量化霍尔效应与电阻计量标准简介.

合集下载

实验二霍尔系数和电阻率的测量

实验二霍尔系数和电阻率的测量

实验二霍尔系数和电阻率的测量把通有电流的半导体置于磁场中,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象称为霍尔效应。

随着半导体物理学的发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。

通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。

若能测量霍尔系数和电导率随温度变化的关系,还可以求出材料的杂质电离能和材料的禁带宽度。

一、实验目的1. 了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识;2. 学习用“对称测量法”消除副效应的影响,测量并绘制试样的V H-I S和V H-I M曲线;3. 确定试样的导电类型、载流子浓度以及迁移率。

二、实验原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。

当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。

对于图(a)所示的N型半导体试样,若在X方向的电极D、E上通以电流I S,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力:FB()v eg其中,e为载流子(电子)电量,v为载流子在电流方向上的平均定向漂移速率,B为磁感A C A C(a)(b)图样品示意图无论载流子是正电荷还是负电荷,Fg 的方向均沿Y 方向,在此力的作用下,载流子发生偏移,则在Y 方向即试样A 、A ’电极两侧就开始聚集异号电荷,在A 、A ’两侧产生一个电位差V H ,形成相应的附加电场E H ——霍尔电场,相应的电压V H 称为霍尔电压,电极A 、A ’称为霍尔电极。

电场的指向取决于试样的导电类型。

N 型半导体的多数载流子为电子,P 型半导体的多数载流子为空穴。

对N 型试样,霍尔电场逆Y 方向,P 型试样则沿Y 方向,有I S (X)、B (Z) E H (Y) < 0 (N 型)E H (Y) > 0 (P 型)显然,该电场是阻止载流子继续向侧面偏移。

霍尔效应——精选推荐

霍尔效应——精选推荐

霍尔效应第三章霍尔效应计算公式在本章开始之前,我们⾸先来回顾⼀下霍尔效应的⼏个参数。

霍尔效应主要有⾯电阻率,体电阻率,⾯霍尔系数,体霍尔系数,⾯载流⼦浓度,体载流⼦浓度,霍尔迁移率这么⼏个参数。

体电阻率是材料直接通过泄漏电流的能⼒的度量。

体电阻率定义为边长1厘⽶的⽴⽅体材料的电阻,单位为。

⾯电阻率定义为材料表⾯的电阻,单位为(通常称为⽅块电阻)。

体霍尔系数,它表⽰材料产⽣霍尔效应的本领⼤⼩,单位为。

⾯霍尔系数单位为。

体载流⼦浓度单位为,⾯载流⼦浓度单位为。

霍尔迁移率指载流⼦(电⼦或空⽳)在单位电场作⽤下的平均漂移速度,即载流⼦在电场作⽤下运动速度的快慢的量度,单位为。

霍尔效应的测量主要使⽤两种单位制:国际单位制(SI)和被称为“实验室单位”的单位制、实验室单位制混合了国际单位制、CGS静电制和CGS电磁制。

下⽂的公式都采⽤实验室单位制。

在测试软件⾥,为了数据录⼊更⽅便,⼀般都使⽤实验室单位制。

在所有的例⼦中,电压以伏特(V)为单位,电流以安培(A)为单位,电阻为欧姆(Ω)为单位。

其他量的单位都以括号内的为准。

以下是标号的含义。

,V表⽰电压,左上⾓的表⽰施加在样品上的电流正负⽅向;右下⾓前两个数字ij表⽰电流从电极i流进(I+),从电极j流出(I-);后两个数字表⽰电极k(V+)和电极l(V-)之间的电压之差,即;括号内表⽰施加在样品上的磁场⼤⼩和⽅向。

,I表⽰电流,左上⾓表⽰电流⽅向,右下⾓两个数字ij表⽰电流从电极i流进(I+),从电极j流出(I-);括号内表⽰施加在样品上的磁场⼤⼩和⽅向,⽅向定义见图3.1,即从上⾯观测,磁场⽅向垂直于样品且指向观测者,这个⽅向为正。

图3.1 磁场⽅向定义下⾯分别介绍Van der Pauw法和Hall Bar法的实际测量计算公式。

3.1 Van der Pauw法1958年,范德堡(Van der Pauw,L.J)发表了两篇论⽂,《A method of measuring specific resistivity and Hall effect of discs of arbitrary shape》和《A method of measuring specific resistivity and Hall coefficient on lamellae of arbitrary shape》,阐述了⼀种测量了电阻率和霍尔系数的新的⽅法,从理论上证明了这种针对单连通任意形状均匀等厚薄⽚样品的测量⽅法。

霍尔效应测量

霍尔效应测量

Rn
n

(3-19)
令 R H , H 称为霍尔迁移率,是样品电导率 和霍尔系数的乘积。因此公式(3-19)还可写成:
n

H n
(3-20)
对于p型半导体,同理有:
p

Rp
p

p

H p
l 说明 • 根据霍尔效应确定载流子浓度,需要分别测量出样 品的霍尔系数和电导率。
Ey RBz jx
Ey

UH ws
R Ey U H / ws U H ts (米3 / 库仑) Bz jx Bz (I x / wsts ) Bz I x
Bz
霍尔电场
宽度ws Ix
厚度ts
长度l
3、由霍尔系数进一步确定样品的载流子浓度
对于n型半导体,n>>p,根据其霍尔系数表达式
Rn
(3)霍尔电压(霍尔电势差)UH
U H Ey ws ws 为样品的宽度
Bz
霍尔电场
宽度ws Ix
厚度ts
长度l
二、利用霍尔效应测量半导体电学参数
1、判断半导体的导电类型 2、确定样品的霍尔系数R
3、由霍尔系数进一步确定样品的载流子浓度
4、由霍尔系数和电导率进一步确定样品的 迁移率
1、判断半导体的导电类型
洛伦兹受力方向 F 电流I
左手定则: 伸开左手 让磁感线穿入手心,四指指向电流方向
(正电荷运动的方向), 那么拇指的方向就是导体受洛 伦兹力的方向。须注意,运动电荷是正的,大拇指的指 向即为洛伦兹力的方向。反之,如果运动电荷是负的, 那么大拇指的指向的反方向为洛伦兹力方向。
2、确定样品的霍尔系数R

(整理)霍尔效应及磁阻效应讲义

(整理)霍尔效应及磁阻效应讲义

通过霍尔效应测量磁场实验简介在磁场中的载流导体上出现横向电势差的现象是24岁的研究生霍尔(Edwin H. Hall)在1879年发现的,现在称之为霍尔效应。

随着半导体物理学的迅猛发展,霍尔系数和电导率的测量已经成为研究半导体材料的主要方法之一。

通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。

若能测得霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。

在霍尔效应发现约100年后,德国物理学家克利青(Klaus von Klitzing)等研究半导体在极低温度和强磁场中发现了量子霍尔效应,它不仅可作为一种新型电阻标准,还可以改进一些基本量的精确测定,是当代凝聚态物理学和磁学令人惊异的进展之一,克利青为此发现获得1985年诺贝尔物理学奖。

其后美籍华裔物理学家崔琦(D. C. Tsui)和施特默在更强磁场下研究量子霍尔效应时发现了分数量子霍尔效应。

它的发现使人们对宏观量子现象的认识更深入一步,他们为此发现获得了1998年诺贝尔物理学奖。

用霍尔效应之制备的各种传感器,已广泛应用于工业自动化技术、检测技术和信息处理各个方面。

本实验的目的是通过用霍尔元件测量磁场,判断霍尔元件载流子类型,计算载流子的浓度和迁移速度,以及了解霍尔效应测试中的各种副效应及消除方法。

实验原理通过霍尔效应测量磁场霍尔效应装置如图2.3.1-1和图2.3.1-2所示。

将一个半导体薄片放在垂直于它的磁场中(B 的方向沿z轴方向),当沿y方向的电极A、A’上施加电流I时,薄片内定向移动的载流子(设平均速率为u)受到洛伦兹力F B的作用,= q u B (1)FB无论载流子是负电荷还是正电荷,F B 的方向均沿着x 方向,在磁力的作用下,载流子发生偏移,产生电荷积累,从而在薄片B 、B’两侧产生一个电位差V BB ’,形成一个电场E 。

电场使载流子又受到一个与F B 方向相反的电场力F E ,F E =q E = q V BB’ / b(2)其中b 为薄片宽度,F E 随着电荷累积而增大,当达到稳定状态时F E =F B ,即q uB = q V BB’ / b(3)这时在B 、B’两侧建立的电场称为霍尔电场,相应的电压称为霍尔电压,电极B 、B’称为霍尔电极。

霍尔电阻单位-概述说明以及解释

霍尔电阻单位-概述说明以及解释

霍尔电阻单位-概述说明以及解释1.引言1.1 概述在电子学领域中,霍尔电阻是一种重要的物理量,用以描述电流通过导体时产生的霍尔效应。

霍尔效应是指当电流通过一个导体时,在垂直于电流方向的方向上会产生一个电压差。

这种电压差被称为霍尔电势差,而与之相对应的电流则被称为霍尔电流。

霍尔电势差和霍尔电流之间的比值就是霍尔电阻,它通常用符号RH 表示。

霍尔电阻的单位是欧姆(Ω),在国际单位制中表示为V/A。

它的数值大小与具体的导体材料和几何形状有关,因此在实际应用中需要进行测量。

霍尔电阻的测量方法可以通过搭建一个霍尔电阻测量电路来实现。

该电路通常由一个恒定电流源和一个测量电压的电压计组成。

测量时,电流会通过导体产生霍尔效应,从而在垂直于电流方向的方向上产生一个电压差。

通过测量这个电压差和电流的比值,就可以得到霍尔电阻的数值。

霍尔电阻在多个领域都有广泛的应用。

例如,在电子器件中常用于测量磁场强度,通过测量霍尔电阻的变化可以间接地得到磁场的信息。

此外,它还可以用于电流传感器、位置传感器和速度传感器等各种传感器中,并在工业控制、汽车电子、医疗设备等领域中发挥重要作用。

总之,霍尔电阻作为一种重要的物理量,在电子学领域中具有广泛的应用价值。

通过测量霍尔电阻的数值,我们可以获取与电流、磁场和位置等相关的重要信息,为我们的科学研究和工程实践提供了有力的支持。

因此,对于霍尔电阻单位的研究和理解具有重要的意义。

1.2文章结构文章结构本文将按照以下结构进行叙述和讨论霍尔电阻单位。

首先,在引言部分对整篇文章进行了概述,并明确了文章的结构和目的。

接下来,在正文部分将对霍尔电阻的定义和原理进行介绍,然后阐述了测量霍尔电阻的方法,并探讨了霍尔电阻在各个应用领域中的具体应用。

最后,在结论部分对整篇文章的内容进行了总结,并对霍尔电阻单位的重要性进行了思考和讨论。

最后一部分展望了未来关于霍尔电阻单位的研究方向和发展趋势。

这样的结构设计可以使读者更好地理解霍尔电阻单位的定义、原理和测量方法,并了解其在不同领域中的实际应用。

用霍尔元件测量电功率的原理-概述说明以及解释

用霍尔元件测量电功率的原理-概述说明以及解释

用霍尔元件测量电功率的原理-概述说明以及解释1.引言1.1 概述霍尔元件是一种基于霍尔效应的电子器件,可以用于测量电功率。

电功率是电流和电压乘积,是衡量电路中能量转换和传输的重要参数。

传统上,电功率的测量主要依赖于焦耳定律,即功率等于电流的平方乘以电阻。

但是,使用霍尔元件可以实现非接触、精确和可靠的电功率测量。

霍尔元件的基本原理是基于霍尔效应。

霍尔效应是指当将电流通过垂直于电场和磁场方向的导体中时,导体两侧会产生一种电压差,即霍尔电压。

这种电压与电流、磁感应强度和导体材料的性质有关。

通过测量霍尔电压,可以确定电流的大小,从而计算出电功率。

电功率的测量方法可以分为直接测量和间接测量两种。

直接测量是指通过对电流和电压进行实时采样来计算电功率。

这种方法简单直观,但需要实时监测电流和电压,同时对测量电路的影响较大。

间接测量是指通过测量其他参数(如电阻、电感、电容等)来计算电功率。

其中,使用霍尔元件进行间接测量可以实现非接触测量,并且不受电路影响。

通过将霍尔元件与载流导体相连,测量霍尔电压和载流导体的磁场,可以准确计算出电功率的大小。

综上所述,使用霍尔元件测量电功率具有非接触、精确和可靠的优势。

未来,随着电力领域的发展,对电功率测量的需求将逐渐增加。

霍尔元件作为一种成本低、体积小、功耗低的测量元件,具有广阔的应用前景和发展空间。

可以应用于电力系统、工业自动化、电动车辆等领域,为电力管理和能源节约提供技术支持。

1.2 文章结构本文分为引言、正文和结论三个部分。

引言部分概述了使用霍尔元件测量电功率的原理,并介绍了本文的目的。

在这一部分,读者可以了解到本文对于霍尔元件测量电功率的重要性和应用前景。

正文部分包括了两个主要的内容部分:霍尔元件的基本原理和电功率的测量方法。

其中,2.1节详细介绍了霍尔元件的基本原理,包括霍尔效应的原理和工作原理。

通过对于霍尔元件的基本原理的介绍,读者可以了解到霍尔元件如何利用磁场和电场之间的相互作用来测量电功率。

霍尔效应

霍尔效应

第三章霍尔效应计算公式在本章开始之前,我们首先来回顾一下霍尔效应的几个参数。

霍尔效应主要有面电阻率,体电阻率,面霍尔系数,体霍尔系数,面载流子浓度,体载流子浓度,霍尔迁移率这么几个参数。

● 体电阻率是材料直接通过泄漏电流的能力的度量。

体电阻率定义为边长1厘米的立方体材料的电阻,单位为cm Ω⋅。

面电阻率定义为材料表面的电阻,单位为Ω(通常称为方块电阻)。

● 体霍尔系数,它表示材料产生霍尔效应的本领大小,单位为31cmC -⋅。

面霍尔系数单位为21cmC -⋅。

● 体载流子浓度单位为3cm -,面载流子浓度单位为2cm -。

● 霍尔迁移率指载流子(电子或空穴)在单位电场作用下的平均漂移速度,即载流子在电场作用下运动速度的快慢的量度,单位为211cmV s --⋅⋅。

霍尔效应的测量主要使用两种单位制:国际单位制(SI )和被称为“实验室单位”的单位制、实验室单位制混合了国际单位制、CGS 静电制和CGS 电磁制。

下文的公式都采用实验室单位制。

在测试软件里,为了数据录入更方便,一般都使用实验室单位制。

在所有的例子中,电压以伏特(V )为单位,电流以安培(A )为单位,电阻为欧姆(Ω)为单位。

其他量的单位都以括号内的为准。

以下是标号的含义。

●(),V B ij kl±±,V 表示电压,左上角的±表示施加在样品上的电流正负方向;右下角前两个数字ij 表示电流从电极i 流进(I+),从电极j 流出(I-);后两个数字表示电极k (V+)和电极l (V-)之间的电压之差,即k l V V -;括号内表示施加在样品上的磁场大小和方向。

●()I B ij±±,I 表示电流,左上角表示电流方向,右下角两个数字ij 表示电流从电极i 流进(I+),从电极j 流出(I-);括号内表示施加在样品上的磁场大小和方向,方向定义见图3.1,即从上面观测,磁场方向垂直于样品且指向观测者,这个方向为正。

霍尔效应的理解和计算

霍尔效应的理解和计算

霍尔效应的理解和应用湖北省恩施高中陈恩谱一、霍尔效应1、预设条件:通有电流I 的导体,处在磁场B 中。

2、霍尔效应:(1)载流子的偏转导体通有电流,实际上是导体内的自由电荷(载流子)发生了定向移动;这种定向移动的电荷,必然受到磁场对它们的洛伦兹力作用而偏转。

(2)导体垂直磁场的两侧面的电势差载流子侧向偏转的结果,是导体垂直磁场的两个侧面出现正负电荷的累积,进而在两侧面间形成垂直导体中电流方向的电场E (霍尔电场),进而在导体两侧面间形成电势差。

(3)载流子对电势高低的影响如图①所示,若载流子是负电荷,则载流子在洛伦兹力作用下会向下偏转,使得导体下表面积累负电荷,与此同时,上表面失去负电荷而带上正电,从而使得上表面电势高于下表面;反过来,如图②所示,若载流子是正电荷,则载流子在洛伦兹力作用下也会向下偏转,使得导体下表面积累正电荷,与此同时,上表面失去正电荷而带上负电,从而使得下表面电势高于上表面。

二、霍尔电压1、稳定电压的产生载流子沿着导线定向移动时,不仅受到洛伦兹力qvB 作用,还受到霍尔电场力qE 的作用,洛伦兹力促使载流子偏转,电场力阻碍载流子偏转,但只要电场力还小于洛伦兹力,载流子就会继续向导体侧面偏转;随着载流子持续偏转,导体两侧面电荷累积增多,霍尔电场增强,电场力增大,当导体两侧面累积电荷足够多、霍尔电场足够强时,电场力与洛伦兹力平衡,载流子就不再偏转,导体两侧的电荷量达到稳定,霍尔电场不再变化,则两侧面间的电势差达到稳定,这个电势差就被称之为霍尔电压,符号为U H 。

2、霍尔电压的计算设霍尔电场场强为E ,则由平衡条件,有0=-qvB qE ,导体两侧面间的电势差——即霍尔电压为Ed U H =,联立得Bdv U H =。

其中,v 是载流子在到体内沿着导线定向移动的平均速率,设导体单位体积内自由电荷数为n ,每个载流子的电荷量为q ,导体沿着磁场方向的厚度为h ,则导体垂直电流方向的横截面积为hd S =,有nqSv I =,解得nqSIv =,代入Bdv U H =,得hBInq U H ⋅=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档