排列组合问题之 插板法应用小结!

合集下载

2019河南公务员考试行测资料分析——排列组合之插板法

2019河南公务员考试行测资料分析——排列组合之插板法

2019河南公务员考试行测资料分析——排列组合之插板法预计2019河南公务员考试即将到来,对于考生来说,熟练、精确地把握考试中的每一个知识点是获得一个高分的前提和基础。

本文将对数量关系中必考题型排列组合常用的方法插板法做一个详细而具体的分析。

在排列组合中,最基本的两大原理包括加法原理和乘法原理。

然而有三种特别常用的方法和技巧是比较关键的,主要有:捆绑法、插空法、插板法。

这三种方法有具体的应用条件,在此,我们主要介绍插板法,同时也提醒考生注意其应用环境,尤其是与插空法的区别,一定要特别区分。

一、插板法【精要】所谓插板法,指在解决若干相同元素分组,要求每组至少一个元素时,采用将比所需分组数目少 1 的板插入元素之间形成分组的解题策略。

【提醒】其首要特点是元素相同,其次是每组至少含有一个元素,一般用于组合问题中。

【例题1】将8 个完全相同的球放到 3 个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?【解析】解决这道问题只需要将 8 个球分成三组,然后依次将每一组分别放到一个盒子中即可。

因此问题只需要把 8 个球分成三组即可,于是可以讲 8 个球排成一排,然后用两个板查到 8 个球所形成的空里,即可顺利的把 8 个球分成三组。

其中第一个板前面的球放到第一个盒子中,第一个板和第二个板之间的球放到第二个盒子中,第二个板后面的球放到第三个盒子中去。

因为每个盒子至少放一个球,因此两个板不能放在同一个空里且板不能放在两端,于是其放板的方法数是。

(板也是无区别的)【例题2】有 9 颗相同的糖,每天至少吃 1 颗,要 4 天吃完,有多少种吃法?【解析】原理同上,只需要用 3 个板插入到 9 颗糖形成的 8 个内部空隙,将 9 颗糖分成 4组且每组数目不少于 1 即可。

因而 3 个板互不相邻,其方法数为。

【练习1】现有 10 个完全相同的篮球全部分给 7 个班级,每班至少 1 个球,问共有多少种不同的分法?【注释】每组允许有零个元素时也可以用插板法,其原理不同,注意下题解法的区别。

排列组合之插板法及变形

排列组合之插板法及变形

排列组合之插板法及变形主要⽤于“相同元素”分到“不同容器”的排列组合。

【例1】共有10本相同的书分到7个班⾥,每个班⾄少要分到⼀本书,问有⼏种不同分法?【解析】注意,这⾥⾯有个隐含的条件,根据常理,7个班肯定是不同的。

如果是书柜,可能是相同的。

因为书是相同的,可以排成⼀排,分给7个班,也就是在这⼀排书中间插⼊6个板,把书分成7份即可。

这排书共10本,中间有9个空,选6个空插板,所以有C(9,6)种分法。

【例2】共有10本相同的书分到7个班⾥,问有⼏种不同分法?【解析】注意这⾥没有要求每个班⾄少要分到⼀本,如果⽤插板法,两个板可以插到同⼀个空⾥。

显然⽤原来的⽅法不能解决。

但思路是⼀样的,把书分给7个班,我们还是插6块板,把书分成7份(如果板中间没有书,说明这⼀份是0)。

但这个时候空位的数量不⼀定了,把思路换⼀下,当插好板以后,书和板⼀共16个位⼦,其实就是16个位⼦选6个位⼦放板。

所以有C(16,6)种分法。

【例3】10个相同的球放⼊编号为1、2、3的盒⼦内,盒内球数不少于编号数,有⼏种不同的放法?【解析】球数不少于编号数,就是1号盒⼦最少放1个球,2号盒⼦最少放2个球...。

如果我们先把2号盒⼦放1个球,2号盒⼦放1个球,就变成每个盒⼦⾄少放⼀个球了,这时可以⽤最普通的插板法。

答案是C(7,2)。

【例4】有10颗相同的糖,每天⾄少吃1颗,共有⼏种吃法?【解析】注意,此题没有确定要⼏天吃完(例如如果要5天吃完,那么就是9个空插4个板,C(9,4)种),所以可以1天吃完,可以两天吃完。

也可以10天吃完。

那么就有C(9,0)+C(9,1)+C(9,2)+...+C(9,9)。

此题有⼀个更简单的思路,根据上⾯的分析,10颗糖排成⼀排,中间有9个空,每个空都可以插板,也可以不插板,插板或不插板各代表⼀种吃法,所以共有2*2*2...*2(9个2)=2^9种吃法。

由此也可以知道,C(9,0)+C(9,1)+C(9,2)+...+C(9,9)=2^9。

排列组合中的解题方法之插板法

排列组合中的解题方法之插板法

排列组合中的解题方法之插板法一、基础理论:插板是一个无形的东西即板子,它不能代表一个元素,它区别于插空法。

插板法是用于解决“相同元素”分组问题。

判断插板法的题目主要看题干中的两个词语:①相同元素②至少为1,如果有这样两个词语一般此题就可以直接插板进行解题。

引例说明:春节前单位慰问困难职工,将10份相同的慰问品分给6名职工,每名职工至少要分得1份慰问品,分配方法共有:A.84种B.126种C.210种D.252种【分析】此题第一眼给人的感觉是能用列举法进行分类解题,但是细一思考分类的情况太多了,不易计算,因为想用插板法解题一般是分两类或三类。

而插板法就可以使这种为题迎刃而解。

利用无形的板子把其分割开来。

【解析】“10份慰问品相同且每人至少得1份”,满足插板法的两个前提①相同元素②至少为1,故可直接使用插板法。

将10份慰问品依次排成一条直线,我们用插板的形式把慰问品分给6名职工,中间形成9个空,插上第1个板子,则第一个板子之前的分给第一名职工,在后面又插了一个板子,表示第1个板子和第2个板子之间的分给第二名职工,依次类推,因为要分给6个人,所以要插5个板子,第5个板子之后的分给第六名职工,所以只要板子固定了,那么每名职工分几份慰问品就固定了。

所以10分慰问品中间形成了9个空;分给6个人,插入5个板;共有=126种分配方法。

注:估计有的同学会问,为什么第一个慰问品之前的位置和最后一个慰问品之后的位置不能放板子。

其实原因在于“每名员工至少分1份慰问品”,如果在第一个慰问品之前的位置放板子那么第一名职工就一份分不到了,如果在最后一个慰问品之后的位置放板子那么最后一名职工就一份分不到了。

二、真题举例:例1、假设x、y、z是三个非零自然数,且有x+y+z=36,则共有多少组满足条件的解?A.700B.665C.630D.595【分析】此题可以看做是36块糖排成一排,即元素相同;由于x、y、z是非零自然数,即至少为1,问题:x+y+z=36,顺便看成3个人来分这36块糖。

排列组合插板法

排列组合插板法

排列组合插板法求解排列应用题的主要方法:直接法:把符合条件的排列数直接列式计算;优先法:优先精心安排特定元素或特定边线捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法:对不能相连问题,先考量不受限制的元素的排序,再将不相连的元素挂在前面元素排序的空档中定序问题除法处理:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列。

间接法:正容易则反华,等价转变的方法。

例1:有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:(1) 全体排列成一行,其中甲就可以在中间或者两边边线;(2) 全体排成一行,其中甲不在最左边,乙不在最右边;(3) 全体排列成一行,其中男生必须排在在一起;(4) 全体排成一行,男生不能排在一起;(5) 全体排列成一行,男、女各不相连;(6) 全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;(7) 全体排列成一行,甲、乙两人中间必须存有3人;(8) 若排成二排,前排3人,后排4人,有多少种不同的排法。

某班存有54十一位同学,正、副班长各1名,现选派6名同学出席某科课外小组,在以下各种情况中,各存有多少种相同的选法?(1)无任何限制条件;(2)正、副班长必须入围;(3)正、副班长只有一人入选;(4)正、副班长都不入围;(5)正、副班长至少有一人入选;(5)正、副班长至多存有一人入围;6本不同的书,按下列要求各有多少种不同的选法:(1)让给甲、乙、丙三人,每人2本;(2)分为三份,每份2本;(3)分成三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;(5)让给甲、乙、丙三人,每人至少1本例2、(1)10个优秀指标分配给6个班级,每个班级至少一个,共计多少种相同的分配方法?(2)10个优秀指标分配到1、2、 3三个班,若名额数不少于班级序号数,共计多少种相同的分配方法?.(1)四个不同的小球放入四个不同的盒中,一共存有多少种相同的放法?(2)四个不同的小球放入四个不同的盒中且恰有一个空盒的放法存有多少种?解决排列组合应用题的基础是:正确应用两个计数原理,分清排列和组合的区别。

(推荐)排列组合问题之插板法

(推荐)排列组合问题之插板法

排列组合问题之插板法:插板法是用于解决“相同元素”分组问题,且要求每组均“非空”,即要求每组至少一个元素;若对于“可空”问题,即每组可以是零个元素,又该如何解题呢?例1.现有10个完全相同的球全部分给7个班级,每班至少1个球,问共有多少种不同的分法?【解析】:题目中球的分法共三类:第一类:有3个班每个班分到2个球,其余4个班每班分到1个球。

其分法种数为C37=35。

第二类:有1个班分到3个球,1个班分到2个球,其余5个班每班分到1个球。

其分法种数2*C27=42。

第三类:有1个班分到4个球,其余的6个班每班分到1个球。

其分法种数C17=7。

所以,10个球分给7个班,每班至少一个球的分法种数为84:。

由上面解题过程可以明显感到对这类问题进行分类计算,比较繁锁,若是上题中球的数目较多处理起来将更加困难,因此我们需要寻求一种新的模式解决问题,我们创设这样一种虚拟的情境——插板。

将10个相同的球排成一行,10个球之间出现了9个空档,现在我们用“档板”把10个球隔成有序的7份,每个班级依次按班级序号分到对应位置的几个球(可能是1个、2个、3个、4个),借助于这样的虚拟“档板”分配物品的方法称之为插板法。

由上述分析可知,分球的方法实际上为档板的插法:即是在9个空档之中插入6个“档板”(6个档板可把球分为7组),其方法种数为C39=84。

由上述问题的分析解决看到,这种插板法解决起来非常简单,但同时也提醒各位考友,这类问题模型适用前提相当严格,必须同时满足以下3个条件:①所要分的元素必须完全相同;②所要分的元素必须分完,决不允许有剩余;③参与分元素的每组至少分到1个,决不允许出现分不到元素的组。

下面再给各位看一道例题:例2.有8个相同的球放到三个不同的盒子里,共有()种不同方法.A.35 B.28 C.21 D.45【解析】:这道题很多同学错选C,错误的原因是直接套用上面所讲的“插板法”,而忽略了“插板法”的适用条件。

排列组合中的插板法

排列组合中的插板法

排列组合中的插板法排列组合中让你傻傻分不清楚的乘法原理和加法原理国考中的排列组合与概率问题算的上是一个高频考点,该部分知识点比较多,很多同学在高中时候没有学好相关的知识,心里没底,做起题来感觉特别吃力。

其实国考的行测中,考查该模块的题型都是比较浅的,掌握好套路,即使基础不好,也能杀出一条血路。

首先我们先来了解一下什么是乘法原理和加法原理。

乘法原理:做一件事要分许多个步骤才能完成,每一个步骤都不能单独完成,且这几个步骤都是缺一不可的,那么完成这一件事方法的总数等于各个步骤的乘积,即乘法原理。

【例1】一次会议某单位邀请了10名专家,该单位预定了10个房间,其中一层5间、二层5间。

已知邀请专家中4人要求住二层、3人要求住一层、其余3人住任一层均可。

那么要满足他们的住房要求且每人1间,有多少种不同的安排方案?A.43200B.7200C.450D.75【答案】:B【解析】:本题考查排列组合问题-乘法原理。

10个专家提出了3个要求,都要满足这些要求才算是完成任务,所以每一个步骤都是缺一不可的,要用乘法原理来解决。

第一个要求:安排4人住二层,5个房间中选4个,且顺序对结果有影响,用排列A,共45120A=种。

第二个要求:安排3个人住一层,同理:3560A=种。

第三个要求:剩下3人选房间,A=种。

故总数为:43355343200A A A=种。

故答案为A。

加法原理:做一件事有多种方法可以完成,每一种方法都可以帮我们实现目的,那么完成这一件事方法的总数等于各种方法的总和,即加法原理。

举个例子:我从家到单位可以跑步,公交,地铁或者开车。

那我一共有多少种方式可以到单位?显然易见:1+1+1+1=4。

每一种方式都能实现目的,所以加起来就可以了。

【例2】某单位组织职工参加周末培训, 其中英语培训和财务培训均在周六, 公文写作培训和法律培训均在周日。

同一天举办的两场培训每人只能报名参加一场, 但不在同一天的培训可以都参加。

排列组合中关于捆绑法、插空法、插隔板法的应用 (1)

排列组合中关于捆绑法、插空法、插隔板法的应用 (1)

排列组合中关于捆绑法、插空法、插隔板法的应用捆绑法:当要求某几个元素必须相邻(挨着)时,先将这几个元素看做一个整体,(比如:原来3个元素,整体考虑之后看成1个元素)然后将这个整体和其它元素进行考虑。

这时要注意:一般整体内部各元素如果在前后顺序上有区别的还需进行一定的顺序考虑。

插空法:当要求某几个元素必须不相邻(挨着)时,可先将其它元素排好,然后再将要求不相邻的元素根据题目要求插入到已排好的元素的空隙或两端位置。

插隔板法:指在解决若干相同元素分组,要求每组至少一个元素时,采用将比分组数目少1的隔板插入到元素中的一种解题策略。

题目特点:“若干相同元素分组”、“ 每组至少一个元素”。

例1:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法? A.20 B.12 C.6 D.4分两种情况考虑C=8种1、这两个新节目挨着,那么三个节目有4个空,又考虑到这两个节目的先后顺序共有2×14P=12种2、这两个节目不挨着,那么三个节目有4个空,这就相当于考虑两个数在4个位置的排列,由24综上得,共8+12=20种此题中使用了捆绑法和插空法。

例2:A、B、C、D、E五个人排成一排,其中A、B两人不站一起,共有()种站法。

A.120B.72C.48D.24插空法:我们来这样考虑,因A、B两人不站一起,故可考虑的位置C、D、E,C、D、E三个人站在那有P=12。

一共留出4个空,将A、B分别放入这4个空的不同的空中,那就是4个空中取2个空的全排列,即24P=6,综上,共有6*12=72种这样考虑了之后,还有一点就是C、D、E三个人也存在一个排列问题,即23例3:A、B、C、D、E五个人排成一排,其中A、B两人必须站一起,共有()种站法。

A.120B.72C.48D.24捆绑法:此题和上一题实质是一样的,我们来这样考虑,A、B两人既然必须站在一起,那么索性我们就把他P=24,又因为A、B两人虽然是站们看成一个人,那么我们就要考虑其和C、D、E共4个人的全排列,即44P=2,综上,共有48种。

排列组合插板法

排列组合插板法

『原创』排列组合问题之插板法应用不完全小结!管理提醒:本帖被puki 设置为精华(2009-06-18)没吃午饭写的,看完后如果觉得有用,请顶贴!插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法。

应用插板法必须满足三个条件:(1)这n个元素必须互不相异(2)所分成的每一组至少分得一个元素(3) 分成的组别彼此相异举个很普通的例子来说明把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题干满足条件(1)(2),适用插板法,c9 2=36下面通过几道题目介绍下插板法的应用===================================================a 凑元素插板法(有些题目满足条件(1),不满足条件(2),此时可适用此方法)例1 :把10个相同的小球放入3个不同的箱子,问有几种情况?3个箱子都可能取到空球,条件(2)不满足,此时如果在3个箱子种各预先放入1个小球,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况?显然就是c12 2=66-------------------------------------------------例2:把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况?我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球,则问题转化为把9个相同小球放3不同箱子,每箱至少1个,几种方法?c8 2= 28==================================================b 添板插板法例3:把10个相同小球放入3个不同的箱子,问有几种情况?-o - o - o - o - o - o - o - o - o - o - o表示10个小球,-表示空位11个空位中取2个加入2块板,第一组和第三组可以取到空的情况,第2组始终不能取空此时若在第11个空位后加入第12块板,设取到该板时,第二组取球为空则每一组都可能取球为空c12 2=66--------------------------------------------------------例4:有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数共有几个?因为前2位数字唯一对应了符合要求的一个数,只要求出前2位有几种情况即可,设前两位为ab显然a+b<=9 ,且a不为01 -1- 1 -1 -1 -1 -1 -1 -1 - - 1代表9个1,-代表10个空位我们可以在这9个空位中插入2个板,分成3组,第一组取到a个1,第二组取到b个1,但此时第二组始终不能取空,若多添加第10个空时,设取到该板时第二组取空,即b=0,所以一共有c10 2=45-----------------------------------------------------------例5:有一类自然数,从第四个数字开始,每个数字都恰好是它前面三个数字之和,直至不能再写为止,如2349,1427等等,这类数共有几个?类似的,某数的前三位为abc,a+b+c<=9,a不为01 -1- 1 -1 -1 -1 -1 -1 -1 - - -在9个空位种插如3板,分成4组,第一组取a个1,第二组取b个1,第三组取c个1,由于第二,第三组都不能取到空,所以添加2块板设取到第10个板时,第二组取空,即b=0;取到第11个板时,第三组取空,即c=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数算]排列组合问题之插板法应用小结!
插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法。

应用插板法必须满足三个条件:
(1)这n个元素必须互不相异
(2)所分成的每一组至少分得一个元素
(3) 分成的组别彼此相异
分享一点个人的经验给大家,我的笔试成绩一直都是非常好的,不管是行测还是申论,每次都是岗位第一。

其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。

公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。

非常多的人输就输在时间上,我是特别注重效率的。

第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。

我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。

包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,我最多不超过3分钟,这样就比别人多出20几分钟,这在考试中是非常不得了的。

QZZN有个帖子专门介绍速读的,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试的好成绩。

其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。

学了速读之后,感觉有再多的书都不怕了。

而且,速读对思维和材料组织的能力都大有提高,个人总结,拥有这个技能,基本上成功一半,剩下的就是靠自己学多少的问题了。

平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。

有条件的朋友可以到这里用这个软件训练速读,大概30个小时就能练出比较厉害的快速阅读的能力,这是给我帮助非常大的一个网站,极力的推荐给大家(给做了超链接,按住键盘左下角Ctrl键,然后鼠标左键点击本行文字)。

大家好好学习吧!最后,祝大家早日上岸。

此段是纯粹个人经验分享,可能在多个地方看见,大家读过的就不用再读了,只是希望能和更多的童鞋分享。

===================================================
举个很普通的例子来说明
把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?
问题的题干满足条件(1)(2),适用插板法,c9 2=36
下面通过几道题目介绍下插板法的应用
a 凑元素插板法(有些题目满足条件(1),不满足条件(2),此时可适用此方法)
例1 :把10个相同的小球放入3个不同的箱子,问有几种情况?
3个箱子都可能取到空球,条件(2)不满足,此时如果在3个箱子种各预先放入
1个小球,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况?
显然就是c12 2=66
-------------------------------------------------
例2:把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况?
我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球,则问题转化为把9个相同小球放3不同箱子,每箱至少1个,几种方法?c8 2=28
==================================================
b 添板插板法
例3:把10个相同小球放入3个不同的箱子,问有几种情况?
-o - o - o - o - o - o - o - o - o - o - o表示10个小球,-表示空位
11个空位中取2个加入2块板,第一组和第三组可以取到空的情况,第2组始终不能取空此时若在第11个空位后加入第12块板,设取到该板时,第二组取球为空
则每一组都可能取球为空c12 2=66
--------------------------------------------------------
例4:有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数共有几个?
因为前2位数字唯一对应了符合要求的一个数,只要求出前2位有几种情况即可,设前两位为ab
显然a+b<=9 ,且a不为0
1 -1- 1 -1 -1 -1 -1 -1 -1 - - 1代表9个1,-代表10个空位
我们可以在这9个空位中插入2个板,分成3组,第一组取到a个1,第二组取到b个1,但此时第二组始终不能取空,若多添加第10个空时,设取到该板时第二组取空,即b=0,所以一共有c10 2=45
-----------------------------------------------------------
例5:有一类自然数,从第四个数字开始,每个数字都恰好是它前面三个数字之和,直至不能再写为止,如2349,1427等等,这类数共有几个?
类似的,某数的前三位为abc,a+b+c<=9,a不为0
1 -1- 1 -1 -1 -1 -1 -1 -1 - - -
在9个空位种插如3板,分成4组,第一组取a个1,第二组取b个1,第三组取c个1,由于第二,第三组都不能取到空,所以添加2块板
设取到第10个板时,第二组取空,即b=0;取到第11个板时,第三组取空,即c=0。

所以一共有c11 3=165
============================================
c 选板法
例6:有10粒糖,如果每天至少吃一粒(多不限),吃完为止,求有多少种不同吃法?
o - o - o - o - o - o - o - o - o - o o代表10个糖,-代表9块板
10块糖,9个空,插入9块板,每个板都可以选择放或是不放,相邻两个板间的糖一天吃掉这样一共就是2^9= 512啦
=============================================
d 分类插板
例7:小梅有15块糖,如果每天至少吃3块,吃完为止,那么共有多少种不同的吃法?此问题不能用插板法的原因在于没有规定一定要吃几天,因此我们需要对吃的天数进行分类讨论
最多吃5天,最少吃1天
1:吃1天或是5天,各一种吃法一共2种情况
2:吃2天,每天预先吃2块,即问11块糖,每天至少吃1块,吃2天,几种情况?c10 1=10 3:吃3天,每天预先吃2块,即问9块糖,每天至少1块,吃3天? c8 2=28
4:吃4天,每天预先吃2块,即问7块糖,每天至少1块,吃4天?c6 3=20
所以一共是2+10+28+20=60 种
=================================
e 二次插板法
例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?
-o - o - o - o - o - o - 三个节目abc
可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位所以一共是c7 1×c8 1×c9 1=504种。

相关文档
最新文档