啤酒废水处理
啤酒废水的三种处理技术

啤酒废水的主要特点是BOD5CODCr值高,有害无毒,可生化性好,所以生化法是啤酒废水处理的首选方法。
生化法依据污水净化原理可分为好氧和厌氧法两大类,好氧法、厌氧法以及和其他方法的不同组合就形成了多种啤酒废水的治理技术。
烟台金正环保科技有限公司专家介绍:国内外啤酒废水处理广泛采用生化处理工艺,其中有厌氧生物处理,好氧生物处理(生物膜法),厌氧与好氧联合生物处理方法。
1、好氧处理——生物膜法
生物膜法是使微生物群体依附在其它物体表面而呈膜状,并让废水与它接触后得到净化的方法。
根据生物膜与废水接触方式的不同,分为生物滤池法,生物转盘法及接触氧化法。
2、厌氧法
一般认为,厌氧生物处理技术的反应器主体经历了3个时代。
传统厌氧发酵工艺(第一代反应器,以厌氧消化池为代表)因需要较高的温度,较长的停留时间,且处理效能低而被逐渐淘汰。
目前以上流式厌氧污泥床(UASB)为代表的第二代反应器和以厌氧颗粒污泥膨胀床(EGSB)和厌氧内循环反应器(IC)为代表的反应器已被广泛引入到啤酒废水
处理工程应用中,并取得了良好的效果。
3、厌氧-好氧法
单纯的好氧工艺耗能太高,产污泥量大;厌氧工艺省能产能,有效去除有机物,出水离达标还有一定差距。
厌氧-好氧串联工艺综合两者的优点,成为目前啤酒废水处理技术选择的方向。
UASB+CASS组合工艺处理啤酒废水工程实例

UASB+CASS组合工艺处理啤酒废水工程实例UASB+CASS组合工艺处理啤酒废水工程实例一、引言啤酒工业是我国规模较大的饮品生产行业之一,其废水排放问题一度成为环境保护的难题。
为了解决啤酒废水处理难题,许多工程实例采用了UASB(上升式厌氧污泥床)+CASS(循环顺流式废水曝气系统)组合工艺进行废水处理。
本文将以某啤酒厂的工程实例为例,介绍UASB+CASS组合工艺处理啤酒废水的工程实施及效果。
二、工程概况某啤酒厂位于中国某地,年产啤酒100万吨。
由于生产规模较大,该厂废水排放量大、COD(化学需氧量)、BOD(生化需氧量)等水质指标超标严重,对环境造成了一定的污染。
为了满足环境保护要求,该厂决定引进先进的UASB+CASS组合工艺进行废水处理。
三、工艺流程1. 原水预处理:啤酒废水中含有悬浮物、油脂和颗粒污物等。
为了保护后续处理装置的正常运行,必须进行预处理。
该厂采用了格栅除污系统,将颗粒物与沉降物分离,并通过除污机械将固体杂质捞取、去除。
2. UASB处理系统:经过预处理后的废水进入UASB反应器,废水中的机械颗粒物被彻底去除。
UASB反应器内,废水与厌氧菌共同作用,将有机物通过厌氧消化转化为沼气与污泥。
该系统具有污泥生成量较少、占地面积小等特点。
3. CASS处理系统:UASB处理后的沼气在CASS系统中被利用,为废水提供氧气,促进废水进一步的生化处理。
CASS系统采用循环顺流式废水曝气系统,通过增氧器将空气吹入废水中,提供充足的氧气供给。
同时,废水经过曝气作用,进一步降解有机物,减少COD和BOD等污染物浓度。
4. 深度处理:经过UASB+CASS组合工艺处理后,废水中的污染物浓度已大幅下降,但仍需进一步深度处理。
该厂选择了生物接触氧化池作为深度处理工艺,通过生物菌膜对废水进行进一步处理,确保出水水质达到相应的标准。
四、运行效果经过UASB+CASS组合工艺处理后,该啤酒厂的废水处理效果明显改善。
某啤酒厂污水处理工艺运行实例

某啤酒厂污水处理工艺运行实例某啤酒厂污水处理工艺运行实例1. 引言随着工业化的快速发展,啤酒厂因其大规模生产和废水排放而成为水污染的重要来源之一。
为了保护环境、合规排放,啤酒厂需要采取有效的污水处理工艺。
本文将介绍某啤酒厂的污水处理工艺运行实例,探讨其工艺流程、关键技术和运行效果。
2. 某啤酒厂污水特性某啤酒厂年生产啤酒50万吨,废水每天排放约3000吨。
该厂的废水含有高浓度的有机物、悬浮物和氮、磷等营养物质,pH 值偏酸性。
其中,COD浓度达到5000mg/L以上,SS浓度为200mg/L左右。
3. 工艺流程概述该啤酒厂采用了生化处理工艺来处理废水,包括初沉池、活性污泥法、二沉池以及最后的消毒工艺。
具体流程如下:3.1 初沉池首先将废水引入初沉池进行预处理。
在初沉池中,废水停留一段时间,悬浮物和部分有机物会沉降到池底形成污泥,水体上清液进入下一步处理。
3.2 活性污泥法初沉池排出的水体进入活性污泥法处理单元。
在这个单元中,废水与含有活性污泥的混合液进行接触。
废水中的有机物会被微生物在氧气供应下进行氧化分解,从而达到去除COD的目的。
3.3 二沉池活性污泥法处理单元的出水经过二沉池进一步分离。
在二沉池中,废水停留一段时间,污泥与水体进一步分离,污泥沉入池底形成污泥毛毡,水体经过排出口排入最后一道处理工艺。
3.4 消毒工艺最后,经过二沉池处理的水体通过消毒工艺进行消毒。
消毒工艺常用的方法有氯气消毒、紫外线消毒等,这里采用紫外线消毒。
紫外线消毒能高效杀灭水中的细菌和病毒,确保处理后的废水符合排放标准。
4. 关键技术在某啤酒厂的污水处理过程中,采用了以下关键技术来提高处理效果和降低运营成本。
4.1 活性污泥工艺优化通过调整进水量、反应时间、进水浓度等参数,优化活性污泥法处理过程,提高COD去除率。
此外,定期清洗活性污泥系统,保持污泥颗粒的活性和稳定性。
4.2 膜生物反应器技术应用膜生物反应器技术是一种采用微孔滤膜作为生物反应器的新型废水处理技术。
啤酒厂废水处理工艺设计

啤酒厂废水处理工艺设计1. 简介随着啤酒工业的快速发展,啤酒厂废水处理成为一个重要的环境问题。
废水中含有高浓度的有机物、悬浮物、氮和磷等污染物,对环境造成严重影响。
为了保护水资源和保持生态平衡,啤酒厂废水处理工艺设计至关重要。
2. 原理2.1 生物处理工艺生物处理工艺是啤酒废水处理的核心步骤,包括生物降解、生物膜处理和生物吸附等。
通过生物降解,将废水中的有机物转化为微生物可利用的无机物。
生物膜处理利用生物膜对污染物进行吸附和降解,提高处理效果。
生物吸附则通过微生物对废水中的重金属等有毒物质进行吸附,净化废水。
2.2 物理处理工艺物理处理工艺主要包括初沉池、气浮池和过滤器等。
初沉池通过重力作用使废水中的悬浮物沉淀到池底,从而达到初步去除悬浮物的目的。
气浮池则通过注入细小气泡使废水中的悬浮物浮起,并通过刮板等设备集中去除。
过滤器将废水通过滤材进行过滤,去除小颗粒的悬浮物。
3. 工艺设计3.1 筛选工艺根据啤酒厂废水的特点和排放标准要求,选择合适的处理工艺。
常见的处理工艺包括活性污泥法、生物接触氧化法和MBR法等。
根据实际情况进行工艺筛选,考虑处理效果、投资成本和运行成本等因素。
3.2 工艺流程设计根据筛选出的处理工艺,设计相应的工艺流程。
一般情况下,工艺流程包括初沉池、生化池/接触氧化池、二沉池、消毒等。
根据废水的水质分析和处理要求,确定每个环节的处理方法和设备。
3.3 工艺参数设计根据废水的水质和处理要求,确定各个环节的工艺参数。
包括但不限于污泥浓度、接触时间、有机负荷和气泡大小等。
参数的合理设计对工艺的稳定运行和高效处理起着重要作用。
3.4 工艺设备选型根据工艺流程和参数设计,选择合适的设备。
设备选型需要考虑投资成本、运行成本和设备的耐久性等因素。
常见的设备包括曝气设备、搅拌设备和过滤设备等。
4. 运行与控制4.1 运行管理对废水处理工艺的运行进行管理,包括设备的检修和维护,污泥的处理和处置,以及运行记录的管理等。
啤酒厂污水处理方法

啤酒厂污水处理方法随着啤酒消费的不断增加,啤酒厂的污水处理成为一个非常重要的问题。
啤酒厂的污水污染主要来自于生产过程中产生的废水,如果不采取有效的处理方法,将会对环境造成严重的污染。
本文将详细介绍啤酒厂污水处理的方法,并分点列出具体措施。
1. 初步处理:啤酒厂污水处理的第一步是初步处理,目的是去除污水中的固体颗粒物,如颗粒状皮肤、蔬菜残渣等。
主要方法包括:- 筛分:通过机械筛网将较大的杂质拦截下来。
- 沉淀:利用重力作用使固体颗粒物沉淀到底部,通过底部管道排出。
2. 生物处理:初步处理后的污水还含有大量的有机物和氮、磷等营养物质,需要进一步进行生物处理。
常见的生物处理方法包括:- 好氧处理:通过加入含氧的空气,利用好氧菌分解有机物。
常见的好氧处理设备包括曝气池和活性污泥法。
- 厌氧处理:在无氧或低氧环境下,利用厌氧菌分解有机物。
常见的厌氧处理设备包括厌氧池和厌氧消化器。
3. 化学处理:生物处理后的污水中可能仍然存在一些难以降解的有机物、重金属离子等。
为了彻底去除这些污染物,需要进行化学处理。
常见的化学处理方法包括:- 混凝:通过加入适量的混凝剂,使微小的悬浮物凝聚成较大的团块,方便沉淀和过滤。
- 氧化:通过加入氧化剂,使有机物和重金属被氧化成无害的物质。
常用的氧化剂有氯酸盐、过氧化氢等。
4. 辅助处理:除了上述主要的处理方法外,还可以采用一些辅助处理措施来提高污水处理的效果。
例如:- 离子交换:利用离子交换树脂去除污水中的离子,如铅、铜等重金属离子。
- 活性炭吸附:利用活性炭的吸附性能去除污水中的有机物。
- 紫外线消毒:利用紫外线辐射杀灭污水中的细菌和病毒。
综上所述,啤酒厂污水处理需要经过初步处理、生物处理、化学处理和辅助处理等多个步骤。
每个步骤都有不同的方法和设备可供选择,要选择适合的处理方法,需要根据污水的实际情况进行评估,并遵循相关的环保标准。
有效地处理啤酒厂污水,不仅有助于保护环境,减少水源污染,也符合可持续发展的理念。
啤酒废水处理

厌氧+好氧其它的组合工艺情况
• • • • (1)酸化—SBR法 (2)UASB—好氧接触氧化工艺 (3)内循环UASB反应器+氧化沟工艺 (4)UASB+SBR法
二、啤酒废水的特点和指标
三、啤酒废水的危害 • 啤酒工厂每生产100吨啤酒,所排放出的 BOD值相当于14000人生活污水的BOD值, 悬浮固体SS值相当于8000人生活污水的 SS,啤酒废水主要含糖类,醇类等有机 物,有机物浓度较高,虽然无毒,但易 于腐败,排入水体要消耗大量的溶解氧, 对水体环境造成严重危害。
主要构筑物设计参数
• 构筑物设计参数选择说明: • (1) 调节池:调节池按2200m3/d计算,停留时间设为6h, 有效水深为4米。 • (2) 厌氧反应器:水解酸化池,该池降解部分大分子有机 物,按传统经验数据降解率设为30%。 • (3) 好氧反应器:接触氧化池,大部分的有机物在这里被 降解,考虑到出水水质的要求,停留时间较长。
为曝气池的活性污泥法,曝气池由下降管以及上 升管组成。将废水和污泥引入下降管,在井内循 环,空气注入下降管或同时注入两管中,混合液 则由上升管排至固液分离装置,即废水循环是靠 上升管和下降管的静水压力差进行的。据测定, 当进水BOD5浓度为2400 mg/l时,出水浓度可降为 50 mg/l,去除率高达97.92%。
武汉欧联东西湖啤酒有限公司
• 废水特点
• 啤酒生产以大麦和大米为原料,辅以啤酒花和鲜酵母,经 较长时间发酵酿造而成,废水主要来源于麦芽制造、糖化、 发酵、洗瓶及灌装等工序。啤酒废水富含糖类、蛋白质、 淀粉、果胶、醇酸类、矿物盐、纤维素以及多种维生素, 是一种中等浓度的有机废水。
• 生产废水水质及排放要求
•
• 第三阶段为接触氧化阶段,用来降解小分子有机物,接触 氧化法的污泥不需回流,不会发生污泥膨胀的现象,而且 负荷高,产泥少,可减小曝气池体积。接触氧化池多极串 联,设计对COD去除率为95%。 • 第四阶段为二沉池,对接触氧化池的出水进行沉淀,从而 得到澄清的出水。经过沉淀作用后,出水便可达到排放标 准排出厂区。 • 污泥处理经浓缩池浓缩后,脱水外运。 • 滤液送到细格栅池子进行处理。
啤酒厂污水的各种处理方法

啤酒厂污水的各种处理方法
啤酒厂污水的处理方法包括以下几种:
1. 前处理:包括物理方法和化学方法。
物理方法包括固液分离和沉淀,通过物理和机械手段将固体和液体分离开来,去除悬浮物和沉积物。
化学方法包括调整pH值、添加絮凝剂和溶解氧等,以促进悬浮物和溶解物的沉淀和凝聚,提高处理效果。
2. 生化处理:通过微生物的作用,将有机污染物转化为稳定和无害的物质。
常见的生化处理方法包括活性污泥法、生物滤池法和生物膜法等。
其中,活性污泥法是目前应用最广泛的方法,通过投加活性污泥,利用其中的细菌和其他微生物,将有机物降解为二氧化碳和水。
3. 高级处理:类似于生化处理,但更注重对难降解有机物和重金属等的处理。
常见的高级处理方法包括生物吸附、高级氧化、膜分离和吸附剂等。
其中,生物吸附利用微生物和其他生物材料对污水中的重金属进行吸附,高级氧化指的是利用高级氧化剂(如臭氧、过氧化氢)对难降解有机物进行氧化反应。
4. 除盐处理:对啤酒厂废水中的盐分进行处理,常见的除盐方法有电渗析、反渗透和蒸馏等。
以上仅为啤酒厂污水处理的一些常见方法,具体的处理方案还需根据具体情况和
要求进行选择和设计。
啤酒废水处理

厌氧反应器介绍
膨胀颗粒污泥床(Expanded Granular Sludge Bed,简称EGSB)反应器是UASB反应器的变型, 是厌氧流化床与UASB反应器两种技术的成功结 合。它最初开发是通过颗粒污泥床的膨胀以改 善废水与微生物之间的接触,强化传质效果, 以提高反应器的生化速度,从而大大提高反应 器的处理性能。
啤酒废水处理
1. 设计基础
1) 进水
参数 pH SS COD BOD 温度
值 6.8 – 7.5
700
单位 -
mg/lit
2000-2500 mg/lit
1200-1500 mg/lit 30 - 40 deg. C
2)出水
参数
COD SS
值
≦500 ≦300
流量 平均时 日处理量
67 1600
m3/hr m3/hr
将悬浮固体在600℃高温灼烧后 挥发掉的物质,可以用VSS粗略 的表示悬浮固体中有机物的含量。
6
VSS(挥发性悬浮固体)
将悬浮固体在600℃高温灼烧后 挥发掉的物质,可以用VSS粗略 的表示悬浮固体中有机物的含量。
7
MLSS(混合液污泥浓度)
单位容积混合液所含有的活性 污泥的固体物的总质量,表示 的是混合液中的活性污泥浓度
洗瓶工序中使用碱性洗涤液,使用一定时间后需要更换。废碱性洗涤液中 含有大量的游离NaOH、洗涤剂、纸浆、染料和无视杂质。当其集中排放时,使 废水的pH值在11以上,废水的COD值也随之上 升,并持续数小时之久。这对生 物处理装量中的微生物无疑是毁灭性的打击.因此废碱性洗涤液不允许直接排 入排污沟中,应考虑单 独处置。
3、 进水流量必须保持恒定,流量变化不能超过2 m3/h;加量时除外。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
啤酒废水处理啤酒废水处理工艺及浅析提要:我国是啤酒生产大国,啤酒废水已成为较高有机物污染大户,因此,对啤酒废水进行处理达标后排放已显得十分重要。
介绍了5种较成熟的啤酒废水处理工艺(流程)方案,简述了各自的特点和优缺点,并对5种工艺方案进行了初步分析。
关键词:啤酒废水生化处理物化处理处理工艺水解酸化接触氧化厌氧内循环概述80年代以来,我国啤酒工业得到迅速发展,到目前我国啤酒生产厂已有800多家,据1996年统计我国啤酒产量达1 650万t,既成为世界啤酒生产大国,又成为较高浓度有机物污染大户,啤酒废水的排放和对环境的污染已成为突出问题,引起了各有关部门的重视。
啤酒废水的主要成分和来源是:制麦、糖化、果胶、发酵(残渣)、蛋白化合物,包装车间等有机物和少量无机盐类。
其水质及变幅范围一般为:pH=5.5~7.0(显微酸性),水温为20~25℃,CODCr=1200~2300mg/L, BOD5=700~1400mg/L, SS=300~600mg/L, TN=30~70mg/L。
水量为每生产1t啤酒废水排放量为10~20m3,平均约15m3,目前全国啤酒废水年排放量在2.5亿m3以上。
“七五”以来,我国对啤酒废水的处理工艺和技术进行了大量的研究和探索,特别是轻工业系统的设计院和科研单位,对啤酒废水的处理进行了各方面的试验、研究和实践,取得了行之有效的成功经验,逐渐形成了以生化为主、生化与物化相结合的处理工艺。
生化法中常用的有活性污泥法、生物膜法、厌氧与好氧相结合法、水解酸化与SBR相组合等各种处理工艺。
这些处理方法与工艺各有其特点和不足之处,但各自都有较为成功的经验。
目前还有不少新的处理方法和工艺优化组合正在试验和研究,有的已取得了理想的成效,不久将应用于实践中。
啤酒废水的主要特点之一是BOD5/COD Cr值高,一般在50%及以上,非常有利于生化处理,同时生化处理与普通物化法、化学法相比较:一是处理工艺比较成熟;二是处理效率高,COD Cr、BOD5去除率高,一般可达80%~90%以上;三是处理成本低(运行费用省)。
因此生物处理在啤酒废水处理中,得到了充分重视和广泛采用。
现把目前啤酒废水处理中相对比较成熟的生物处理工艺,进行一些阐述和比较。
1处理工艺1.1处理工艺方案1(见图1)图1处理工艺方案1该处理工艺是轻工部设计院为代表的推荐采用方案,河南开封啤酒厂、青岛湖岛啤酒厂、厦门冷冻厂啤酒厂等均采用此处理工艺流程,处理后均达标排放。
细格栅起初步的固液分离作用,故不设初沉池;酸化池中设填料,为细菌提供呈立体状的生物床,把水中的颗粒物质和胶体物质截留和吸附,同时在水解细菌作用下,将不溶解性有机物水解为溶解性物质,在产酸菌协同作用下,将大分子物质、难于生物降解的物质转化为易于生物降解的小分子物质。
物化法中选用加药反应气浮池的理由主要为三点:一是悬浮物等去除率高,普通沉淀池去除率仅为30%左右,竖流式沉淀池为40%~50%,而气浮可达80%~90%;二是气浮污泥含水率为97%~98%,气浮排渣可直接进行脱水处理,而其它沉淀池的污泥含水率达99%以上;三是气浮池气浮水力停留时间短,约30min左右,而其它沉淀池的水力停留时间1.5~2h,故气浮池体积小,减少占地面积。
但气浮处理需要增设一套空压机、压力溶气罐、回流水泵等组成的辅助系统(图1中未绘出),操作管理相对较复杂。
微生物所需要的营养,主要为碳水化合物、氮化合物、水、无机盐类(氮和磷)及维生素。
通常要求BOD∶N∶P=15∶5∶1,为满足此要求,故在接触氧化池前投加氨氮。
1.2处理工艺方案2(见图2)处理工艺方案2与处理工艺方案1在主体处理系统上基本上是相同的,都是水解酸化、接触氧化和气浮池,主要不同点:一是高浓度废水先采用UASB(上流式厌氧污泥床)预处理后再进入低浓度废水调节池,进行主体处理系统;二是主体处理系统调节池前增设了沉砂池和分离机(高浓度废水预处理系统中调节池前也增设了沉砂池和分离机)。
图2处理工艺方案2该工艺用在山东省三孔啤酒有限公司废水处理中,高浓度有机废水水量水质为:Q1 = 500 m3/d;COD Cr:5000mg/L; BOD5:2500mg/L; SS:3000mg/L。
低浓度有机废水:Q2=3500m3/d; COD Cr:500mg/L; BOD5: 250mg/L; SS:500mg/L。
Q=Q1+Q2=4000m3/d。
设计按当时的GB8978—88现有企业栏标准,即:COD Cr≤150mg/L; BOD5≤60mg/L;SS≤100mg/L;pH=6~9。
UASB进出水水质和混合水经主体处理系统的进出水水质见表1和表2。
可见处理后的出水水质好于设计采用的标准值,全部达标排放。
表1UASB进出水水质项目进水水质出水水质除率(%)COD(mg/L)2320~3300560~64375.9~80.5BOD(mg/L)800~1640365~40754.4~71.2SS(mg/L)634~1076090~1 23685.8~88.5PH 5.20~5.63 6.80~7.32表2混合水经主体处理进出水水质项目进水水质出水水质除率(%)COD(mg/L)540~140531.9~65.294.1~95.5BOD(mg/L)179~54716.1~28.993.5~95.7SS(mg/L)161~75216~5490~92.8PH 6.94~9.397.86~8.13把高浓度有机废水先单独进行预处理,反映了两个主要特点:一是采用厌氧生物处理中的UASB反应器,它具有截留污泥量大,颗粒化程度好,处理高浓度有机废水能力强等特点。
该反应器采用中温发酵,内部具有热交换装置,结构较紧凑,温度、碱度、负荷等由微机控制;二是高浓度废水集中进行厌氧处理,产生沼气量大,可以集中使用。
该反应器设计容积负荷为6.0kg/(m3·d),去除lkgCOD产生VSS0.082kg,产生沼气0.52m3,则1天可产生1000多m3沼气。
1.3处理工艺方案3(IC-CIRCOX工艺,见图3)图3IC-CIRCOX处理工艺(方案3)IC(厌氧内循环)反应器根据UASB的原理,80年代中由荷兰帕克(PAQUES)公司开发成功。
它由混合区、污泥膨胀床、精处理区和循环系统四个部分组成。
它与其它厌氧处理工艺相比有以下特点:(1)因反应器为立式结构,高度为16~25m,故占地面积小,同时沼气收集也方便。
(2)有机负荷高,水力停留时间短,它与其它厌氧处理工艺的有机负荷和水力停留时间比较见表3。
表3各种厌氧处理工艺的有机负荷与水力停留时间工艺有机负荷kg COD/m3·d 水力停留时间h普通消化池0.5~2>90接触消化池2~410~15厌氧过滤器3~10>20UASB15~301~8IC反应器18~402~5(3)剩余污泥少,约为进水COD的1%,且容易脱水。
(4)靠沼气的提升产生循环,不需要外部动力进行搅拌混合和使污泥回流,节省动力消耗。
(5)因生物降解后的出水为碱性,当进水酸度较高时,可通过出水的回流使进水中和,减少药剂使用量。
(6)耐冲击负荷性能强,处理效率高,COD去除率为75%~80%,BOD去除率为80%~85%。
(7)生物气纯度高(CH4为70%~80%,CO2为20%~30%,其它有机物为1%~5%),可作燃料加以利用。
CIRCOX(封闭式空气提升好氧)反应器为双层立式筒体(外层为下降筒体,内层为上升筒体),水由底部进入反应器,与压缩空气一起从内层筒体(也称上升管)向上流,使进水与微生物充分接触,微生物粘附在载体(细砂类物质)表面,形成生物膜,使活性污泥有良好的沉降性能,不易被出水带离反应器而在系统内循环,筒体的上部做成“帽状”(直径放大约1/3左右),气、水和污泥的混合液进入反应器上部“帽状”的三相分离区分离;气体从上面离开反应器,澄清水从出水口流出,污泥经过沉降区返回到反应器底部。
CIRCOX反应器与其它好氧处理工艺相比,有以下特点:(1)高度与直径比大,故占地面积小。
(2)有机负荷与微生物浓度高,有机负荷为4~10kgCOD/(m3·d),微生物浓度15~30 kgVSS / m3。
(3)水力停留时间短,一般为0.5~4h。
(4)剩余污泥少,小于进水COD的5%;污泥回流在同一反应器内完成,不需要外加动力。
(5)因该反应器为封闭系统,可以容易地控制污水中易挥发物质,可根据需要设置生物过滤器或活性炭过滤器处理废气。
(6)因反应器内液体的流速很高,约为50m/h,载体通过相互碰撞摩擦而自动脱膜,不需要另设脱膜装置;同时污水中的悬浮物很容易从反应器内冲出,允许进水悬浮物的浓度较高,不需设预沉池。
(7)因活性污泥在反应器内循环,泥龄很高,污泥中可产生一些生长速度很慢的硝化细菌等,故CIRCOX 反应器适合于处理含氮化合物及其它难降解的化合物。
IC反应器应用于高浓度有机废水处理,CIRCOX适用于低浓度的啤酒生产废水和城市污水处理,两者串连起来是优化的组合,体现了占地面积小,无臭气排放,污泥量少和处理效率高的优点。
1995年上海富仕达酿酒公司引进了帕克公司的专利技术处理啤酒生产废水(工艺流程如图3所示),已建成投产,处理能力4800m3/d,进、出水水质见表4。
表4上海富仕达公司啤酒废水处理站进出水水质项目进水水质平均进水水质范围出水水质平均出水水质范围COD (mg/L)2000 1 000~30007550~100BOD (mg/L)1250600~1875≤30SS (mg/L)500100~6005010~100NH+4-N (mg/L)3012~45105~15磷酸盐(mg/L)2010~30PH7.54~107.56~9温度(℃)3730~50<40图3中,旋转滤网的出水管上设温度和pH在线测定仪表,当温度和pH的测定值满足控制要求时,废水就进入缓冲槽,否则排至应急槽,再用泵提升到旋转滤网进水管内。
缓冲槽内设淹没式搅拌机,使废水均质并防止沉淀。
设预酸化槽的目的为:一是使有机物部分降解为挥发性脂肪酸;二是调节营养比例;三是调节pH值。
1.4处理工艺方案4(见图4)图4处理工艺方案4(SBR为主体)该工艺以水解酸化-SBR为主体。
水解酸化池内设填料(球形填料),水力停留时间为4h左右(利用厌氧过程的前阶段),COD去除率30%~40%,pH值4.8~5.2。
SBR反应池内反应时间约为6h左右,水温20~25℃,污泥浓度4 000mg/L左右,出水水质达到原GB8978—88一级排放标准,COD总去除率>92%,BOD 总去除率>98%。