第二章整流与滤波电路

第二章整流与滤波电路
第二章整流与滤波电路

&第二章整流与滤波电路

教学目的:了解整流、滤波、稳压的工作原理。

教学重点:单相桥整流电路工作原理、电容滤波、二极管稳压电路。教学难点:单相桥式整流电路。

教学方法与手段:教师讲授与学生练习、实验实训相结合;板书与多媒体课件相结合。

课时计划:3课时

第一节单相整流电路

整流电路:利用具有单向导电性能的整流元件如二极管等,将交流电转换成单向脉动直流电的电路称为整流电路。整流电路按输入电源相数可分为单相整流电路和三相整流电路,按输出波形又可分为半波整流电路和全波整流电路。目前广泛使用的是桥式整流电路。

一、半波整流电路

上图是单相半波整流电路。它是最简单的整流电路,由整流变压器Tr、整流元件D(晶体二极管)及负载电阻R L组成。

2、工作原理

当u2为正半周时,二极管D承受正向电压而导通,此时有电流流过负载,并且和二极管上的电流相等,即i o= i d。忽略二极管的电压降,则负载两端的输出电压等于变压器副边电压,即u o=u2,输出电压u o的波形与u2相同。

当u2为负半周时,二极管D承受反向电压而截止。此时负载上无电

D上。

二、单相桥式整流电路

1、电路结构

1、工作原理

u2为正半周时,a点电位高于b点电位,二极管D1、D3承受正向电压而导通,D2、D4承受反向电压而截止。此时电流的路径为:a →D1→R L→D3→b。

u 2

D 2、D 4承受正向

b →D 2→

正、负半周交替工作后波形的合成情况

整流滤波电路详解

为电感对直流的阻抗小,交流的阻抗大,因此能够得到较好的滤波效果而直流损失小。电感滤波缺点是体积大,成本高. 桥式整流电感滤波电路如图2所示。电感滤波的波形图如图2所示。根据电感的特点,当输出电流发生变化时,L中将感应出一个反电势,使整流管的导电角增大,其方向将阻止电流发生变化。 图2电感滤波电路 在桥式整流电路中,当u2正半周时,D1、D3导电,电感中的电流将滞后u2不到90°。当u2超过90°后开始下降,电感上的反电势有助于D1、D3继续导电。当u2处于负半周时,D2、D4导电,变压器副边电压全部加到D1、D3两端,致使D1、D3反偏而截止,此时,电感中的电流将经由D2、D4提供。由于桥式电路的对称性和电感中电流的连续性,四个二极管D1、D3;D2、D4的导电角θ都是180°,这一点与电容滤波电路不同。 图3电感滤波电路波形图 已知桥式整流电路二极管的导通角是180°,整流输出电压是半个半个正弦波,其平均值约为。电感滤波电路,二极管的导通角也是180°,当忽略电感器L的电阻时,负载上输出的电压平均值也是。如果考虑滤波电感的直流电阻R,则电感滤波电路输出的电压平均值为 要注意电感滤波电路的电流必须要足够大,即RL不能太大,应满足wL>>RL,此时IO(AV)可用下式计算 由于电感的直流电阻小,交流阻抗很大,因此直流分量经过电感后的损失很小,但是对于交流分量,在wL和上分压后,很大一部分交流分量降落在电感上,因而降低了输出电压中的脉动成分。电感L愈大,RL愈小,则滤波效果愈好,所以电感滤波适用于负载电流比较大且变化比较大的场合。采用电感滤波以后,延长了整流管的导电角,从而避免了过大的冲击电流。 电容滤波原理详解 1.空载时的情况 当电路采用电容滤波,输出端空载,如图4(a)所示,设初始时电容电压uC为零。接入电源后,当u2在正半周时,通过D1、D3向电容器C充电;当在u2的负半周时,通过D2、D4向电容器C充电,充电时间常数为

电源滤波电路(图) 电源滤波电路解析

电源滤波电路、整流电源滤波电路分析 电源滤波电路 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合. 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。

全波整流滤波电路

二极管全波整流滤波电路 ①下面分两部分介绍其工作原理,即桥式整流电路与滤波电路两部分。 首先,介绍桥式整流电路,其工作原理为如下: 电路图 图10.02(a) 在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。根据图10.02(a)的电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。 当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。 在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。单相桥式整流电路的波形图见图10.02(b)。

下面介绍滤波电路的工作原理: (1)滤波的基本概念 滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L 应与负载串联。经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。 (2)电容滤波电路 现以单相桥式电容滤波整流电路为例来说明。电容滤波电路如图10.06所示,在负载电阻上并联了一个滤波电容C。 若电路处于正半周,二极管D1、D3导通,变压器次端电压v2给电容器C充电。此时C相当于并联在v2上,所以输出波形同v2,是正弦形。当v2到达90°时,v2开始下降。先假设二极管关断,电容C就要以指数规律向负载RL放电。指数放电起始点的放电速率很大。 在刚过90°时,正弦曲线下降的速率很慢。所以刚过90°时二极管仍然导通。在超过90°后的某个点,正弦曲线下降的速率越来越快,当刚超过指数曲线起始放电速率时,二极管关断。 所以,在t1到t2时刻,二极管导电,C充电,v C=v L按正弦规律变化;t2到t3时刻二极管关断,v C=v L按指数曲线下降,放电时间常数为R L C。通过以上分析画出波形图如下:

(完整版)整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω100Ω50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω 100Ω

50Ω 25Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: avg)r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

运放全桥整流电路

信息与通信工程学院 电子工程师资格认证实验报告 院系:信息与通信工程学院 专业:电子信息工程 班级:电子105 学生姓名:凌云 指导老师:吴宝春、杨亚宁 完成日期:2013年6月5日

运放全桥整流电路 实验内容: 桥式整流电路在电力电子领域中的应用及其重要,也是应用最为广泛的电路。不仅在一般的工业领域的应用非常广泛,如中频炉、发电机励磁、自动控制等,也广泛应用于交通运输、电力系统、通信系统、能源系统、以及其他领域。 1、电源电压:交流220V/50Hz 2、输出电压范围50V~100V 3、最大输出电流:10A 4、具有过流保护功能,动作电流:12A 5、具有稳压功能 6) 效率不低于70% 电路原理图: 实验数据(程序): 1、阻性负载 电阻负载a≤60 时,电流波形连续,一个波头为60°,所以积分区间为60°整流电压的平均值为: 电阻负载且60 ≤α≤120°时,电流波形断续,一个波头小于60°,所以积分区间小于60°,整流电压平均值为: 2、感性负载 当电感足够大时,整流电流波形连续且为水平线。整流电流的平均值和有效值相等Id=I,每个晶闸管每周期导通120°,整流电压的平均值为

α=0°时,Ud0=2.34U2;α=90°时,Ud=0V。移相范围为90°。负载电流平均值为: 实验结论: 1、电源变压器: 将电网交流电压(220V或380V)变换成符合需要的交流电压,此交流电压经过整流后可获得电子设备所需的直流电压。因为大多数电子电路使用的电压都不高,这个变压器是降压变压器。 2、整流电路: 利用具有单向导电性能的整流元件,把方向和大小都变化的50Hz交流电变换为方向不变但大小仍有脉动的直流电。 3、滤波电路: 利用储能元件电容器C两端的电压(或通过电感器L的电流)不能突变的性质,把电容C(或电感L)与整流电路的负载RL并联(或串联),就可以将整流电路输出中的交流成分大部分加以滤除,从而得到比较平滑的直流电。在小功率整流电路中,经常使用的是电容滤波。 4、稳压电路: 当电网电压或负载电流发生变化时,滤波电路输出的直流电压的幅值也将随之变化,因此,稳压电路的作用是使整流滤波后的直流电压基本上不随交流电网电压和负载的变化而变化。 创新点:

整流电路、滤波电路及稳压电路

第七章整流电路、滤波电路及稳压电路 知识目标 1.掌握单相桥式整流电路的结构和工作原理。 2.了解电容滤波电路和电感滤波电路的作用。 3.了解稳压电路的工作原理和特点。 4.了解集成稳压器的使用方法。 技能目标 1.掌握单相桥式整流电路。 2.掌握集成稳压器的基本使用方法和连接方法。 3.能够使用万用表测量电压,能够使用双踪示波器观察测试波形。 4.能够根据直流稳压电源框架组装直流稳压电源。 第一节整流电路 一、整流与整流电路 利用二极管的单向导电性可以将交流电转换为直流电,这一过程称为整流,这种电路就称为整流电路。 常见的整流电路有半波整流电路和全波整流电路。 二、单相桥式整流电路的结构和特点 单相桥式整流电路利用整流二极管的单向导电性,将交流电变成单向脉动直流电,其组成结构如图7-1所示。 图7-1单相桥式整流电路 图7-1中,T r表示电源变压器,作用是将交流电网电压u1变成整流电路要求的交流电压;R L是直流供电的负载电阻;4只整流二极管VD1~VD4依次接成电桥的形式,故称桥式整流电路。 桥式整流电路的特点是:输出电压的直流成分得到提高,脉冲成分被降低,每只整流二极管承受的最大反向电压较小,变压器的利用效率高,因此被广泛使用。 单相桥式整流电路的实现 在实际应用中,单相桥式整流电路可以用四个独立的整流二极管实现,也可以用集成器件“桥堆”来实现。

图7-2所示为单相桥式整流电路的习惯简化画法。 图7-2单相桥式整流电路的习惯简化画法 三、单相桥式整流电路的工作原理 图7-3单相桥式整流电路波形 在图7-3单相桥式整流电路波形中,在u的正半周时,u2>0时,VD1、VD4导通,VD2、VD3截止,故有图示i D1(i D4)的波形; 同样,在u1的负半周时,u2<0时,VD1、VD4截止VD2、VD3导通,故有电流i D2(i D3)。 可见在u的正、负半周均有电流流过负载电阻R L,且电流方向一致,综合得到u o(i o)的波形。 低音炮音箱 如图7-4所示,日常生活中使用的低音炮音箱,有些采用了专业的桥式整流技术,通过内置的桥式整流电路,使得低频带通电路的信号顺畅与稳定,可以使声音更加纯净。 图7-4低音炮音箱 第二节滤波电路 经过整流电路后的输出电压已经是单相的直流电压,但是其中含有直流和交流的成分,电压的大小仍有变化,这种直流电称为脉动直流电。对于某些工作(如蓄电池充电),脉动电流已经可以满足要求,但是对于大多数电子设备,需要平滑的直流电,故整流电路后面都要接滤波电路,尽量减小交流成分,以减小整流电压的脉动程度,适合稳压电路的需要,这就

LC滤波电路分析

LC滤波器具有结构简单、设备投资少、运行可靠性较高、运行费用较低等优点,应用很广泛。LC滤波器又分为单调谐滤波器、高通滤波器、双调谐滤波器及三调谐滤波器等几种。 LC滤波主要是电感的电阻小,直流损耗小.对交流电的感抗大,滤波效果好.缺点是体积大,笨重.成本高.用在要求高的电源电路中. RC滤波中的电阻要消耗一部分直流电压,R不能取得很大,用在电流小要求不高的电路 中.RC体积小,成本低.滤波效果不如LC电路 LC滤波器的组成 LC滤波器一般是由滤波电抗器、电容器和电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要; LC 滤波的单相桥式整流网侧谐波分析 摘要: 对LC 滤波的单相桥式整流电路作了较深入的理论分析, 得到了与谐波有关的各项性能指标 和谐波含量的表达式及关系曲线, 仿真结果验证了所得结论的正确性。 1 引言 许多电力电子装置含有由直流电压源供电的逆变或斩波电路。在这类装置中直流电压源大多是由电网交流电源整流后, 再经并联有大电容的滤波电路滤波得到的。滤波电容的引入造成了这类装置网侧电流的较大畸变。近年来,这类装置越多地投入使用(如各种电压型交2直2交变频装置、直流斩波调速装置、开关电源及不间断电源等) , 其网侧谐波问题逐渐引起了人们的关注。对其网侧谐波进行深入的分析是一项有意义的工作。 以往对整流电路分析大多针对电感滤波型整流电路, 个别对含有滤波电容的整流电路也只是作了一些定性分析。作者曾对电容滤波型整流电路作了较深入的分析, 但分析中没有考虑电网电抗的影响, 然而当电网电抗影响不能忽略时必须进一步分析研究。另一方面,在并联电容前串一小电感以抑制电流冲击引起的畸变, 这种电路一般称为LC 滤波整流电路。可证明, 这种情况在一定条件下与电容滤波型整流电路考虑电网电抗的情况是完全等效的。 本文在考虑电网电抗影响情况下, 对LC滤波单相桥式整流电路的网侧谐波进行较深入的定性和定量分析, 给出网侧电流谐波含量和某些性能指标与电路参数的关系表达式及关系曲线, 分析电路参数对电流谐波成分和各项性能指标的影响, 仿真结果验证了结论的正确性。 2 电路模型及直流电流工作方式 在由直流电压源供电的装置中, 输出电压幅值可由逆变电路或斩波电路来调节, 因此其整流电路由二极管组成是常见的情况。文中的分析即针对二极管单相桥式整流电路。图1 是分析所采用的电路模型和电压、电流波形,C 是滤波电容,L 是抑制电流冲击的电感。稳态时逆变或斩波电路消耗的直流平均电流一定, 所以可用电阻模型代表逆变或斩波电路。 在图 1 中若L 取值由小变大(以至无穷大) , C 取值由大变小, 则整流电路负载由容性 逐渐变为感性, 直流侧充电电流 id 由断续方式1 经断续方式2 变成连续方式, 如图2 所示。因 是二极管整流, 所以不论是哪种方式, 二极管VD1和VD4只能在电压正半周时导通, 而VD2和 VD3只能在电压负半周时导通。在断续方式 1中, id 在电源电压过零前即为零, VD1、 VD4和 VD2、 VD3间不发生换相过程; 在断续方式 2 中,电源电压过零时 id 未降到零, 两组二极管间发

十个精密整流电路的详细分析

图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 分析: 当Ui>0时,分析各点电压正负关系可知D1截止,D2导通,R1,R2和A1构成了反向比例运算器,增益为-1,R4,R3,R5和A2构成了反向求和电路,通过R4的支路的增益为-1,通过R3支路的增益为-2,等效框图如下: 当Ui>0时,最终放大倍数为1,输入阻抗为R1||R4。 当Ui<0时,分析各点电压的正负关系可知,D1导通,D2截止,A1的作用导致R2左端电压钳位在0V ,A2的反馈导致R3右端电压钳位在0V ,所以R2、R3支路两端电位相等,无电流通过,R4,R5和A2构成反向比例运算器,增益为-1,输入阻抗仍为R1||R4。 因此,此电路的输出等于输入的绝对值。 此电路的优点:输入阻抗恒等于R1||R4,输入阻抗低,调节R5可调节此电路的增益大小,在R5上并联电容可实现滤波功能。 此电路适用低频电路,当频率大时,输出电压产生偏移,且输入电压接近0V 时,输出电压失真,二极管的选型也非常重要,需选导通压降大些的。输入信号小时,也会影响最终输出。

图2优点是匹配电阻少,只要求R1=R2 图2 四个二极管型 分析: 当Ui>0时,根据各点电压正负情况可知D1,D4导通,D2,D3截止,A1的作用导致R2左端电压钳位在0V,R3上无电流通过,所以无压降,Uo=Ui 当Ui<0时,根据各点电压正负情况可知D1,D4截止,D2、D3导通,A1为反向比例运算器,增益为-R2/R1,A2为电压跟随器,所以输出电压为Uo=-Ui。 此电路采用两个运放分别处理正电压和负电压的情况,所以R1和R2需配对,否则输入为负电压时电路增益不为1,。R3阻值不重要,但不能太小,否则输入为负电压时A1需向R3提供较大的电流,该电路的输入阻抗为R1。 当电压过零时,A1,A2的输出电压会发生突变,因此当频率较大时,会影响结果的输出,可选用高速型运放。

电路分析一之桥式整流电路

桥式整流电路

二极管的模型 1.理想模型 所谓理想模型,是指在正向偏置时,其管压降为零,相当于开关的闭合。当反向偏置时,其电 流为零,阻抗为无穷,相当于开关的断开。具有这种理想特性的二极管也叫做理想二极管。 在实际电路中,当电源电压远大于二极管的管压降时,利用此模型分析是可行的。 2.恒压降模型 所谓恒压降模型,是指二极管在正向导通时,其管压降为恒定值,且不随电流而变化。硅管的 管压降为 0.7V,锗管的管压降为 0.3V。 只有当二极管的电流 Id 大于等于 1mA 时才是正确的。 在实际电路中,此模型的应用非常广泛。
稳压二极管: 稳压二极管在工作时应反接,并串入一只电阻。 电阻的作用一是起限流作用,以保护稳压管;其次是当输入电压或负载电流变化时,通过该电 阻上电压降的变化,取出误差信号以调节稳压管的工作电流,从而起到稳压作用。 最简单的稳压电路由稳压二极管组成如图所示。 从稳压二极管的特性可知, 若能使稳压管 始终工作在它的稳压区内,则 VO.基本稳定在 Vz 左右。
当电网电压升高时,若要保持输出电压不变,则电阻器 R 上的压降应增大,即流过 R 的电流增大。这增大的电流由稳压二极管容纳,它的工作点将由 b 点移到 C 点,由特性曲 线可知此时 Vo≈Vz 基本保持不变。

若稳压二级管稳压电路负载电阻变小时,要保持输出电压不变,负载电流要变大。由于 VI 保持不变,则流过电阻 R 的电流不变。此时负载需要增大的电流由稳压管调节出来,它 的工作点将由 b 点移到 a 点。所以,稳压管可认为是利用调节流过自身的电流大小(端电 压基本不变)来满足负载电流的改变,并和限流电阻 R 配合将电流的变化转化为电压的变 化以适应电网电压的变化。
稳压二极管电路稳压存在问题:电网电压不变时,负载电流的变化范围就是 IZ 的调节 范围(几十 mA),这就限制了负载电流 I0 的变化范围。怎样才能扩大 IO 的变化范围。 桥式整流电路原理

桥式整流电路计算

桥式整流电路计算 桥式整流属于全波整流,它不就是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器与两个二极管构成如下图所示的全波整流电路。从图中可见正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充分利用,效率较高。 主要参数: 桥式整流电路电感滤波原理 电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点瞧,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用

桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。 例10.1.1桥式整流器滤波电路如图所示,已知V1就是220V交流电源,频率为50Hz,要求直流电压 V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路 图10、5分别就是单相桥式整流电路图与整流滤波电路的部分波形。这里假设t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。 结论1:由于电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。

电子技术基础第二章整流与滤波电路习题册

第二章整流与滤波电路 一、判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)电容滤波适用于大电流场合,而电感滤波适用于高电压场合。() (2)全波整流电路中,流过每个整流管的平均电流只有负载电流的一半。() (3)单相桥式整流电容滤波电路中与单相半波整流电容滤波电路中,每个二极管承受的反向电压相同。() (4)半波整流电路中,流过二极管的平均电流只有负载电流的一半。() (5)硅稳压管并联型稳压电路的负载任意变化,稳压管都能起稳压作用。() (6)电解电容的电极有正、负之分,使用时正极接高电位,负极接低电位。() (7)任何电子电路都需要直流电源供电,因此需要直流稳压电源。() (8)在整流电路后仅用电阻就构成滤波电路。() (9)整流电路能将交流电压转换成单向脉动电压,是利用了二极管的单向导电性。(() (10)全波整流电路中,其中一个整流管短路时对整流电路不影响,输出仍为全波整流。() 二、选择正确答案填入空内。 1、滤波电路中整流二极管的导通角较大,峰值电流很小,输出特性较好,适用于低电压、大电流场合的滤波电路是() A、电感 B、电容 C、复式 D、有源 分析如下图,选择正确答案填在括号内(第2题~第5题),已知U2=10V。 2、接入滤波电容后,输出直流电压为() A、升高 B、降低 C、不变 D、为零 3、接入滤波电容后,二极管的导通角为() A、加大 B、减小 C、不变 D、为零

4、输出电压的平均值U O约为() A、10V B、14V C、16V D、12V 5、若D1短路,则() A、U0减小一半 B、U O不变 C、D3、D4发热 D、D2或变压器烧坏 分析如下图,选择正确答案填写在括号内(第6题~第11题)。 6、设U2有效值为10V,则电容两端电压为() A、 B、9V C、12V D、14V 7、若电容C脱焊,则Ui为() A、 B、9V C、12V D、14V 8、若二极管D4接反,则() A、变压器被短路,D1、D2或变压器被烧坏 B、变为半波整流 C、电容C将过压而击穿 D、稳压管过流而烧坏 9、若电阻R短路,则() A、U O将下降 B、变为半波整流 C、电容C将过压而击穿 D、稳定管过流而损坏 10、设电路正常工作,当电网电压波动而使U i增大时(负载不变),I R将增大,则I W将() A、增大 B、减小 C、基本不变 D、为零 11、设电路正常工作,当负载电流I O增大时(电网电压不变),I R将基本不变,则I W将() A、增大 B、减小 C、基本不变 D、为零

单相桥式整流、滤波电路教案

课题:单相桥式整流、滤波电路 课型:讲练结合 一、学习目标 (一)职业技能: 1.掌握电路接线的基本技能,能完成单相整流滤波电路的搭建 2.学会用示波器观察单相桥式整流、滤波电路电压波形并比较整流与滤波前后的波形。 3.能正确使用双踪示波器和万用表完成对单相整流滤波电路的测试 (二)职业知识: 1 ?理解整流的含义,熟悉几种典型的整流电路 2?理解整流电路的工作原理,熟练掌握其相应的计算 及二极管的选用原则 3?理解滤波的概念,了解常用的滤波方式 4.理解电容滤波的工作原理,掌握滤波电容的选择要求(三)职业道德与情感: 1通过电路接线与搭建,提高学生排除常见故障的能力 2.提高学生分析问题和解决问题的能力 二、工作任务单 【任务一】单相整流滤波电路的接线搭建

【任务二】单相整流电路的分析 【任务三】单相整流电路的测试 【任务四】单相整流滤波电路的测试和识读 三、预备实践知识 1.电路接线的基本技能 2.双踪示波器和万用表的使用方法 四、预备理论知识 1.整流的含义及整流电路的工作原理 2.滤波的概念和滤波电路的工作原理 3.二极管和滤波电容的选用原则 五、教学重点、难点: 重点:单相桥式整流、滤波电路的工作原理与参数计算难点:单相桥式整流、滤波电路的工作原理 六、【知识回顾】 1.二极管的特性是_________________ O 2.理想二极管是指___________________ o 3.单相半波整流电路变压器次级输出电压和负载的电压U。的关系是什么? 七、教学过程: 引子:上一堂课我们讲述了单相半波整流滤波电

路,大家发现半波整流,只能整出上半个波形,电源利用率低,脉动大,效果不是很好,脉动虽有所减少,但依然存在,那么怎样才能提高电源的利用率呢?如

关于整流滤波电路的设计分析

EDA实训报告 学校:云南国防工业职业技术学院 学院:机械电子工程学院 姓名:王文 学号:20111106144 组员:何文伟寸寿启陈晓东马联清 组长:王文 指导老师:宋昭君 2012-12-21

一,关于整流滤波电路的分析: 为了保证功放板的音质,电源变压器的输出功率不得低于80W,输出电压为2*25V,滤波电容采用2个2200UF/25V电解电容并联,正负电源共用4个 2200UF/25V的电容,两个104的独石电容是高频滤波电容,有利于放大器的音质。 二,关于衰减式调音电路的分析: 上图为调音电路的一部分详细电路图请看附图部分:高音、低音分开调节:C23、C24、RP3构成高音调节器,R12、R13、C21、C22、RP2构成低音调节器。RP3顺时针旋转时高音提升,逆时针旋转时高音衰减。RP2顺时针旋转时低音提升,逆时针旋转时低音衰减。组成音调电路的元件值必须满足下列关系: (1)R12≥R13; (2)RP2和RP3的阻值远大于R12、R13;

(3) 与有关电阻相比,C23、C24的容抗在高频时足够小,在中、低频时足够大;而C21、C22的容抗则在高、中频时足够小,在低频时足够大。C23、C24能让高频信号通过,但不让中、低频信号通过;而C21、C22则让高、中频信号都通过,但不让低频信号通过。 只有满足上述条件,衰减式音调控制电路才有足够的调节范围,并且RP2、RP3分别只对高音、低音起调节作用,调节时中音的增益基本不变,其值约等于 R13/R12。 R12与R13的比值越大,高、低音的调节范围就越宽,但此时中音的衰减也越大。改变R12或R13后,如要保持原来的控制特性,有关电容器的容量也要作相应改变,为了避免高、低音调节时互相牵制,有的衰减式音调电路还加进了隔离电阻。作衰减式音调调节的电位器宜用指数型(Z型),此时,频响平直的位置大致在电位器的机械中点。 三,LM1875主要参数: 电压范围:16~60V 静态电流:50MmA 输出功率:25W 谐波失真:<0.02%,当f=1kHz,RL=8Ω,P0=20W时 额定增益:26dB,当f=1kHz时 工作电压:±25V 转换速率:18V/μS

关于桥式整流电路计算

桥式整流电路计算 桥式整流属于全波整流,它不是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器和两个二极管构成如下图所示的全波整流电路。从图中可见正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充分利用,效率较高。 主要参数: 桥式整流电路电感滤波原理 电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用

桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。 例10.1.1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz,要求直流电压V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路 图10.5分别是单相桥式整流电路图和整流滤波电路的部分波形。这里假设t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。

结论1:由于电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。 结论2:从图10.6可看出,滤波电路中二极管的导电角小于180o,导电时间缩短。因此,在短暂的导电时间内流过二极管很大的冲击电流,必须选择较大容量的二极管。 在纯电阻负载时: 有电容滤波时: 结论3:电容放电的时间τ=R L C越大,放电过程越慢,输出电压中脉动(纹波)成分越少,滤波效果越好。取τ≥(3~5)T/2,T为电源交流电压的周期。 整流电路输出电压计算 对于整流电压的输出电压大小,大家一定不陌生。很多人会说,输出平均值全波0.9倍,半波0.45倍的交流有效。但是在设计中,我们常常发现一个事实,例如在半波整流后,输出电压得到的不止0.45倍,9V交流整流后可能有11~12V。之前我一直很困惑,是我记错了计算倍数吗?翻了很多书籍,公式当然是没错的。那到底怎么回事? 可能之前我们在学校学这个方面知识点的时候太过注重整流电路,而忽略了脉动比的概念,所以造成我们现在很多人对这一简单的知识不是很清晰。其实这里是由于整流电路后面接的滤波电容有关的,查阅模电知识我们即可了解到,整流后往往会加滤波稳压,而滤波电路会改变整流输出的脉动比,并且和负载有关。因此最终整流后得到的电压除了跟整流方式有关,还和负载、滤波电容大小有关系。RL*C的数值直接影响输出电压的大小。因此滤波电容选择其实不是随意的,而是需要根据负载选取合适的值。 接入滤波电路后,输出电压平均值近似取值为1.2倍,负载开路取1.414倍。

《电工技术》试题和答案解析--整流滤波电路

第一章整流滤波电路 一、填空题 1、(1-1,低)把P型半导体N型半导体结合在一起,就形成PN结。 2、(1-1,低)半导体二极管具有单向导电性,外加正偏电压导通,外加反偏电压截至。 3、(1-1,低)利用二极管的单向导电性,可将交流电变成直流电。 4、(1-1,低)根据二极管的单向导电性性,可使用万用表的R×1K挡测出其正负极,一般其正反向的电阻阻值相差越大越好。 5、(1-1,低)锗二极管工作在导通区时正向压降大约是0.3,死区电压是。 6、(1-1,低)硅二极管的工作电压为0.7,锗二极管的工作电压为0.3。 7、(1-1,中)整流二极管的正向电阻越小,反向电阻越大,表明二极管的单向导电性能越好。 8、(1-1,低)杂质半导体分型半导体和型半导体两大类。 9、(1-1,低)半导体二极管的主要参数有、,此外还有、、等参数,选用二极管的时候也应注意。 10、(1-1,中)当加到二极管上的反向电压增大到一定数值时,反向电流会突然增大,此现象称为现象雪崩。 11、(1-1,中)发光二极管是把能转变为能,它工作于状态;光电二极管是把能转变为能,它工作于状态。 12、(1-2,中)整流是把转变为。滤波是将转变为。电容滤波器适用于的场合,电感滤波器适用于的场合。 13、(1-1,中)设整流电路输入交流电压有效值为U2,则单相半波整流滤波电路的输出直流电压U L(A V)= ,单相桥式整流电容滤波器的输出直流电压U L(A V)= ,单相桥式整流电感滤波器的输出直流电压U L(A V)= 。 14、(1-1,中)除了用于作普通整流的二极管以外,请再列举出2种用于其他功能的二极管:,。 15、(1-1,低)常用的整流电路有和。 16、(1-2,中)为消除整流后直流电中的脉动成分,常将其通过滤波电路,常见的滤波电路有,,复合滤波电路。 17、(1-2,难)电容滤波器的输出电压的脉动τ与有关,τ愈大,输出电压脉动愈,输出直流电压也就愈。

RLC桥式整流滤波电路的频域分析及实验仿真

第24卷 第5期 邢 台 职 业 技 术 学 院 学 报 V ol.24 No.5 2007年10月 Journal of Xingtai Polytechnic College Oct . 2007 —————————————— 收稿日期:2007—02—03 作者简介:李加升(1965—),湖南安化人,益阳职业技术学院机电与电子工程系,副教授,硕士。 84 RLC 桥式整流滤波电路的频域分析及实验仿真 李加升1,戴瑜兴2 (1.湖南益阳职业技术学院, 湖南 益阳 413049;2.湖南大学 电气院, 湖南 长沙 410000) 摘 要:本文从频域的角度对RLC 桥式整流滤波电路进行了分析,并在EWB 里对该电路整 流和滤波后的电压波形分别进行了仿真。 关键词: RLC;桥式;滤波;频域;仿真 中图分类号: TN710 文献标识码: A 文章编号: 1008—6129(2007)05—0084—03 一、前言 以三角函数,复指数函数作为基元信号,对LTI(Linear time-invarnt )线性时不变系统建立的一种分析 方法,称为傅里叶频域分析法。[1] 时不变连续时间系统指的是在同样起始状态下,系统响应特性与激励 施加于系统的时刻无关。换句话说,若激励时延T 时间,响应也时延相同的时间T。即对任意T,满足 {x(t)→y(t)}?{x(T—t)→y(t—T)}。LTI 系统是一个同时满足线性性与时不变性的系统。[2] 二、RLC 桥式整流滤波电路的频域分析 如图1是——RLC 桥式整流滤波电路,也是一LTI 系统,下面我们从频域的角度来分析它。当给电源加——电压U S (t)=U m cos(ωt+?)时,经过整流得如图2的电压波形。[3]傅里叶级数展开式表示(最高取到四次谐波)为: u(t)=??????+?+.......)4cos(151)2cos(31214m 2t t U ωωπ 图1 RLC 桥式整流滤波电路 图2 电压波形 为了简化计算,假定U S (t)=110)V (100cos 2t π, L=5H,C=10μF,R=2K ?,则得: u(t)=[100+66.7cos(2ωt)-13.3cos(4ωt)+…….](V) 利用频域分析法,画出电路的相量模型图(如图3) 图3 相量模型图 求得总阻抗 Z=j ωL+R C j R C j +?ωω11=j ωL+R C j R +ω1=12+++?RC j R L j RLC ωωω 由串联电路分压原理得负载两端的电压为: ?R U =112+++?+?? CR j R L j RLC j CR j R R U ωωωω=L j RLC R U R ωω+???2(

桥式整流电路图详细分析

桥式整流电路图详细分析 学过模电的人应该对于桥式整流电路都应该不陌生,在我学模电的时候对于桥式整流电路印象最深刻的就是它的四个二极管。在我们的日常设计中,桥式整流电路也是基本上必不可少的,因为桥式整流器对输入正弦波的利用效率比半波整流高一倍。桥式整流是交流电转换成直流电的第一个步骤。 今天就让我们重温下当初的桥式整流电路: 桥式整流电路的工作原理如下: 输入电压u2为正半周时,对D1、D3加正向电压,Dl、D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成u2、D1、Rfz 、D3通电回路,在Rfz 上形成上正下负的半波整流电压; 输入电压u2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成u2、D2、Rfz 、D4通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。如此重复下去,结果在Rfz 上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。桥式整流是对二极管半波整流的一种改进。 分析1:电源滤波的过程分析:电源滤波是在负载RL两端并联一只较大容量的电容器。由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。 波形形成过程:输出端接负载RL时,当电源供电时,向负载提供电流的同时也向电容C 充电,充电时间常数为充=(Ri∥RLC)RiC,一般Ri〈〈RL,忽略Ri压降的影响,电容上电压将随u2迅速上升,当t=t1时,有u2=u0,此后u2低于u0,所有二极管截止,这时电容C通过RL放电,放电时间常数为RLC,放电时间慢,u0变化平缓。当t=t2时,u2=u0,t2后u2又变化到比u0大,又开始充电过程,u0迅速上升。t=t3时有u2=u0,t3后,电容

全桥整流电路(仅供参考)

全桥整流电路 全桥整流电路图: 全桥整流电路图 看完了全桥整流电路图,我们再来看一个关于全桥整流电路问题实例: 交流220v的全桥整流电路的输入端能否直接输入直流310v电源?为什么? 能得到峰值为310伏的脉动直流电压。如果得到纯直流电还要需要接电容电感等一系列的原件进行滤波。得到310伏的电压不容易。 如果工作电压或电流超过了二极管的极限参数那都要损坏。和多高电压多大电流无关。前提是在正常的工作范围内。 得到的高压经整流过后得到的高电压一般可看作虚电压。接上负载以后电压通常保持不再这个值。这个你可以用低压试验试试看。

最后电子元件技术网再来给大家讲讲全桥式整流电路工作原理: 电子系统的正常运行离不开稳定的电源,除了在某些特定场合下采用太阳能电池或化学电池作电源外,多数电路的直流电是由电网的交流电转换来的。这种直流电源的组成以及各处的电压波形如图所示。直流电源的组成 图中各组成部分的功能如下:⑴电源变压器:将电网交流电压(220V或380V)变换成符合需要的交流电压,此交流电压经过整流后可获得电子设备所需的直流电压。因为大多数电子电路使用的电压都不高,这个变压器是降压变压器。 ⑵整流电路:利用具有单向导电性能的整流元件,把方向和大小都变化的50Hz交流电变换为方向不变但大小仍有脉动的直流电。 ⑶滤波电路:利用储能元件电容器C两端的电压(或通过电感器L的电流)不能突变的性质,把电容C(或电感L)与整流电路的负载RL并联(或串联),就可以将整流电路输出中的交流成分大部分加以滤除,从而得到比较平滑的直流电。在小功率整流电路中,经常使用的是电容滤波。 ⑷稳压电路:当电网电压或负载电流发生变化时,滤波电路输出的直流电压的幅值也将随之变化,因此,稳压电路的作用是使整流滤波后的直流电压基本上不随交流电网电压和负载的变化而变化。 利用二极管的单向导电性组成整流电路,可将交流电压变为单向脉动电压。本章为便于分析整流电路,把整流二极管当作理想元件,即认为它的正向导通电阻为零,而反向电阻为无穷大。但在实际应用中,应考虑到二极管有内阻,整流后所得波形,其输出幅度会减少0.6~1V,当整流电路输入电压大时,这部分压降可以忽略。但输入电压小时,例如输入为3V,则输出只有2V多,需要考虑二极管正向压降的影响。 在小功率直流电源中,常见的几种整流电路有单相半波、全波、桥式和三相整流电路等。 整流(和滤波)电路中既有交流量,又有直流量。对这些量经常采用不同的表述方法:输入(交流)——用有效值或最大值;输出(直流)——用平均值;二极管正向电流——用平均值;二极管反向电压——用最大值。 单相全波桥式整流电路的工作原理

课题四单相桥式整流滤波电路的安装与调试

课题四 单相桥式整流滤波电路的安装与调试 任务分析 1、 掌握单相桥式整流滤波电路的工作原理。 2、 了解单相桥式整流电路的器件选择。 3、 会用Multisim 软件对电路进行仿真。 4、 掌握单相桥式整流滤波电路的安装方法。 5、 掌握单相桥式整流滤波电路的调试方法。 一、 预备知识 1、 交流电:电路中的电压(电流)的大小和方向随时间进行周期性变化的电压(电流)称为交流电,若遵循正弦规律变化则为正弦交流电。例如:常 用的市电为单相正弦交流电,电压为220 V ~ ,频率为50HZ 。 2、 直流电:电路中的电压(电流)的方向不发生变化的称为直流电。例如:常用的AA 干电池电压为1.5V ;锂离子充电电池电压为3.6V 。 3、 整流:将交流电转换为直流电的过程。 4、 滤波:单相整流电路整流后的直流电为脉动直流电,其中仍包含有较多的交流成分,为保证电源质量需要滤除其中的交流成分,保留直流成分,将脉动变化的直流电变为平滑的直流电称为滤波。 5、 单相整流滤波电路:将电网220 V ~的单相交流电路进行整流、滤波,输出 平滑的直流电。 6、常见整流电路: (1)单相半波整流电路

(2)单相全波整流电路 (3)单相桥式整流电路 在整流滤波电路中,单相桥式整流电容滤波电路应用最为广泛,本课题以此为例。 二、单相桥式整流滤波电路的工作原理(时间45分钟) 1、单相桥式整流滤波电路原理图 o 图一单相桥式整流滤波电路原理图

2、电路原理分析 (1)在图一中,当开关S1断开,S2闭合时,电路为单相桥式整流电路。 在变压器次级交流电压u 2为正半周时,即A+B-时,二极管V2、V3导通,V1、V4截至。电流流过的路径是:从A 点出发,经二极管V2、负载R2,再经V3回到B 点。如图实线所示。若忽略二极管的正向压降,可以认为R2上的电压u 0≈u 2。 当u 2为负半周,即A-B+时,二极管V 1、V4导通,V2、V3截至。电流的通路是从B 点出发,经V4、负载RL 、V ?回到A 点。如图一中虚线所示。若忽略二极管的正向压降u 0= -u 2。 从图上看出,无论u 2的正、负半周如何变换,流经R L 的电流方向始终不变,即由C →D 。四只二极管中对应桥臂上的两只为一组,两组轮流导通。在负载上,即可得到全波脉冲的直流电压和电流。因为这种整流属于全波整流类型。其波形如图二所示 L L 全波直流电压平均值u 0=0.9 u 2 (u 2为变压器次级电压有效值) 而流过的平均电流I L = u 0/R L 实操演习:挑选两名学生在示教板上演示,并用万用表(数字万用表)进行电压、电流测量。 (2)当开关S 1和S 2都闭合,接上电容C 后,电路为单相桥式整流电容滤波电路。 演示:在大型自制的示教板上演示。 测量:让学生在示教板上测量出单相桥式整流电容滤波电路上的电压和电流的数值,并记录在表一中。 表一 RM 三 EWB (Multisim )软件仿真 (时间45分钟) 在学校电子实训工作台的配套电脑中,都安装有NL 公司的(Multism8.0)

相关文档
最新文档