气体放电中等离子体的研究.

合集下载

气体放电等离子体实验报告

气体放电等离子体实验报告

气体放电等离子体实验报告气体放电等离子体实验报告引言:气体放电等离子体实验是一项重要的物理实验,通过对气体放电现象的研究,可以深入了解等离子体的性质和行为。

本实验旨在通过观察和分析气体放电等离子体的特性,揭示等离子体的基本原理和应用。

实验目的:1. 研究气体放电的基本特性,如放电现象、放电形态等;2. 探索气体放电等离子体的性质,如等离子体的密度、温度等;3. 分析气体放电等离子体的应用领域,如等离子体在光谱分析、材料处理等方面的应用。

实验材料和装置:1. 气体放电实验装置:包括气体放电管、高压电源、电流表、电压表等;2. 气体:常见的气体有氢气、氦气、氮气等;3. 实验记录仪器:如摄像机、数据采集器等。

实验步骤:1. 准备实验装置,并确保安全;2. 连接高压电源和气体放电管,调节电压和电流;3. 打开电源,观察气体放电管内的放电现象;4. 记录放电的形态、颜色、亮度等特征;5. 测量放电管两端的电压和电流,并记录数据;6. 调节电压和电流,观察放电现象的变化;7. 使用摄像机或数据采集器记录实验过程;8. 分析实验数据,得出结论。

实验结果与分析:经过实验观察和数据分析,我们发现不同气体在不同电压和电流条件下,产生了不同的放电形态和颜色。

例如,在低压条件下,氢气放电呈现出红色的辐射,而在高压条件下,氢气放电呈现出紫色的辐射。

这是因为不同气体的原子结构和能级分布不同,导致其放电现象也不同。

通过实验数据的分析,我们还可以计算出等离子体的密度和温度。

根据普朗克公式和玻尔兹曼关系,我们可以利用放电管两端的电压和电流数据,推导出等离子体的密度和温度。

这对于等离子体物理学的研究具有重要意义。

实验应用:气体放电等离子体在许多领域都有广泛的应用。

例如,在光谱分析中,气体放电等离子体可以用于分析物质的成分和结构。

通过观察等离子体在不同波长下的辐射光谱,可以确定样品中的元素和化合物。

此外,气体放电等离子体还可以应用于材料处理。

等离子体物理学的研究

等离子体物理学的研究

等离子体物理学的研究等离子体是指气体中电离形成的一种状态,具有电磁场强度大,温度高,粒子密度低等特点。

由于这些性质,等离子体具有广泛的应用领域,如火花塞、气体放电等。

因此,对等离子体物理学进行深入研究具有重要意义。

等离子体的性质等离子体的特有性质,如电磁场、正负离子和电子碰撞等,使得其具有很多独特的物理特性。

首先,等离子体是电子、离子和中性粒子的混合物,这意味着等离子体中的每个粒子都与其他粒子进行碰撞。

这种碰撞会导致粒子之间能量转移和动量转移,从而形成了大量的等离子体微观粒子。

此外,等离子体具有很高的电磁场强度,因此它可以被看作是大量带电粒子的集合。

这些电场和磁场不仅可以产生各种电波和磁波,还可以通过震荡传导到带电粒子之间,引起等离子体的运动。

这种等离子体运动是等离子体特有的现象,常用来研究其物理特性。

等离子体物理学的应用等离子体物理学的研究涉及广泛,常被用于几个领域。

首先,等离子体物理学可用于解释电磁场的产生与传播,这种电磁场包括雷电放电、闪电放电、宇宙辐射流等。

其次,等离子体物理学可以帮助理解高能粒子和双方行星之间的相互作用。

此外,等离子体物理学还可以用于等离子体工程,如燃烧等。

等离子体物理学的研究涉及众多技术和手段。

实验室中,研究者常常使用等离子体物理学仪器来控制等离子体的粒子和电场,并在实验室中研究各种现象。

此外,理论工作在等离子体物理学研究中也占据重要地位。

这些理论工作涉及等离子体的粒子相互作用、粒子通量、电场和磁场等。

理论研究提供了等离子体物理学的基础,是实验研究的重要支撑。

结论等离子体物理学是一门相对年轻的学科,但是其对于理解和应用等离子体的作用具有重要意义。

随着研究方法和技术的不断发展,等离子体物理学的应用领域将会越来越广泛。

气体放电等离子体实验报告

气体放电等离子体实验报告

气体放电等离子体实验报告气体放电等离子体实验报告引言:气体放电等离子体实验是一项重要的实验,通过在气体中施加电场,使气体分子电离并形成等离子体。

这一实验具有广泛的应用领域,如等离子体物理、光谱学、材料科学等。

本报告将详细介绍气体放电等离子体实验的过程、实验装置和实验结果。

实验过程:1. 实验准备首先,我们准备了实验所需的材料和设备,包括气体放电管、电源、电压表、电流表等。

然后,我们对实验装置进行了检查和调试,确保其正常工作。

2. 实验操作将气体放电管连接到电源上,并设置合适的电压和电流。

然后,通过调节电压和电流的大小,控制气体放电管中的等离子体形成和维持。

3. 数据记录在实验过程中,我们记录了气体放电管中的电压和电流变化情况,并观察了等离子体的形态和颜色变化。

同时,我们还测量了等离子体的温度、密度等参数。

实验装置:实验装置主要包括气体放电管、电源、电压表、电流表和数据记录设备。

1. 气体放电管气体放电管是实验中最关键的部分,它由玻璃管和两个电极组成。

玻璃管内充满了待研究的气体,如氢气、氮气等。

电极通过电源提供电场,使气体分子电离并形成等离子体。

2. 电源电源是为气体放电管提供电场的设备,它可以提供不同电压和电流的输出。

通过调节电源的输出参数,可以控制等离子体的形成和维持。

3. 电压表和电流表电压表和电流表用于测量气体放电管中的电压和电流。

通过监测电压和电流的变化,可以了解等离子体的形成和消失过程。

4. 数据记录设备数据记录设备用于记录实验过程中的各种参数,如电压、电流、等离子体的形态和颜色等。

通过对这些数据的分析,可以得出实验结果并进行进一步的研究。

实验结果:在实验过程中,我们观察到了气体放电管中的等离子体形态和颜色的变化。

随着电压和电流的增加,等离子体的亮度和密度逐渐增加。

同时,等离子体的颜色也发生了变化,从无色逐渐变为蓝色、紫色等。

我们还测量了等离子体的温度和密度,发现随着电压和电流的增加,等离子体的温度和密度也随之增加。

气体放电中等离子体的研究剖析

气体放电中等离子体的研究剖析

气体放电中等离子体的研究剖析气体放电等离子体是指气体中发生放电现象的状态,其中电子被激发或离开原子而形成的电离态称为等离子体。

气体放电等离子体在物理、化学、材料科学等领域具有广泛的应用,如气体放电放电器件、等离子体化学反应、等离子体刻蚀等。

气体放电等离子体的研究主要涉及其形成机制、物理特性以及相应的应用。

首先,气体放电等离子体的形成机制可以通过电子碰撞、电离辐射、感应耦合等方式实现。

当气体分子受到能量输入时,其分子结构会发生改变,电子被激发或离开原子,形成带正电荷的离子和带负电荷的电子,从而形成等离子体。

不同放电方式下,等离子体的形成机制有所不同,需要通过实验和理论模拟方法进行研究。

其次,气体放电等离子体的物理特性与等离子体中的电子和离子的动力学行为密切相关。

在强电场的作用下,电子受到加速,与气体分子碰撞产生电子能量损失和电离过程,导致等离子体的发光和放电现象。

不同气体的放电特性也有所不同,气体放电等离子体可以呈现出不同的色彩和辐射特性,如辉光放电、正离子束等。

通过对等离子体的物理特性的研究,可以了解等离子体的动态演化过程和能量传输机制,为应用研究提供理论和实验依据。

最后,气体放电等离子体的应用广泛,包括能源、环境、光电等领域。

在能源领域,气体放电等离子体可以用于气体分子的激发和电离,促进高能粒子的合成和加速,从而用于核聚变、等离子体激光和粒子加速器等研究。

在环境领域,气体放电等离子体可以通过电子能量损失和电离过程产生活性物种,从而用于大气中污染物的降解和消除。

在光电领域,气体放电等离子体可以用于光源、显示器和光电器件等的制造和改进。

综上所述,气体放电等离子体的研究对了解其形成机制、物理特性以及应用具有重要意义。

通过对等离子体的研究,可以深入理解等离子体的动态行为和能量传输机制,并可以广泛应用于能源、环境、光电等领域中。

未来的研究需要进一步深入,结合实验和理论模拟方法,对气体放电等离子体的形成机制、动力学行为和应用进行深入研究,以推动相关领域的发展和创新。

等离子体放电实验报告

等离子体放电实验报告

等离子体放电实验报告等离子体放电实验报告引言:等离子体是一种由带正电荷的离子和带负电荷的电子组成的高度电离的气体。

等离子体放电实验是一种常见的物理实验,通过施加电场或电压,使气体中的原子或分子电离,形成等离子体,并观察等离子体的放电现象。

本实验旨在探究等离子体放电的特性和规律。

实验设备和方法:1. 实验设备:- 玻璃管:用于容纳气体和形成等离子体的容器;- 电源:用于提供电场或电压;- 气体:常用的气体有氩气、氢气等;- 电压表和电流表:用于测量电场强度和电流。

2. 实验方法:- 将玻璃管充满所选气体;- 将电源接入玻璃管两端,施加适当的电压;- 观察等离子体的放电现象,并记录电流和电场强度的变化;- 改变电压、气体种类或气体压强,重复实验并记录观察结果。

实验结果与分析:1. 放电现象:在实验中,我们观察到等离子体放电时,玻璃管内的气体会发出明亮的光芒,且电流表会显示出电流的变化。

放电现象的强弱和稳定性与电压的大小、气体种类和气体压强有关。

2. 放电规律:- 电压与放电强度的关系:实验中发现,随着电压的增加,放电强度也增加。

当电压达到一定值时,放电强度会迅速增加,形成较强的等离子体。

- 气体种类与放电强度的关系:不同气体的放电特性不同。

例如,氩气放电强度较大,而氢气放电强度较小。

这是因为气体中的原子或分子电离能不同,导致放电特性的差异。

- 气体压强与放电强度的关系:实验中发现,当气体压强较低时,放电强度较小;当气体压强较高时,放电强度较大。

这是因为气体压强的增加会增加原子或分子电离的机会,从而增强放电现象。

实验讨论与应用:1. 实验讨论:- 等离子体放电实验是研究等离子体物理性质的重要手段,通过实验可以深入了解等离子体的形成、结构和特性。

- 等离子体放电现象在自然界和工业中广泛存在。

例如,闪电就是大气中的等离子体放电现象,等离子体放电技术也被应用于气体放电灯、等离子体刻蚀等领域。

2. 应用展望:- 等离子体放电技术在材料加工、环境治理、能源研究等方面具有广阔的应用前景。

大气压脉冲气体放电与等离子体应用

大气压脉冲气体放电与等离子体应用

大气压脉冲气体放电技术是一种新型的非平衡等离子体产生技术,它具有放电电压低、电流大、等离子体密度高、反应性强等优点,在等离子体表面处理、薄膜沉积、环境治理等领域具有广泛的应用前景。

一、大气压脉冲气体放电技术原理大气压脉冲气体放电技术的基本原理是利用高压脉冲电源在常压或接近常压的条件下,使气体发生放电,产生等离子体。

当高压脉冲电源加在两电极之间时,气体分子被电离,产生自由电子和正离子。

在电场的作用下,自由电子加速并撞击气体分子,产生更多的自由电子和正离子,从而形成雪崩效应。

当自由电子的密度达到一定程度时,气体发生放电,产生等离子体。

二、大气压脉冲气体放电技术的特点大气压脉冲气体放电技术具有以下特点:(1)放电电压低:大气压脉冲气体放电技术的放电电压一般在几千伏到几十千伏之间,远低于传统的真空放电技术。

(2)电流大:大气压脉冲气体放电技术的电流可以达到几安培甚至几十安培,远高于传统的真空放电技术。

(3)等离子体密度高:大气压脉冲气体放电技术的等离子体密度可以达到1011-1012 cm^-3,远高于传统的真空放电技术。

(4)反应性强:大气压脉冲气体放电技术产生的等离子体具有很强的反应性,可以与各种气体和固体发生化学反应。

三、大气压脉冲气体放电技术的应用大气压脉冲气体放电技术在等离子体表面处理、薄膜沉积、环境治理等领域具有广泛的应用前景。

(1)等离子体表面处理:大气压脉冲气体放电技术可以对各种材料的表面进行处理,提高材料的表面活性、润湿性、粘合性等性能。

(2)薄膜沉积:大气压脉冲气体放电技术可以沉积各种薄膜,如金属薄膜、氧化物薄膜、氮化物薄膜等。

(3)环境治理:大气压脉冲气体放电技术可以用于处理各种污染物,如挥发性有机物、氮氧化物、硫氧化物等。

四、大气压脉冲气体放电技术的发展前景大气压脉冲气体放电技术是一项新兴技术,具有广阔的发展前景。

随着技术的不断进步,大气压脉冲气体放电技术将在更多的领域得到应用,对国民经济和社会发展产生重大影响。

气体放电等离子体

气体放电等离子体

I eo =
4
eN eVe S e
I io
1 = eN i V i S i 4
I = I eo − I io > 0
(只代表大小)
Ve ≫ Vi ⇒ I eo ≫ I io
(2)当 VP >0时,如图中E点,此时探针电位远远高 于附近等离子体的电位,正离子受到排斥,打到探针上 的离子电流将趋于零,负电子受到吸引,而在探针周围 形成一层“电子壳层”,探针电流I约等于电子电流 I eo
探针电位很低,几乎所有的电子都受 到排斥,电子电流趋向于零,正离子 受到强烈的吸引,因而在其附近形成 一个“离子鞘层”,收集全部飞向探 针的正离子,探针电流等于饱和离子 I io 流 −14 io i i
I = −I = −2.5×10 N S kTe
至此,我们已明白了单探针的特性曲线变化规律了。
三:用单探针 V — I曲线拟合双探针V — I曲线 双探针法是在气体等离子放电管的靠近阳极附近放置两 个悬浮的探针,调节两探针之间的电压,从测得放电管处于 稳定状态下的伏安特性曲线,即可推出电子温度和电子密度 等重要信息。测量装置如图所示: 假设我们在此之前已得到两 个探针分别作为单探针时的 V — I特性曲线。
Vt ' = Vt + (V20 − V10 ) > Vt
,实际电流要变得稍大一些,
反映在图中如下:
V (2)当 Vt 减小时, 2 V1 间距变小,他们都将趋于 VF 导致有 减小,且减小速度较快,曲线较陡 I 2 = − I1

V 当 Vt = 0 时, 2 = V1 = VF ,探针间电压为零,此时电流为 零,曲线交于横轴原点处。
不过由于断面面积较小,实验中电流可能会较小,这 可以是用粗探针来避免。

等离子体研究的发展和应用

等离子体研究的发展和应用

等离子体研究的发展和应用等离子体,是一种高能量状态下的物质状态,包含了正、负电子以及正、负离子。

等离子体的存在于许多自然和人造环境中,例如闪电、恒星、星系、火焰、电弧等等。

近年来,等离子体研究逐渐走向了实用化和产业化的道路,带来了一系列的技术和应用。

一、等离子体的基础等离子体的概念最早出现于20世纪初期,当时物理学家们正在研究气体放电现象。

在气体中施加高电压,就会产生电子和正离子,它们在电场和热运动驱动下发生碰撞,产生新的离子和电子,形成了一个稳态的电子与离子的混合体,即等离子体。

等离子体有着特殊的物理和化学性质,具有自洽性、自身加热和电磁波传输等特性。

二、等离子体的研究进展在等离子体的研究中,最早的分支是在天体物理学领域,研究恒星和星际物质中的等离子体。

此后,等离子体在核聚变和等离子体物理等领域中发挥了重要作用。

自从魁北克的Hydro-Québec公司于20世纪70年代开发了等离子体切割机以来,等离子体技术就大规模地应用于工业制造,例如等离子体电视、氟化物等离子体显示器、光纤放大器、等离子体喷涂、清洗、杀菌、治疗等等。

在医学领域,等离子体技术可以用于治疗表皮病,例如青春痘和疤痕。

此外,等离子体技术在食品加工中也得到了应用,例如高压等离子体处理可以延长食品的保质期,减少微生物和细菌的污染。

三、等离子体的产业化随着等离子体研究的不断深入,等离子体产业也在逐渐兴起。

以等离子体喷涂技术为例,该技术是一种将粉末或液体材料喷射到基材上形成涂层的高温喷涂技术。

等离子体喷涂技术具有高效、高质、高可靠性等优点,可应用于工业和军事领域,例如航空航天、船舶、汽车、水利、电力等。

目前,国内外已有多个型号的等离子体喷涂设备,例如喷雾等离子体设备、磁控溅射等离子体设备以及微波等离子体设备等等。

相信在不久的将来,等离子体技术将用于更多产业,并为人类创造更多美好的未来。

四、等离子体的前景展望随着科技的不断发展,未来等离子体技术将无处不在,将应用在更广泛的领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气体放电中等离子体的研究131120161 李晓曦摘要:本文阐述了气体放电中等离子体的特性及其测试方法,分别使用单探针法和双探针法测量了等离子体参量,最后对本实验进行了讨论。

关键词:等离子体,等离子体诊断,探针法1. 引言等离子体作为物质的第四态在宇宙中普遍存在。

在实验室中对等离子体的研究是从气体放电开始的。

近年来等离子体物理学有了较快发展,并被应用于电力工业、电子工业、金属加工和广播通讯等部门,特别是等离子体的研究,为利用受控热核反应,解决能源问题提供了诱人的前景。

2. 等离子体的物理特性及描述等离子体定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。

等离子体有一系列不同于普通气体的特性:(1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。

(2)带正电的和带负电的粒子密度几乎相等。

(3)宏观上是电中性的。

描述等离子体的一些主要参量为:(1)电子温度Te。

它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。

(2)带电粒子密度。

电子密度为ne,正离子密度为ni,在等离子体中ne≈ni。

(3)轴向电场强度EL。

表征为维持等离子体的存在所需的能量。

(4)电子平均动能Ee。

(5)空间电位分布。

本实验研究的是辉光放电等离子体。

辉光放电是气体导电的一种形态。

当放电管内的压强保持在10~102Pa时,在两电极上加高电压,就能观察到管内有放电现象。

辉光分为明暗相间的8个区域,在管内两个电极间的光强、电位和场强分布如图1所示。

8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)正辉区,(7)阳极暗区,(8)阳极辉区。

其中正辉区是等离子区。

图13. 等离子体诊断测试等离子体的方法被称为诊断。

等离子体诊断有探针法,霍尔效应法,微波法,光谱法等。

本次实验中采用探针法。

探针法分单探针法和双探针法。

(1)单探针法。

探针是封入等离子体中的一个小的金属电极(其形状可以是平板形、圆柱形、球形)。

以放电管的阳极或阴极作为参考点,改变探针电位,测出相应的探针电流,得到探针电流与其电位之间的关系,即探针伏安特性曲线,如图2所示。

对此曲线的解释为:图2在AB段,探针的负电位很大,电子受负电位的排斥,而速度很慢的正离子被吸向探针,在探针周围形成正离子构成的空间电荷层,它把探针电场屏蔽起来。

等离子区中的正离子只能靠热运动穿过鞘层抵达探针,形成探针电流,所以AB段为正离子流,这个电流很小。

过了B点,随着探针负电位减小,电场对电子的拒斥作用减弱,使一些快速电子能够克服电场拒斥作用,抵达探极,这些电子形成的电流抵消了部分正离子流,使探针电流逐渐下降,所以BC段为正离子流加电子流。

到了C点,电子流刚好等于正离子流,互相抵消,使探针电流为零。

此时探针电位就是悬浮电位UF 。

继续减小探极电位绝对值,到达探极电子数比正离子数多得多,探极电流转为正向,并且迅速增大,所以CD段为电子流加离子流,以电子流为主。

当探极电位UP 和等离子体的空间电位US 相等时,正离子鞘消失,全部电子都能到达探极,这对应于曲线上的D点。

此后电流达到饱和。

如果UP 进一步升高,探极周围的气体也被电离,使探极电流又迅速增大,甚至烧毁探针。

由单探针法得到的伏安特性曲线,可求得等离子体的一些主要参量。

对于曲线的CD段,由于电子受到减速电位(UP -US )的作用,只有能量比e(UP -US )大的那部分电子能够到达探针。

假定等离子区内电子的速度服从麦克斯韦分布,则减速电场中靠近探针表面处的电子密度ne ,按玻耳兹曼分布应为(1) 式中no 为等离子区中的电子密度,Te 为等离子区中的电子温度,k为玻耳兹曼常数。

在电子平均速度为v e 时,在单位时间内落到表面积为S的探针上的电子数为:(2)将(1)式代入(2)式得探针上的电子电流:(3)其中(4)对(3)式取对数 (5)其中故⎥⎦⎤⎢⎣⎡-=e s p e kT U U e n n )(exp 0常数=-eso kT eU I ln(6)可见电子电流的对数和探针电位呈线性关系。

图3作半对数曲线,如图3所示,由直线部分的斜率tg φ,可决定电子温度T e :(7)若取以10为底的对数,则常数11600应改为5040。

电子平均动能Ee 和平均速度v e 分别为:(8)(9)式中me 为电子质量。

由(4)式可求得等离子区中的电子密度:(10)式中I 0为UP =Us时的电子电流,S为探针裸露在等离子区中的表面面积。

(2)双探针法。

双探针法是在放电管中装两根探针,相隔一段距离L 。

双探针法的伏安特性曲线如图4所示。

在坐标原点,如果两根探针之间没有电位差,它们各自得到的电流相等,所以外电流为零。

然而,一般说来,由于两个探针所在的等离子体电位稍有不同,所以外加电压为零时,电流不是零。

随着外加电压逐步增加,电流趋于饱和。

最大电流是饱和离子电流I s1、I s2。

常数+=ep kT eU I ln kTE e 23=ee e m kT v π8=ee oe o e kT m eS Iv eS I n π24==图4双探针法有一个重要的优点,即流到系统的总电流决不可能大于饱和离子电流。

这是因为流到系统的电子电流总是与相等的离子电流平衡。

从而探针对等离子体的干扰大为减小。

由双探针特性曲线,通过下式可求得电子温度Te :(11)式中e为电子电荷,k为玻耳兹曼常数,I i1、I i2为流到探针1和2的正离子电流。

它们由饱和离子流确定。

U dU dI=是U=0附近伏安特性曲线斜率。

电子密度n e 为:(12)式中M是放电管所充气体的离子质量,S是两根探针的平均表面面积。

I s 是正离子饱和电流。

4. 用单探针法测量等离子体参量仪器联线如图5所示。

图52121=⋅+⋅=U i i i i e dIdUI I I I k e T es e kT M eSI n 2=测量时采样电阻设定为1000 ,放电电流设定为90mA。

计算机自动生成的测量结果如下。

作半对数曲线如图6所示。

探针直径(mm): 0.45探针轴向间距(mm): 30.00放电管内径(mm): 6.00平行板面积(mm^2): 8.00平行板间距(mm): 4.00亥姆霍兹线圈直径(mm):200.00亥姆霍兹线圈间距(mm):100.00亥姆霍兹线圈匝数: 400放电电流(mA): 90单探针序号: 1取样电阻值(Ω): 1000实验结果:U0 = 30.93 VI0 =4009.32 uAtgΦ= 0.84Te = 1.39E+004 KVe = 7.32E+005 m/sNe = 8.60E+017 n/m^3Ee = 2.87E-019 J图6现依据公式计算如下:在实验数据中选择两点(32.194830,ln525.962), (32.997190, ln808.423)计算tg φ:0.53tg φ=42.1910e eT K ktg ==⨯φ59,1910/e v m s ==⨯ 1730248.5410(/4)e eI n m e d v -==⨯π 191.5 4.5310e e E kT J -==⨯与计算机计算出的结果基本相等。

5. 用双探针法测量等离子体参量仪器联线如图7所示。

图7测量时采样电阻设定为1000 ,放电电流设定为90mA。

计算机自动生成的测量结果如下。

其中实验参数与单探针法相同,参见上页。

作半对数曲线如图8所示。

实验结果:I1 = 334.27 uAI2 = 332.50 uAtgΦ= 2.2E-004Te = 9.00E+003 KNe = 1.91E+017 n/m^3图8可见单探针法与双探针法测出的数据在数量级上是一致的。

6. 对实验的讨论(1)气体放电中的等离子体有什么特征?虽然宏观上的等离子体是电中性的,但是由于电子的热运动,等离子体局部会偏离电中性。

电荷之间的库伦相互作用,使这种偏离电中性的范围不能无限扩大,最终使得电中性得以恢复。

偏离电中性的区域最大尺度称为德拜长度,当系统尺度大于德拜长度时,系统呈电中性,当系统尺度小于德拜长度时,系统可能出现非电中性。

(2)等离子体有哪些主要参量?除了电子温度Te。

它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联;带电粒子密度。

电子密度为ne,正离子密度为ni,在等离子体中ne≈ni;轴向电场强度EL。

表征为维持等离子体的存在所需的能量;电子平均动能Ee;空间电位分布这些之外,由于等离子体中带电粒子间的相互作用是长程的库仑力,使他们在无规则的热运动之外,能产生某些类型的集体运动,如离子震荡,其频率称为朗缪尔频率或离子体频率。

电子震荡时辐射的电磁波称为等离子体电磁波。

(3)探针法对探针有什么要求?对探针的一般要求是:1)电子和离子打到探针表面后被完全吸收,不会发生次级电子发射。

2)探针熔点较高,不会在放电过程中熔化。

3)探针不会与等离子体发生化学反应。

4)探针的线度适中:既要明显大于其表面的正离子鞘层的厚度,以减少正离子鞘层的厚度在测量过程中的变化造成的影响;又要小于离子和电子的自由程,减小对等离子体的干扰。

另外使用双探针法时,两探针应垂直于放电电流方向放置,使两个探针所在的等离子体电位尽量相同。

两个探针的间距不宜过近,以免两个探针表面的离子鞘相互干扰。

(3)分析误差原因,提出改进措施。

从实验数据来看,单探针法与双探针法的测量结果存在一定差异。

单探针法存在明显的误差。

图6没有图3那样明显的线性增大区和拐点,并且电流不能达到饱和,持续增加。

这样就很难准确求出tgΦ。

其原因是离子鞘层的厚度随UP增大而改变,造成探针等效表面积改变,从而使到达探针表面的电子数偏离理论值。

另外当探极电位UP接近等离子体的空间电位US 时,由于探针的边缘效应,事实上离子鞘层的厚度随UP增大而增大,其结果是探针等效表面积增大,探针电流也持续增大,在本实验条件下不能达到饱和。

对于双探针法,由于探针为平行板,离子鞘层的厚度对探针等效表面积的影响不大,因此离子鞘层的厚度改变对实验结果的影响也不明显。

综上,双探针法的测量结果更准确。

对于单探针法,可作如下改进:适当选取探针的表面积,同时减小离子和电子的浓度,增大其平均自由程。

相关文档
最新文档