07-生成树实验
生成树协议(STP)H3C_实验报告

二、RSTP
RSTP(Rapid Spanning Tree Protocol,快速生成树协议) 是STP协议的优化版。其“快速”体现在,当一个端口被 选为根端口和指定端口后,其进入转发状态的延时在某种 条件下大大缩短,从而缩短了网络最终达到拓扑稳定所需 要的时间。
快速生成树协议较STP的改进之处:
(1)根端口的快速切换
如果旧的根端口已经进入阻塞状态,而且新的根端口 连接的对端交换机的指定端口处于转发状态,在新的拓扑 结构中的根端口可以立刻进入转发状态。
(2)边缘端口概念的引入
在STP协议里,对于连接主机的端口的状态改变,会 引起网络的不稳定,实际上连接主机的端口是不会引起网 络环路的,因此在STP协议的计算中可以不考虑这种端口 状态的变化。所以在RSTP中引入了边缘端口的概念。
<Sysname> system-view
[Sysname] stp enable
[Sysname] interface Ethernet1/0/1
[Sysname-Ethernet1/0/1] stp disable
桥到达根桥的最佳路径。 (3)指定端口(Designated Port):每一个网段选择到根桥最
近的网桥作为指定网桥,该网桥到这一网段的端口为指定 端口。 (4)可选端口(Alternate Port):既不是指定端口,也不是 根端口的端口。
4.生成树协议工作过程 STP协议的工作原理主要包括三个部分,一是确定根
配置
[B2] stp region-configuration
[B2-mst-region] region-name MSTP_1
最小生成树 实验报告

最小生成树实验报告最小生成树实验报告一、引言最小生成树是图论中的一个重要概念,它在实际问题中有着广泛的应用。
本次实验旨在通过编程实现最小生成树算法,并通过实验数据对算法进行分析和评估。
二、算法介绍最小生成树算法的目标是在给定的带权无向图中找到一棵生成树,使得树上所有边的权重之和最小。
本次实验我们选择了两种经典的最小生成树算法:Prim 算法和Kruskal算法。
1. Prim算法Prim算法是一种贪心算法,它从一个顶点开始,逐步扩展生成树的规模,直到包含所有顶点为止。
算法的具体步骤如下:(1)选择一个起始顶点,将其加入生成树中。
(2)从与生成树相邻的顶点中选择一个权重最小的边,将其加入生成树中。
(3)重复上述步骤,直到生成树包含所有顶点。
2. Kruskal算法Kruskal算法是一种基于并查集的贪心算法,它首先将图中的边按权重从小到大进行排序,然后逐个加入生成树中,直到生成树包含所有顶点为止。
算法的具体步骤如下:(1)将图中的边按权重从小到大进行排序。
(2)逐个加入边,如果该边的两个顶点不在同一个连通分量中,则将其加入生成树中。
(3)重复上述步骤,直到生成树包含所有顶点。
三、实验过程本次实验我们使用C++语言实现了Prim算法和Kruskal算法,并通过随机生成的图数据进行了测试。
1. Prim算法的实现我们首先使用邻接矩阵表示图的结构,然后利用优先队列来选择权重最小的边。
具体实现过程如下:(1)创建一个优先队列,用于存储生成树的候选边。
(2)选择一个起始顶点,将其加入生成树中。
(3)将与生成树相邻的顶点及其边加入优先队列。
(4)从优先队列中选择权重最小的边,将其加入生成树中,并更新优先队列。
(5)重复上述步骤,直到生成树包含所有顶点。
2. Kruskal算法的实现我们使用并查集来维护顶点之间的连通关系,通过排序后的边序列来逐个加入生成树中。
具体实现过程如下:(1)将图中的边按权重从小到大进行排序。
cisco实验七 生成树配置

实验七生成树配置一、实验目的理解快速生成树协议RSTP的配置及原理。
二、实验课时2课时三、实验条件两台交换机、网线、控制线、计算机四、实验步骤步骤1:在每台交换机上开启生成树协议.例如对SwitchA做如下配置SwitchA#configure terminal !进入全局配置模式SwitchA(config)#spanning-tree !开启生成树协议SwitchA(config)#end步骤2:验证生成树协议已经开启SwitchA#show spanning-tree !显示交换机生成树的状态SwitchA#show spanning-tree interface fastthernet 0/1 !显示交换机接口fastthernet 0/1的状态SwitchA#show spanning-tree interface fastthernet 0/2 !显示交换机接口fastthernet 0/2的状态步骤3:设置生成树模式SwitchA(config)#spanning-tree rstp !设置生成树模式为802.1W步骤4:验证生成树协模式为802.1WSwitchA#show spanning-tree步骤5:设置交换机的优先级SwitchA(config)#spanning-tree priority 8192 !设置交换机SwithA的优先级为8192 步骤6:验证交换机SwithA的优先级SwitchA#show spanning-tree步骤7:综合验证测试1. 验证交换机SwitchB的端口1和2的状态SwitchB#show spanning-tree interface fastEthernet 0/1 !显示SwitchB的端口fastthernet 0/1的状态SwitchB#show spanning-tree interface fastEthernet 0/2!显示SwitchB的端口fastthernet 0/2的状态2. 如果SwitchA与SwitchB的端口F0/1之间的链路down掉,验证交换机SwitchB的端口2的状态,并观察状态转换时间SwitchB#show spanning-tree interface fastEthernet 0/2!显示SwitchB的端口fastthernet 0/2的状态3. 如果SwitchA与SwitchB之间的一条链路down掉(如拔掉网线),验证交换机PC1与PC2仍能互相ping通,并观察ping的丢包情况。
生成树STP基本概念与实验

二层交换:生成树STP基本概念与实验如果你把两台傻瓜式交换机之间连两根网线,那么这俩交换机就会出现环路从而产生广播风暴。
可能你会觉得好笑,但实际工作中,我却碰到了,一些不懂网络的装修包工头,就会这样做。
====================================================================生成树就是为了让交换网络中防环而出现的。
生成树最原始的版本是802.1d,也就是STP(Spanning Tree Protocol),但这个版本的标准是所有VLAN共用一个生成树,所以也叫CST(Common Spanning Tree)思科在此基础上增强了一下,发布了PVST+(Per Vlan Spanning Tree)802.1d的下一个版本是802.1w,也就是RSTP(Rapid STP),但还是共用生成树,搞不懂IEEE不长点记性。
于是思科又搞了一下,发布了PVRST+IEEE又基于思科的MISTP的方案,发布了802.1s(MSTP),这个就屌爆了,之后再说为何这么屌,凡是大一点的交换网络都用MSTP。
=====================================================================STP的基础要学习更高级的RSTP/MST,还是需要STP的基础,尽管现在已经很少用到STP。
STP的工作流程1. 在整个交换网段里选择一台做根桥,这根桥就是整棵树的根部,所有其他交换机就选一条到这个根桥的最短路径,其余的路径阻塞掉。
所有交换机中桥优先级最低的成为根桥。
2. 选择所有非根桥交换机的根端口,就是那条最短路径的接口。
如果有超过1条等价路径,则选择对端指定端口优先级最低的本地端口(有点绕口,通过实验来说明)3. 选择各网段的指定端口。
这个网段其实就是指一根链接,其中一头一定是指定端口,另外一头可能是根端口,也可能是非指定端口。
生成树实验

生成树实验一、为什么会产生生成树协议,他解决了什么问题概念及背景知识:1.1MAC地址介绍:单播MAC地址:第一个字节最低位为0,如3C-6A-A7-1A-2E-2B多播MAC地址:第一个字节最低位为1,如01-80-c2-00-00-00广播MAC地址:48位全部为1,如FF-FF-FF-FF-FF-FF1.2 二层转发介绍交换机二层的转发特性,符合802.1D网桥协议标准。
交换机的二层转发涉及到两个关键的线程:地址学习线程和报文转发线程地址学习线程如下:A)交换机接收网段上的所有数据帧,利用接收数据帧中的源MAC地址来建立MAC地址表;B)端口移动机制:交换机如果发现一个包文的入端口和报文中源MAC地址的所在端口(在交换机的MAC地址表中对应的端口)不同,就产生端口移动,将MAC地址重新学习到新的端口C)地址老化机制:如果交换机在很长一段时间之内没有收到某台主机发出的报文,在该主机对应的MAC地址就会被删除,等下次报文来的时候会重新学习。
转发线程如下:A)交换机在MAC地址表中查找数据帧中的MAC地址,如果找到,就将该数据帧发送到相应的端口,如果找不到就向所有的端口发送;B)如果交换机收到的报文中源MAC地址和目的MAC地址所在的端口相同,则丢弃该报文C)交换机向入端口以外的其它所有端口转发广播报文1.3 VLAN二层转发介绍报文转发线程:A)交换机在MAC地址表中查找数据帧中的目的MAC地址,如果找到(同时还要确保报文的入VLAN和出VLAN是一致的),就将该数据帧发送到相应的端口,如果找不到,就向(VLAN 内)所有的端口发送;B)如果交换机收到的报文中源MAC地址和目的MAC地址所在的端口相同,则丢弃该报文;C)交换机(VLAN内)入端口以外的其它所有端口转发广播报文。
1.4加入VLAN的好处:A)限制了局部的网络流量,在一定程度上可以提高整个网络的处理能力B)虚拟的工作组,通过灵活的VLAN设置,把不同的用户划分到工作组内;C)安全性,一个VLAN内的用户和其它VLAN内的用户不能互访,提高了安全性。
生成树_配置_实验报告

一、实验目的1. 理解生成树协议(STP)的基本原理和工作机制;2. 掌握生成树协议的配置方法;3. 通过实验验证生成树协议在网络中的实际应用效果。
二、实验环境1. 实验设备:两台华为S5700交换机、两台PC机;2. 实验软件:华为网络设备仿真软件;3. 实验拓扑:两台交换机通过一条物理链路连接,两台PC机分别连接到两台交换机上。
三、实验原理生成树协议(Spanning Tree Protocol,STP)是一种用于在网络中消除环路并实现冗余链路备份的协议。
当网络中出现环路时,STP会阻塞部分端口,形成一个没有环路的树形结构,确保网络的高可用性和容错能力。
STP通过交换机之间的BPDU(Bridge Protocol Data Unit)报文进行信息交互,选举根网桥,并确定每个交换机的根端口和指定端口。
根端口是连接到根网桥的端口,指定端口是连接到同一VLAN且路径最短的端口。
其余端口被阻塞,不参与数据转发。
四、实验步骤1. 配置交换机名称和密码;2. 配置交换机接口;3. 配置VLAN;4. 配置STP;5. 验证STP配置效果。
五、实验过程1. 配置交换机名称和密码```bashS1>display versionS1>sysname S1S1>display versionS1>enableS1#configure terminalS1(config)#username admin password simple 123456 S1(config)#exit```2. 配置交换机接口```bashS1>display ip interface briefS1#interface GigabitEthernet0/0/1S1(config-if)#ip address 192.168.1.1 24S1(config-if)#exitS1#interface GigabitEthernet0/0/2S1(config-if)#ip address 192.168.1.2 24S1(config-if)#exit```3. 配置VLAN```bashS1>display vlanS1#vlan 10S1(config-vlan)#name VLAN10S1(config-vlan)#exitS1#interface GigabitEthernet0/0/1S1(config-if)#port link-type access S1(config-if)#port default vlan 10 S1(config-if)#exitS1#interface GigabitEthernet0/0/2S1(config-if)#port link-type access S1(config-if)#port default vlan 10 S1(config-if)#exit```4. 配置STP```bashS1>display stpS1#stpmode stpS1>display stpS1#interface GigabitEthernet0/0/1S1(config-if)#port link-type access S1(config-if)#port default vlan 10 S1(config-if)#exitS1#interface GigabitEthernet0/0/2S1(config-if)#port link-type access S1(config-if)#port default vlan 10S1(config-if)#exit```5. 验证STP配置效果```bashS1>display stpS1>display stp interface GigabitEthernet0/0/1S1>display stp interface GigabitEthernet0/0/2S1>ping 192.168.1.2```六、实验结果与分析1. 实验结果通过实验,成功配置了生成树协议,并验证了STP在网络中的实际应用效果。
生成树STP

生成树协议
一.实验要求:
1.了解交换机中使用生成树的意义;
2.掌握STP的工作原理;
3.熟悉STP在园区网的部署;
4.掌握生成树协议的基本配置。
二.实验设备:
3台交换机
三.实验步骤:
1. 实验拓扑图:
将3台交换机通过制定的端口如图连接。
2. 配置trunk链路使交换机互联
注:配置trunk链路后,交换机Switch0默认的阻塞端口为:fa0/2,如拓扑图中所示3. 配置VTP,在Switch0下配置VTP服务模式,其他2台交换机配置Vtp客户模式VTP客户模式:
VTP服务模式:
4. 在交换机Switch0中划分3个VLAN,其他2台交换机会自动更新
5. 在交换机Switch0中通过配置生成树协议将VLAN2设置优先级
同理,在交换机1和2中分别设置VLAN3和VLAN4为优先。
6.在特权模式下,分别在3台交换机上通过命令:show spanning-tree 查看各自VLAN下的端口连通情况
四.实验结果:
在交换机0下查看得知:
在VLAN2中,端口fa0/1,fa0/2都是是畅通的。
在VLAN3中,端口fa0/1畅通,端口fa0/2阻塞。
在VLAN4中,端口fa0/1阻塞,端口fa0/2畅通。
在交换机1和2中查看3个VLAN结果一样,都是畅通的,因为未配置生成树协议时,这2个交换机的连接端口都是连通的,只有交换机0的端口fa0/2是阻塞的。
生成树协议简介及实验

生成树协议简介及实验第一部分:STP/RSTP协议简介一、STP协议1、STP协议简介生成树协议(STP)是一个用于局域网中消除环路的协议,协议运行原理是通过运行该协议的设备之间交互信息而发现网络中的环路,并适当对某些端口进行阻塞以消除环路。
生成树协议是局域网重要协议之一。
网络中出现环路会造成广播风暴导致网络瘫痪或MAC 地址表抖动导致MAC地址表项被破坏。
2、STP基本概念STP引入了根桥(Root Bridge)概念,对于一个STP网络,根桥在全网中只有一个,它是整个网络的逻辑中心,但不一定是物理中心。
根桥会根据网络拓扑的变化而动态变化。
网络收敛后,根桥会按照一定的时间间隔产生并向外发送配置BPDU,其他设备仅对该报文进行处理,传达拓扑变化记录,从而保证拓扑的稳定。
生成树的生成计算有两大基本度量依据:ID和路径开销。
ID又分为:BID(桥ID)和PID(端口ID)。
BID(桥ID):IEEE 802.1D标准中规定BID是由16位的桥优先级(Bridge Priority)与桥MAC地址构成。
BID桥优先级占据高16位,其余的低48位是MAC地址。
在STP网络中,桥ID最小的设备会被选举为根桥。
PID(端口ID):PID由两部分构成的,高4位是端口优先级,低12位是端口号。
PID只在某些情况下对选择指定端口有作用。
路径开销:路径开销(Path Cost)是一个端口变量,是STP协议用于选择链路的参考值。
STP协议通过计算路径开销,选择较为“强壮”的链路,阻塞多余的链路,将网络修剪成无环路的树形网络结构。
在一个STP网络中,某端口到根桥累计的路径开销就是所经过的各个桥上的各端口的路径开销累加而成,这个值叫做根路径开销(Root Path Cost)。
从环形网络拓扑结构到树形结构,总体来说有三个要素:根桥、根端口和指定端口。
根桥就是网桥ID最小的桥,通过交互配置BPDU协议报文选出最小的BID。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 实验报告如有雷同,雷同各方当次实验成绩均以0分计。
2. 当次小组成员成绩只计学号、姓名登录在下表中的。
3. 在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0分计。
4. 实验报告文件以PDF 格式提交。
【实验题目】生成树协议
【实验目的】理解快速生成树协议的配置及原理。
使网络在有冗余链路的情况下避免环路的产生,避免广播风暴等。
【实验内容】
(1)完成实验教程实例3-8的实验,回答实验提出的问题及实验思考。
(P117) (2)抓取生成树协议数据包,分析桥协议数据单元(BPDU )。
(3)在实验设备上查看VLAN 生成树,并学会查看其它相关重要信息。
【实验要求】
一些重要信息需给出截图。
注意实验步骤的前后对比!
【实验记录】(如有实验拓扑请自行画出, 要求自行画出拓扑图) (1) 实例3-8
实验拓扑图如下:
院系 班 级
组长 学号 学生
实验分工
陈 刘 3-8 、
宗良
警示
步骤0:
将PC1和PC2配置好IP地址和掩码后按照拓扑图连接实验设备。
在PC1上启动Wireshark 软件观察包的数量变化如下:
此时已经产生了广播风暴。
两台交换机此时的生成树配置信息如下:
无生成树配置信息。
用PC1pingPC2时包增长情况如下:
可见此时包增长的更快,已经产生广播风暴,但是PC并未发生死锁。
步骤1:
配置交换机A:
步骤2:
配置交换机B:
步骤3:
配置两交换机的快速生成树协议:
再按照拓扑图连接实验设备,此时包增长情况如下:
此时两PC间可以相互ping通,且无广播风暴。
由此可见生成树协议的作用为避免网络中存在交换环路的时候产生广播风暴,确保在网络中有环路时自动切断环路。
步骤4:验证测试
SwitchA的生成树信息:
SwitchB的生成树信息:
SwitchB中RootCost和RootPort值都为0,因此SwitchB为根交换机。
根端口为G0/1。
步骤5:设置交换机的优先级
将SwitchA的优先级设置为4096
步骤6: 验证SwitchA的优先级
当两个端口都连在一个共享介质上,交换机会选择一个高优先级的端口进入forwarding状态,低优先级的端口进入discarding状态。
步骤7:验证交换机SwitchB的G0/1,G0/2,端口的状态
由上图可知,SwitchB的G0/1端口处于转发状态,G0/2端口处于组阻塞状态。
步骤8:
步骤7后每个交换机的信息如下:
两交换机G0/1端口链路down之后SwitchB的端口2信息如下:
此时每个交换机的信息:
与之前相比,SwitchB的RootPort变为G0/2,其他均未变化。
说明一条链路down 之后,生成树协议启用了备用端口使得整个链路恢复数据传输。
SwitchA和SwitchB之间的一条链路down掉时,PC1和PC2仍然能相互ping通,但会丢包:
说明生成树在链路断掉后重新构筑,原先阻塞的链路已经变为转发状态,一个端口断开时会将流量切换到另一个端口上,中间有短暂的联路中段,丢包数为一个。
此时每个交换机的生成树信息如下:
与步骤8的(1)相比,SwitchB的根端口变为G0/2,转换时间大约为2秒。
实验思考
1)在实验开始产生广播风暴时,实验设备中存在环路,在生成树协议开启后不在存在环路,因为广播风暴现象已经消除。
2)冗余链路会引起MAC地址表不稳定和多帧复制等问题。
MAC表不稳定
当PC1发送数据到PC2时,如果Switch A和Switch B也是刚刚启动,这时候它们MAC表里都没有PC2的MAC地址
收到数据包后,Switch A就会广播该数据包,并把源MAC添加到MAC表,然后认为PC1在端口0
收到数据包后,Switch B就会广播该数据包,并把源MAC添加到MAC表,然后认为PC1在端口0
当Switch B在收到Switch A的广播包后又认为PC1在端口1
当Switch A在收到Switch B的广播包后又认为PC1在端口1
这时就会造成交换机MAC表的不稳定
多帧复制
在冗余链路中出现广播风暴后,当PC1向PC2发送数据报时,如果两个交换机刚刚启动,这时候它们的MAC地址表里都没有PC2的MAC地址,SwitchA将会广播该数据包,SwitchB收到SwichA的广播包之后发现自己的MAC地址表里也没有PC2的MAC地址,就会继续广播该数据包,如此循环PC2就会收到多个同样的数据包造成多帧复制。
(2)分析生成树协议数据包
STP协议传输过程中wireshark捕获到的STP数据包如下:
具体信息如下(frame1):
具体信息:
DMA 01:80:v2:00:00:00
SMA 58:69:6c:15:57:36
L/T 39
LLC Header
Payload信息如下:
具体信息如下:
协议号 0x0000
版本号 2
报文类型 0x02
标记 0x7c
根网桥号 4096/58:69:6c:15:57:36 根路径成本 0
发送网桥ID 4096/58:69:6c:15:57:36
端口ID 0x8003
呼叫时间 2s
转发延迟 15s
(3)VLAN生成树其它相关重要信息
全部实验步骤结束后的交换机生成树配置信息如下:
Switch A:
STP版本 RSTP
STP协议运行状态运行
最大生存时间 20
呼叫时间 2s
转发延迟 15s
网桥最大生存时间 20
网桥呼叫时间 2s
网桥转发延迟 15s
最大跳转次数 20
路径成本模式长
BPDUGuard 未运行
BPDUFilter 未运行
LoopGuardDef 未运行
网桥地址 5869.6c15.5736
优先级 4096
拓扑结构变动时间 1分4秒
拓扑结构变动数 3
指派端口 4096.5869.6c15.5736
根路径成本 0(本交换机为根)
根端口 0(本交换机为根)
Switch B
STP版本 RSTP
STP协议运行状态运行
最大生存时间 20
呼叫时间 2s
转发延迟 15s
网桥最大生存时间 20
网桥呼叫时间 2s
网桥转发延迟 15s
最大跳转次数 20
路径成本模式长
BPDUGuard 未运行
BPDUFilter 未运行
LoopGuardDef 未运行
网桥地址 5869.6c15.5730
优先级 32768
拓扑结构变动时间 46秒
拓扑结构变动数 6
指派端口 4096.5869.6c15.5736
根路径成本 20000
根端口 Gi0/2
交换机的端口状态:
Gi0/1:
默认端口加速不可用
操作端口加速不可用
自动配置默认端口不可用
自动配置操作端口不可用
默认连接类型自动
操作连接类型点对点
BPDUGuard 未运行
BPDUFilter 未运行
端口监视模式无
端口状态转发状态
端口优先级 128
根指派端口 32768.5869.6c15.5730
指派成本 0
指派网桥 32768.5869.6c15.5730
指派端口优先级 128
指派端口号 1
转发跳转数 2
默认路径成本 20000
操作路径成本 20000
矛盾状态正常
Gi0/2
默认端口加速不可用
操作端口加速不可用
自动配置默认端口不可用
自动配置操作端口不可用
默认连接类型自动
操作连接类型点对点
BPDUGuard 未运行
BPDUFilter 未运行
端口监视模式无
端口状态阻塞状态
端口优先级 128
根指派端口 32768.5869.6c15.5730
指派成本 0
指派网桥 32768.5869.6c15.5730
指派端口优先级 128
指派端口号 2
转发跳转数 0
默认路径成本 20000
操作路径成本 20000
矛盾状态正常
端口角色替换端口。