDE面积比为1:2,△CFG面积与△CAB面积比为1:3,根据相似三角形的性质面积比等于相似比的平方可得两组比例式,这两个比例式相减即可求解问题.本题主要考查相似三角形的判定和性质,写出正确的比例式是解题的关键.16.【答案】6或4【解析】解:如图所示:设DP=x,CP=y,①AD和BC是对应边时,△ADP∽△BCP,∴,即,解得:y=2x;②AD和CP是对应边时,△ADP∽△PCB,∴,即,整理得:xy=8,联立,解得:x=2,x=-2(舍去),y=4,∴CD=x+y=6,以AB为直径的圆刚好和CD相切时,CD=4,设切点为P₁,△ADP₁∽P₁CB,此时还有P₂一点,△ADP₂∽△BCP₂,∴当CD>4时,且CD≠6时,有3个点,CD=6时,有2个,CD=4时,有2个.CD<4时,有1个.所以该题答案是6或4,故答案为:6或4.设DP=x,表示出CP=y,然后分①AD和BC是对应边,②AD和CP是对应边两种情况,利用相似三角形对应边成比例列式计算即可得解.本题考查了相似三角形的判定,一元二次方程的解法,难点在于分情况讨论.17.【答案】解:原式=×+-2×()2=+-=.【解析】根据特殊角的三角函数值直接代入求值即可.本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.18.【答案】解:由射影定理得,AB2=BD•BC,则BD==1.6.【解析】根据射影定理列出算式,代入数据计算即可.本题考查的是射影定理的应用,射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.19.【答案】50 30%【解析】解:(1)20÷40%=50(人),15÷50=30%;故答案为:50;30%;(2)50×20%=10(人),50×10%=5(人),如图所示:(3)∵5-2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,12种,则P(一男一女)==.(1)由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m的值;(2)求出绘画与书法的学生数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出恰好为一男一女的情况数,即可求出所求概率.此题考查了列表法与树状图法,条形统计图,扇形统计图,弄清题中的数据是解本题的关键.20.【答案】解:(1)由题意可得:当0≤x≤1.5时,设函数关系式为:y=kx,则150=1.5k,解得:k=100,故y=100x,当1.5≤x时,设函数关系式为:y=,则a=150×1.5=225,解得:a=225,故y=(x≥1.5),综上所述:y与x之间的两个函数关系式为:y=;(2)第二天早上7:00不能驾车去上班.理由:∵晚上21:00到第二天早上7:00,有10小时,∴x=10时,y==22.5<>0,∴第二天早上7:00不能驾车去上班.【解析】(1)直接利用待定系数法分别求出反比例函数以及一次函数的解析式得出答案;(2)根据题意得出x=10时y的值进而得出答案.本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是灵活掌握待定系数法确定函数解析式,学会利用函数解决实际问题,属于中考常考题型.21.【答案】(1)证明:如图1,连接AB、OB;∵PA、PB分别是⊙O的切线,∴∠APO=∠BPO,OA⊥PA,OB⊥PB;∴∠AOP=∠BOP(设为α),则∠COB+2α=180°;∵OB=OE,∴∠OBE=∠OEB(设为β),∴∠COB+2β=180°,∴∠COB+2α=∠COB+2β,∴α=β,即∠AOP=∠OEB,∴OP∥BE.(2)解:如图2,连OB,过点D作DM⊥BE交EB的延长线于点M,DC与BE交于N,∵DB∥AC,BE∥OP,OD=OE,∴四边形ODBE为菱形,∴△OBE和△ODB都是等边三角形,∴∠DBM=60°,∠OCB=30°,∴∠EBC=30°,∴EB=EC=DB,在△BDN和△ECN中,∴△BDN≌△ECN(AAS),∴BN=NE=,设BN=a,则BD=2a,BM=a,DM=,∴tan,∴.【解析】(1)连OB,证明∠AOP=∠BOP(设为α);则∠COB+2α=180°,∠COB+2∠OEB=180°;得到∠AOP=∠OEB,则结论得证;(2)先证明四边形ODBE是菱形,则△ODB是等边三角形,得到∠OBD=60°,可得∠EBC=∠ECB=30°,由△BDN≌△ECN,可得到BN=NE,在Rt△DMN中,设BM=a,则DM=,BN=a,则tan∠ODC=tan∠DNM可求出.本题主要考查了切线的性质及其应用问题;解题的关键是作辅助线,灵活运用有关定理来分析、判断、推理或解答.22.【答案】解:(1)过点B作BH⊥x轴于点H,∴∠BHA=∠BAC=∠AOC=90°∴∠B+∠BAH=∠BAH+∠OAC=90°∴∠B=∠OAC∴△BAH∽△ACO∴∵A(-,0),B(-,3)∴OA=,OH=,BH=3∴AH=OH-OA==2∴CO=∴点C坐标为(0,)(2)①∵线段AB沿射线AC向上平移至第一象限∴点A对应点D在直线AC上,AD∥BE,∴x D-x E=x A-x B=2,y E-y D=y B-y A=3设直线AC解析式为:y=ax+b解得:∴直线AC解析式为:设点D坐标为(d,),则x E=x D-2=d-2,y E=y D+3=即点E(d-2,)∵点D、E在函数y=图象上(k>0)∴解得:d=4∴k=4×(×4+)=12②∵A(-,0),B(-,3),D(4,3)∴AB=,AD=∵AB∥DE,AD∥BE∴四边形ABED是平行四边形∵∠BAC=90°∴▱ABED是矩形∴S矩形ABED=AB•AD=∴线段AB扫过的面积为【解析】(1)过点B作x轴的垂线,构造三垂直相似模型,由对应边成比例求得OC的长度.(2)①由平移的性质可知,AB∥DE,AD∥BE,即D、E横纵坐标差与A、B横纵坐标差相等.因为沿射线AC平移,求直线AC的解析式,用d表示点D坐标,再用d表示点E坐标,由D、E在双曲线上,列得关于d、k的方程,进而求得k.②由平移性质可知四边形ABED是平行四边形,又∠BAC=90°,即为矩形,所以线段AB扫过的面积即为矩形ABED的面积,用两点间距离公式求出AB、AD长度即求出面积.本题考查了相似三角形的判定和性质,平移的性质,待定系数法求解析式,反比例函数的性质,矩形的判定,两点间距离公式.解题关键是对平移性质的运用,明确平移前后对应点横纵坐标差相等.23.【答案】(1)①证明:如图1中,在Rt△ACB中,∵∠ACB=90°,AC=3,BC=4,∴AC==5,∵BD=BE,∴==,∴DE∥AC,∴△DEF∽△CAF,∴=.②解:如图2中,∵∠ACF=∠DEF,∠AFC=∠DFE,∴△AFC∽△DFE,∴=,∠CAF=∠FDE,=,∵∠AFD=∠CFE,∴△AFD∽△CFE,∴∠ADF=∠CEF,∵∠CAF+∠CEF=90°,∠EDF+∠ADF=90°,∴∠ADE=∠BDE-90°,∴cos B===,∴n=.(2)解:如图3中,作CH⊥AB于H.设BQ=k则AP=3k.∵S△ABC=•AC•BC=•AB•CH,∴CH=,AH==,∴PH=3k-,∵∠ARC=∠APC+∠PAR,∠BAC=∠PAR+∠CAQ,∠ARC=∠BAC,∴∠CAQ=∠CPH,∵∠ACQ=∠CHP=90°,∴△ACQ∽△PHC,∴=,∴=,整理得:5k2-23k+24=0,解得k=或3(舍弃),∴BQ=.【解析】(1)①只要证明DE∥AC即可解决问题.②只要证明∠BDE=90°,根据cosB===,即可解决问题.(2)如图3中,作CH⊥AB于H.设BQ=k则AP=3k.证明△ACQ∽△PHC ,可得=,由此构建方程即可解决问题.本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理,锐角三角函数,平行线的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.24.【答案】解:(1)抛物线y=ax2+bx的对称轴为y轴,则b=0,将点(,),代入y=ax2并解得:a=,故抛物线的表达式为:y=x2;(2)设点Q的坐标为(x,y),点P(m,m2),①当点Q在点P下方时(点Q位置),∵AQ=2AP,∴P为AP的中点,由中点公式得:m=x,m2=,整理得:y=x2-;②当点Q在点P上方时(点Q′位置),同理可得:y=-x2+;Q点所在函数的解析式为:y=x2-或y=-x2+;(3)过点P作PH⊥x轴于点H,设点P(m,m2),则PM=PN=PA==,MH=NH===,则MN=3,设点M(m-,0),则N(m+,0),AM2=(m-)2+,AN2=(m+)2+,MN2=9,①当AM=AN时,AM2=(m-)2+=(m+)2+,解得:m=0;②当AM=MN时,同理可得:m=(负值已舍去);③当AN=MN时,同理可得:m=(负值已舍去);故点P的横坐标为:0或或.【解析】(1)抛物线y=ax2+bx的对称轴为y轴,则b=0,将点(,),代入y=ax2,即可求解;(2)分点Q在点P下方(点Q位置)、点Q在点P上方(点Q′位置),两种情况分别求解;(3)分AM=AN、AM=MN、AN=MN,三种情况分别求解.本题考查的是二次函数综合运用,涉及到圆的基本知识、勾股定理运用等知识,要注意分类求解,避免遗漏.第11页,共11页。
2018-2019学年湖北省武汉二中广雅中学九年级(下)月考数学试卷(二)(解析版)

2018-2019学年湖北省武汉二中广雅中学九年级(下)月考数学试卷(二)一、选择题(每小题3分,共30分)1.9的平方根是()A.±3B.C.3D.2.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个3.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.4.有理数a,b在数轴的位置如图,则下面关系中正确的个数为()①a﹣b>0 ②ab<0 ③>④a2>b2.A.1B.2C.3D.45.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣86.如图,AB为⊙O的直径,△ACD内接于⊙O,∠BAD=3∠C,则∠C度数为()A.20°B.22.5°C.25°D.30°7.如图,在△ABC中,BC=12,tan A=,∠B=30°,则AB长为()A.12B.14C.6+6D.8+68.函数y=﹣的大致图象是()A.B.C.D.9.如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知折痕AE=25,且tan∠BAF=,则矩形ABCD的面积为()A.300B.400C.480D.50010.如图,半径为1的半圆O上有两个动点A、B,若AB=1,则四边形ABCD的面积最大值为()A.B.C.D.二、填空题(每小题3分,共18分)11.若(﹣3,﹣1)在反比例函数y=图象上,则k=.12.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是.13.如图,AB为⊙O的直径,点C为AB延长线上一点,过点C作CD切⊙O于点D,若AB=6,AC=10,则sin∠BCD=.14.如图,一次函数y1=﹣x+4的图象与反比例函数的图象交于A,B两点,若y1<y2,则自变量x的取值范围为.15.如图,在△ABC中,FG∥DE∥AB,DE、FG将△ABC分成面积相等的三部分,则=.16.如图,AD∥BC,∠D=90°,AD=2,BC=4,在边DC上有点P,使△PAD和△PBC相似,若这样的点P有且仅有两个,则CD长为.三、解答题(共72分)17.计算:sin60°+tan60°﹣2cos230°.18.如图,AD是Rt△ABC斜边上的高,若AB=4cm,BC=10cm,求BD的长.19.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.20.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)成正比例;1.5小时后(包括1.5小时)y与x成反比例.根据图中提供的信息,解答下列问题:(1)写出一般成人喝半斤低度白酒后,y与x之间的函数关系式及相应的自变量取值范围;(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上21:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.21.如图,PA、PB是⊙O的切线,A、B为切点,连AO并延长交⊙O于E,交PB的延长线于C,连PO交⊙O于D.(1)求证:BE∥PO;(2)连DB、DC,若DB∥AC,求tan∠ODC的值.22.如图,A (﹣,0),B (﹣,3),∠BAC =90°,C 在y 轴的正半轴上.(1)求出C 点坐标;(2)将线段AB 沿射线AC 向上平移至第一象限,得线段DE ,若D 、E 两点均在双曲线y =上,①求k 的值;②直接写出线段AB 扫过的面积.23.在Rt △ABC 中,∠ACB =90°,AC =3,BC =4.(1)D 、E 分别是边AB 、BC 上一点,且BD =nBE ,连接DE ,连接AE ,CD 交于F .①如图1,若n =,求证:;②如图2,若∠ACF =∠AED ,求n 的值.(2)如图3,P 是射线AB 上一点,Q 是边BC 上一点,且AP =3BQ ,若∠ARC =∠CAB ,求线段BQ 的长度.24.如图,抛物线y =ax 2+bx 的对称轴为y 轴,且经过点(,),P 为抛物线上一点,A (0,).(1)求抛物线解析式;(2)Q为直线AP上一点,且满足AQ=2AP.当P运动时,Q在某个函数图象上运动,试写出Q点所在函数的解析式;(3)如图2,以PA为半径作⊙P与x轴分别交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求点P的横坐标.2018-2019学年湖北省武汉二中广雅中学九年级(下)月考数学试卷(二)参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】根据题意画出图形,进而利用锐角三角函数定义求出即可.【解答】解:如图所示:∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴tan B==.故选:A.【点评】此题主要考查了锐角三角函数定义,正确把握其定义是解题关键.2.【分析】根据反比例函数的图象与性质即可求出k的范围.【解答】解:由题意可知:k﹣1<0,∴k<1故选:D.【点评】本题考查反比例函数的性质,解题的关键是熟练运用反比例函数的性质,本题属于基础题型.3.【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.【解答】解:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选:D.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.4.【分析】根据已知可得△ADE∽△ABC,可得比例式,代入相关数据即可求解BC.【解答】解:∵DE∥BC,∴△ADE∽△ABC.∴,即,解得BC=7.5.故选:C.【点评】本题主要考查相似三角形的判定和性质,正确找到对应线段的比是解题的关键.5.【分析】根据三角形内角和定理求出∠BCD=∠A,再解直角三角形得出即可.【解答】解:∵CD⊥AB,∴∠CDA=∠CDB=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A,∴sin∠BCD=sin A===,即只有选项B错误,选项A、C、D都正确,故选:B.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键,注意:在Rt△ACB中,∠C=90°,则sin A=,cos A=,tan A=,cot A=.6.【分析】连接BD,根据圆周角定理得到∠ADB=90°,∠B=∠C,根据题意列式计算,得到答案.【解答】解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠BAD+∠B=90°,由圆周角定理得,∠B=∠C,∴∠BAD+∠C=90°,∵∠BAD=3∠C,∴3∠C+∠C=90°,解得,∠C=22.5°,故选:B.【点评】本题考查的是三角形的外接圆与外心,掌握圆周角定理、三角形内角和定理是解题的关键.7.【分析】如图,作CH⊥AB于H.解直角三角形分别求出BH,AH即可.【解答】解:如图,作CH⊥AB于H.在Rt△BCH中,∵∠BHC=90°,∠B=30°,BC=12,∴CH=BC=6,BH=CH=6,在Rt△ACH中,∵tan A==,∴AH=8,∴AB=8+6,故选:D.【点评】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.【分析】根据反比例函数图象与系数的关系可直接进行判断.【解答】解:因为k=﹣2,y=﹣<0,所以它的两个分支分别位于第三、四象限.故选:D.【点评】主要考查了反比例函数的图象性质,反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.9.【分析】由矩形的性质得出,∴∠B=∠C=∠D=90°,AB=CD,由折叠的性质得:AF=AD,EF=DE,∠AFE=∠D=90°,∠AFB+∠BAF=90°,证出∠BAF=∠EFC,根据tan∠EFC=,设CE=3k,在Rt△EFC中可得CF=4k,EF=DE=5k,根据∠BAF=∠EFC,利用三角函数的知识求出AF,然后在Rt△AEF中利用勾股定理求出k,代入矩形面积公式即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,AB=CD,由折叠的性质得:AF=AD,EF=DE,∠AFE=∠D=90°,∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,∴∠BAF=∠EFC,∴tan∠BAF==tan∠EFC==,设CE=3k,则CF=4k,由勾股定理得:EF=DE=5k,∴CD=AB=8k,∴BF=6k,AF=BC=AD=10k,在Rt△AFE中,由勾股定理得:AF2+EF2=AE2,即(10k)2+(5k)2=252,解得:k=,∴AB=8,AD=10,∴矩形ABCD的面积=AB×AD=8×10=400,故选:B.【点评】此题考查了翻折变换的性质、矩形的性质、三角函数、勾股定理等知识;解答本题的关键是根据三角函数值,表示出每条线段的长度,然后利用勾股定理进行解答.10.【分析】过点O作OH⊥AB于点H,连接OA,OB,分别过点A、H、B作AE⊥CD、HF⊥CD,BG⊥CD于点E、F、G,根据垂线段线段最短可知HF<OH,再由梯形的中位线定理可知,HF=(AE+BG),进而可得出结论.【解答】解:过点O作OH⊥AB于点H,连接OA,OB,分别过点A、H、B作AE⊥CD、HF⊥CD,BG⊥CD于点E、F、G,∵AB=1,⊙O的半径=1,∴OH=,∵垂线段最短,∴HF<OH,∴HF=(AE+BG),∴S 四边形ABCD =S △AOC +S △AOB +S △BOD =×1×AE +×1×+×1×BG=AE ++BG=(AE +BG )+=HF +≤OH +=+=,故选:C .【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出等边三角形是解答此题的关键.二、填空题(每小题3分,共18分)11.【分析】把(﹣3,﹣1)代入反比例函数y =得到关于k 的一元一次方程,解之即可.【解答】解:把(﹣3,﹣1)代入反比例函数y =得: ﹣1=,解得:k =3, 故答案为:3.【点评】本题考查了反比例函数图象上点的坐标特征,正确掌握代入法是解题的关键. 12.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与至少有一辆汽车向左转的情况,再利用概率公式求解即可求得答案. 【解答】解:画树状图得:∵共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,∴至少有一辆汽车向左转的概率是:.故答案为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.13.【分析】连接OD,由AB=6,AC=10得出OD=OB=3,BC=4,则OC=7,根据切线的性质得出OD⊥CD,解直角三角形即可求得.【解答】解:连接OD,∵CD切⊙O于点D,∴OD⊥CD,∵AB=6,AC=10,∴OD=OB=3,BC=4,∴OC=7,∴sin∠BCD==,故答案为.【点评】本题考查了切线的性质以及解直角三角形,作出辅助线构建直角三角形是解题的关键.14.【分析】先求出交点坐标,再根据图形,找出一次函数图象在反比例函数图象下方的x的取值范围即可.【解答】解:联立方程组,解得,或,∴A(1,3),B(3,1),根据图形,当0<x<1或x>3时,一次函数图象在反比例函数图象上方,y1<y2.故答案为:0<x<1或x>3.【点评】本题考查了反比例函数一次函数的交点问题,联立方程组是求函数图象交点的坐标方法.15.【分析】由已知可得△CFG面积与△CDE面积比为1:2,△CFG面积与△CAB面积比为1:3,根据相似三角形的性质面积比等于相似比的平方可得两组比例式,这两个比例式相减即可求解问题.【解答】解:由已知可得△CFG面积与△CDE面积比为1:2,△CFG面积与△CAB面积比为1:3,根据相似三角形的性质面积比等于相似比的平方可得:,,所以,即=.故答案为.【点评】本题主要考查相似三角形的判定和性质,写出正确的比例式是解题的关键.16.【分析】设DP=x,表示出CP=y,然后分①AD和BC是对应边,②AD和CP是对应边两种情况,利用相似三角形对应边成比例列式计算即可得解.【解答】解:如图所示:设DP=x,CP=y,①AD和BC是对应边时,△ADP∽△BCP,∴,即,解得:y=2x;②AD和CP是对应边时,△ADP∽△PCB,∴,即,整理得:xy=8,联立,解得:x=2,x=﹣2(舍去),y=4,∴CD=x+y=6,以AB为直径的圆刚好和CD相切时,CD=4,设切点为P₁,△ADP₁∽P₁CB,此时还有P₂一点,△ADP₂∽△BCP₂,∴当CD>4时,且CD≠6时,有3个点,CD=6时,有2个,CD=4时,有2个.CD<4时,有1个.所以该题答案是6或4,故答案为:6或4.【点评】本题考查了相似三角形的判定,一元二次方程的解法,难点在于分情况讨论.三、解答题(共72分)17.【分析】根据特殊角的三角函数值直接代入求值即可.【解答】解:原式=×+﹣2×()2=+﹣=.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.18.【分析】根据射影定理列出算式,代入数据计算即可.【解答】解:由射影定理得,AB2=BD•BC,则BD==1.6.【点评】本题考查的是射影定理的应用,射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.19.【分析】(1)由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m的值;(2)求出绘画与书法的学生数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出恰好为一男一女的情况数,即可求出所求概率.【解答】解:(1)20÷40%=50(人),15÷50=30%;故答案为:50;30%;(2)50×20%=10(人),50×10%=5(人),如图所示:(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,所有等可能的情况有20种,其中抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)==.【点评】此题考查了列表法与树状图法,条形统计图,扇形统计图,弄清题中的数据是解本题的关键.20.【分析】(1)直接利用待定系数法分别求出反比例函数以及一次函数的解析式得出答案;(2)根据题意得出x=10时y的值进而得出答案.【解答】解:(1)由题意可得:当0≤x≤1.5时,设函数关系式为:y=kx,则150=1.5k,解得:k=100,故y=100x,当1.5≤x时,设函数关系式为:y=,则a=150×1.5=225,解得:a=225,故y=(x≥1.5),综上所述:y与x之间的两个函数关系式为:y=;(2)第二天早上7:00不能驾车去上班.理由:∵晚上21:00到第二天早上7:00,有10小时,∴x=10时,y==22.5<>0,∴第二天早上7:00不能驾车去上班.【点评】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是灵活掌握待定系数法确定函数解析式,学会利用函数解决实际问题,属于中考常考题型.21.【分析】(1)连OB,证明∠AOP=∠BOP(设为α);则∠COB+2α=180°,∠COB+2∠OEB =180°;得到∠AOP=∠OEB,则结论得证;(2)先证明四边形ODBE是菱形,则△ODB是等边三角形,得到∠OBD=60°,可得∠EBC=∠ECB=30°,由△BDN≌△ECN,可得到BN=NE,在Rt△DMN中,设BM=a,则DM=,BN=a,则tan∠ODC=tan∠DNM可求出.【解答】(1)证明:如图1,连接AB、OB;∵PA、PB分别是⊙O的切线,∴∠APO=∠BPO,OA⊥PA,OB⊥PB;∴∠AOP=∠BOP(设为α),则∠COB+2α=180°;∵OB=OE,∴∠OBE=∠OEB(设为β),∴∠COB+2β=180°,∴∠COB+2α=∠COB+2β,∴α=β,即∠AOP=∠OEB,∴OP∥BE.(2)解:如图2,连OB,过点D作DM⊥BE交EB的延长线于点M,DC与BE交于N,∵DB∥AC,BE∥OP,OD=OE,∴四边形ODBE为菱形,∴△OBE和△ODB都是等边三角形,∴∠DBM=60°,∠OCB=30°,∴∠EBC=30°,∴EB=EC=DB,在△BDN和△ECN中,∴△BDN≌△ECN(AAS),∴BN=NE=,设BN=a,则BD=2a,BM=a,DM=,∴tan,∴.【点评】本题主要考查了切线的性质及其应用问题;解题的关键是作辅助线,灵活运用有关定理来分析、判断、推理或解答.22.【分析】(1)过点B作x轴的垂线,构造三垂直相似模型,由对应边成比例求得OC的长度.(2)①由平移的性质可知,AB∥DE,AD∥BE,即D、E横纵坐标差与A、B横纵坐标差相等.因为沿射线AC平移,求直线AC的解析式,用d表示点D坐标,再用d表示点E坐标,由D、E 在双曲线上,列得关于d、k的方程,进而求得k.②由平移性质可知四边形ABED是平行四边形,又∠BAC=90°,即为矩形,所以线段AB扫过的面积即为矩形ABED的面积,用两点间距离公式求出AB、AD长度即求出面积.【解答】解:(1)过点B作BH⊥x轴于点H,∴∠BHA =∠BAC =∠AOC =90° ∴∠B +∠BAH =∠BAH +∠OAC =90° ∴∠B =∠OAC ∴△BAH ∽△ACO∴∵A (﹣,0),B (﹣,3)∴OA =,OH =,BH =3∴AH =OH ﹣OA ==2∴CO =∴点C 坐标为(0,)(2)①∵线段AB 沿射线AC 向上平移至第一象限 ∴点A 对应点D 在直线AC 上,AD ∥BE , ∴x D ﹣x E =x A ﹣x B =2,y E ﹣y D =y B ﹣y A =3 设直线AC 解析式为:y =ax +b解得:∴直线AC 解析式为:设点D 坐标为(d ,),则x E=x D﹣2=d﹣2,y E=y D+3=即点E(d﹣2,)∵点D、E在函数y=图象上(k>0)∴解得:d=4∴k=4×(×4+)=12②∵A(﹣,0),B(﹣,3),D(4,3)∴AB=,AD=∵AB∥DE,AD∥BE∴四边形ABED是平行四边形∵∠BAC=90°∴▱ABED是矩形=AB•AD=∴S矩形ABED∴线段AB扫过的面积为【点评】本题考查了相似三角形的判定和性质,平移的性质,待定系数法求解析式,反比例函数的性质,矩形的判定,两点间距离公式.解题关键是对平移性质的运用,明确平移前后对应点横纵坐标差相等.23.【分析】(1)①只要证明DE∥AC即可解决问题.②只要证明∠BDE=90°,根据cos B===,即可解决问题.(2)如图3中,作CH⊥AB于H.设BQ=k则AP=3k.证明△ACQ∽△PHC,可得=,由此构建方程即可解决问题.【解答】(1)①证明:如图1中,在Rt△ACB中,∵∠ACB=90°,AC=3,BC=4,∴AC==5,∵BD=BE,∴==,∴DE∥AC,∴△DEF∽△CAF,∴=.②解:如图2中,∵∠ACF=∠DEF,∠AFC=∠DFE,∴△AFC∽△DFE,∴=,∠CAF=∠FDE,=,∵∠AFD=∠CFE,∴△AFD∽△CFE,∴∠ADF=∠CEF,∵∠CAF+∠CEF=90°,∠EDF+∠ADF=90°,∴∠ADE=∠BDE﹣90°,∴cos B===,∴n=.(2)解:如图3中,作CH⊥AB于H.设BQ=k则AP=3k.=•AC•BC=•AB•CH,∵S△ABC∴CH=,AH==,∴PH=3k﹣,∵∠ARC=∠APC+∠PAR,∠BAC=∠PAR+∠CAQ,∠ARC=∠BAC,∴∠CAQ=∠CPH,∵∠ACQ=∠CHP=90°,∴△ACQ∽△PHC,∴=,∴=,整理得:5k2﹣23k+24=0,解得k=或3(舍弃),∴BQ=.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理,锐角三角函数,平行线的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.24.【分析】(1)抛物线y =ax 2+bx 的对称轴为y 轴,则b =0,将点(,),代入y =ax 2,即可求解;(2)分点Q 在点P 下方(点Q 位置)、点Q 在点P 上方(点Q ′位置),两种情况分别求解; (3)分AM =AN 、AM =MN 、AN =MN ,三种情况分别求解.【解答】解:(1)抛物线y =ax 2+bx 的对称轴为y 轴,则b =0,将点(,),代入y =ax 2并解得:a =,故抛物线的表达式为:y =x 2;(2)设点Q 的坐标为(x ,y ),点P (m , m 2),①当点Q 在点P 下方时(点Q 位置),∵AQ =2AP ,∴P 为AP 的中点,由中点公式得:m =x , m 2=,整理得:y =x 2﹣;②当点Q 在点P 上方时(点Q ′位置),同理可得:y =﹣x 2+;Q 点所在函数的解析式为:y =x 2﹣或y =﹣x 2+;(3)过点P 作PH ⊥x 轴于点H ,设点P (m , m 2),则PM=PN=PA==,MH=NH===,则MN=3,设点M(m﹣,0),则N(m+,0),AM2=(m﹣)2+,AN2=(m+)2+,MN2=9,①当AM=AN时,AM2=(m﹣)2+=(m+)2+,解得:m=0;②当AM=MN时,同理可得:m=(负值已舍去);③当AN=MN时,同理可得:m=(负值已舍去);故点P的横坐标为:0或或.【点评】本题考查的是二次函数综合运用,涉及到圆的基本知识、勾股定理运用等知识,要注意分类求解,避免遗漏.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年湖北省武汉二中广雅中学九年级(下)训练数学
试卷(七)
一、选择题(每小题3分,共30分)
1.(3分)8的倒数是()
A.﹣8B.8C.﹣D.
2.(3分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.
C.D.
3.(3分)下列成语描述的事件为随机事件的是()
A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼4.(3分)下列四个图形中,是轴对称图形的是()
A.B.C.D.
5.(3分)下列几何体的左视图为长方形的是()
A.B.
C.D.
6.(3分)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()
A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=60 7.(3分)将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,
这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()
A.B.C.D.
8.(3分)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6
9.(3分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD 都相切,AO=10,则⊙O的半径长等于()
A.5B.6C.2D.3
10.(3分)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()
A.有且只有1个B.有且只有2个
C.至少有3个D.有无穷多个
二、填空题(每小题3分,共18分)
11.(3分)16的平方根是.
12.(3分)对于一组统计数据3,3,6,5,3.这组数据的中位数是.
13.(3分)计算:(1﹣)•=
14.(3分)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为.
15.(3分)把反比例函数C1:y=的图象绕O点顺时针旋转45°后得到双曲线C2.若直线y=kx与C2交于A,B两点,且AB=2,则k的值是.
16.(3分)如图,在Rt△ABC中,C为直角顶点,AC=8,BC=6,D为AB的中点.点E 是边BC上的动点,连结DE,作DF⊥DE交AC于点F,连结EF,CD交于G.当△DEG 和△DFG的面积之比为1:2时,则线段CE的长是.。