遗传学之——转座子引起的插入突变
分子生物学2-7章作业及答案

第二章一、名词解释1、DNA的一级结构:四种脱氧核苷酸按照一定的排列顺序以3’,5’磷酸二酯键相连形成的直线或环状多聚体,即四种脱氧核苷酸的连接及排列顺序。
2、DNA的二级结构:DNA两条多核苷酸链反向平行盘绕而成的双螺旋结构.3、DNA的三级结构:DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。
4、DNA超螺旋:DNA双螺旋进一步扭曲盘绕所形成的特定空间结构,是DNA结构的主要形式,可分为正超螺旋与负超螺旋两大类。
按DNA双螺旋的相反方向缠绕而成的超螺旋成为负超螺旋,反之,则称为正超螺旋。
所有天然的超螺旋DNA均为负超螺旋。
5、DNA拓扑异构体:核苷酸数目相同,但连接数不同的核酸,称拓扑异构体6、DNA的变性与复性:变性(双链→单链)在某些理化因素作用下,氢键断裂,DNA双链解开成两条单链的过程。
复性(单链→双链)变性DNA在适当条件下,分开的两条单链分子按照碱基互补配对原则重新恢复天然的双螺旋构想的现象。
7、DNA的熔链温度(Tm值):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链。
Tm值计算公式:Tm=69.3+0.41(G+C)%;<18bp的寡核苷酸的Tm计算:Tm=4(G+C)+2(A+T)。
8、DNA退火:热变性的DNA经缓慢冷却后即可复性,称为退火9、基因:编码一种功能蛋白或RNA分子所必需的全部DNA序列。
10、基因组:生物的单倍体细胞中的所有DNA,包括核DNA和线粒体、叶绿体等细胞器DNA11、C值:生物单倍体基因组中的全部DNA量称为C值12、C值矛盾:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论13、基因家族:一组功能相似、且核苷酸序列具有同源性的基因。
可能由某一共同祖先基因经重复和突变产生。
14、假基因:假基因是原始的、有活性的基因经突变而形成的、稳定的无活性的拷贝。
表示方法:Ψα1表示与α1相似的假基因15、转座:遗传可移动因子介导的物质的重排现象。
某理工大学《遗传学》考试试卷(634)

某理工大学《遗传学》课程试卷(含答案)__________学年第___学期考试类型:(闭卷)考试考试时间:90 分钟年级专业_____________学号_____________ 姓名_____________1、判断题(55分,每题5分)1. 在F+×F-杂交中,供体细菌只能把它们的染色体的特定片段转移给受体。
()答案:错误解析:2. 所有的基因都是顺反子。
()[中山大学2019研]答案:正确解析:顺反子,也做作用子,是基因的一个旧名称。
3. 染色体缺失杂合体减数分裂时形成的缺失圈是由缺失染色体形成的。
()[湖南农业大学2018研]答案:错误解析:染色体缺失杂合体与同源染色体配对时,标准染色体缺少对应的同源部分,结果形成凸露的缺失圈。
4. 有些基因本身不能独立地表现任何可见的表型效应,但可以完全抑制其他非等位基因的表型效应,这种基因为下位基因。
()[中山大学2019研]答案:错误解析:不能独立地表现任何可见的表型效应的基因但可以完全抑制其他非等位基因的表型效应,这种基因为上位基因。
5. 表型与性别有关的性状,其基因不一定都位于性染色体上。
()答案:正确解析:表型与性别有关的性状,其基因也可能位于常染色体上。
6. 副突变是指一个等位基因可以使其同源基因的转录发生沉默。
()[中山大学2019研]答案:正确解析:副突变是指一个等位基因可以使其同源基因的转录发生沉默。
也就是具有同一位点的两个等位基因之间的相互作用,它导致其中一个等位基因发生一个可遗传的变化。
7. 致死基因的作用发生在胚胎期或成体阶段的称为合子致死。
()答案:正确解析:合子致死是指致死基因在胚胎期或成体阶段发挥作用导致胚胎死亡的现象。
8. 由核基因决定的雄性不育系,没有相应的保持系。
()答案:正确解析:核雄性不育是受细胞核不育基因控制的,与细胞质没关系。
所以核不育的恢复系很多但没有保持系,不能三系配套。
9. 孟德尔选取豌豆作为他的实验材料,因为它是一种性状的一年生植物。
转座因子

概述
转座因子(transposable element ),又叫可 移动因子,它是指一段特定的DNA序列, 可从原来的位置上单独复制或自动脱落下 来,经环化后再插入到染色体其他位置, 并对插入位置的附近基因产生各种遗传学 效应。
转座因子的发现和检出
首先由美国遗传学家Barbara MeClintock在玉 米中发现,并荣获1983年度诺贝尔奖。 1951年McClintock提出转(Transposition)和 跳跃基因(jumping gene)的新概念 1967年Shapiro才在E.coli中发现了转座因子 (transposable element )
转座因子广泛存在于原核和真 核细胞中。原核生物中的转座 因子有三种类型:插入序列 (insertion sequence IS) ,转座 子(transposon,Tn) ,某些特殊 病毒(如Mu,D108)
转座子的分类举例
插入序列(IS) 最简单的转座子称为插入序列(IS) IS家族有很多成员,它们的结构相似 特征: 两端都有短5-9bp的正向重复序列(DR) 略长15-25bp的反向重复序列(IR) 1kb左右的编码区,它仅编码和转座有关的 转座酶
2 转座的机制
2.1复制性转座: 特征: (1)转座后原来位置上的转座因子保持不变 (2)在新的位置上的转座因子的两侧出现顺 向重复序列 (3)转座过程中有一共合体
转座作用的遗传效应
引起插入突变 产生新的基因 产生染色体畸变 引起生物进化
总结
制作者:吴涛,周哲,吴鑫 ,柯海强
插入序列(IS)的结构和功能
转座过程
转座酶(transposase)催化插入序列(IS)的 转座,它由插入序列(IS)编码 首先转座酶交错切开宿主靶位点,然后IS插 入,与宿主的单链末端相连接,余下的缺 口由DNA聚合酶和连接酶加以填补,最终 插入的IS两端形成了DR或靶重复。
可移动的遗传因子(转座子)最新实用版

5、转座子作为研究工具:
主要用于如下研究: ① 基因传送载体 ② 结构重组 ③ 基因表达 ④ 基因突变 ⑤ 克隆 ⑥ 基因作图
四、原核生物和真核生物的转座子
(一)原核生物的转座子
1、插入序列(IS)与Ⅰ类复合转座子
插入序列是最简单的转座子。包括:
① 二个分离的反向重复序列(ITR) ② 一个转座酶(transposase)编码基因
(二)R 质粒——耐药性质粒
➢ R 质粒由抗性转移因子(RTF)和决定抗性 因子(r-决定子)两部分DNA片段组成。
➢ R 质粒含有对抗生素的抗性基因,使宿主细 菌产生对抗生素的抗性,这种耐药性是可以 遗传的。
(三)Col 质粒——大肠杆菌质粒
➢ 是能产生大肠杆菌素的大肠杆菌质粒,可以 抑制或杀死不含Col 质粒的亲缘细菌。
两端有反向重复序列转座后靶位点是正向重复编码与转座有关的蛋白转座酶可以在基因组中移动复制型转座非复制型转座保守型转座一转座中复制子融合形成共和体cointegrate一个含有两个质粒的细胞质粒各有一个转座子两个质粒可以融合在一起形成共和体这一过程称复制子融合repliconfusion
第三章
可移动的遗传因子(转座子) 和染色体外遗传因子
IR
Transposase Gene
有用基因 IR
3、转座噬菌体
转座噬菌体是一种溶菌周期和溶源性交替 方式的噬菌体,可诱发大肠杆菌突变。
Mu噬菌体:
① 既有温和噬菌体的特性,又有转座子的特性。 ② 噬菌体DNA的多个拷贝转座到染色体DNA的许
多位点上,最终由这些染色体上的转座单位进行 噬菌体包装。 ③ Mu噬菌体基因组右末端,存在由3kb组成的G片 段,或称可倒位片段。G片段在不同的Mu噬菌 体DNA分子中取向不同。
插入突变在水稻功能基因组学中的研究进展

入突变、转座子插入突变等。主要介绍这两种方法的原理及其在水稻功能基因组学研究中的应用和进展,并分析和讨论了插 入突变在水稻功能基因组学研究中存在的困难和发展趋势。 关键词: 插入突变T-DNA转座子 水稻功能基因组学
Study
on
the Insertional
Mutagensis
Su Hon91・2
12
AdDs系统插入和逆转录转座子插入法,如Tosl7插 入建立水稻突变体库…。转座子可通过DNA复制 或直接切除两种方式获得可移动片段,重新插入基 因组DNA中。根据转座的自主性,这类元件又可分 为自主转座子和非自主转座子,自主转座子本身能 够编码转移酶而进行转座,而非自主转座子只有在 自主转座子存在时才能转座,如Ac/Ds系统中,Ac 属于自主转座子而Ds属于非自主转座子。逆转录 转座子是通过RNA中间体进行转座的,这类转座子 转座后不需切割,因此能产生永久的突变。逆转录 转座子的主要特征是两端具有长的同向末端重复序 列(10ng
terminal
repeat,LTR),LTR主要携带有转录
起始和终止信号及转座所需的调控序列,在正常条 件下它们是失活的。逆转录转座子因其产生的插入 稳定,用于基因标记具有很大的潜力,如Tosl7反转 录转座子已发展成为一个在水稻上很有希望的体 系。然而相对较低的转座频率限制了它们用于大规 模的基因标记。 Ac/Ds系统是玉米中的一个转座子家族,广泛 应用于水稻插入突变体构建。Ac因子单独存在便 可引起转座突变,但变异不稳定;Ds因子在有Ac因 子或合成转座酶的序列存在的条件下才会引起插入 突变。Ac/Ds因子以非复制的方式转座即所谓“切 粘”机制,但也会在染色单体间发生基因转换,使转 座子拷贝数增多,如水稻花粉育性相关的aidl突 变体‘8|。 Tosl7是水稻中第1个被鉴定的最有活性的逆转 录转座子,它在组织培养条件下可以被激活,且随培养 时间的延长其拷贝数会提高。实验表明Tosl7在正常 繁殖的水稻品种中的拷贝数因随基因型而有所不同, 一般只有l一5个拷贝;在组织培养下其拷贝数随继代 培养时间的延长而较快增加,当培养16个月以后,其 拷贝数开始保持稳定;一般组织培养可使Tosl7的拷贝 数增至5~30,且Tosl7只在组织培养条件下被激活,再 生植株的Tosl7仍然是没有活性的一。。
转座子概述

末端11bp的IR和8bp的DR,DR是由靶位点重复而成。
Ds:
各种Ds因子的长度和序列都不相同,但和Ac相关。其末端同样 有11bp的IR。
Ds比Ac短,其缺失的长度不同,一个极端的例子是Ds9因子仅 缺失194bp,另一个例子是Ds6因子长仅有2.5kb,相当于Ac两端 各1kb。
转座产生的染色体畸变
当复制性转座发生在宿主DNA原有位点附近时,往往导 致转座子两个拷贝之间的同源重组,引起DNA缺失或倒位。 若同源重组发生在两个正向重复转座区之间,就导致宿主染 色体DNA缺失;若重组发生在两个反向重复转座区之间,则 引起染色体DNA倒位。
正向重复之间的互 惠 (Reciprocal) 重 组 会将它们之间的序 列切除,中间区域 会以环状DNA 的形 式被切除(从细胞中 消失);染色体仍保 留正向重复的一个 拷贝。
转座子概述
主讲内容
一、转座子的概念 二、转座子的分类 三、转座发生的机制 四、真核生物的转座因子
一、概念ห้องสมุดไป่ตู้
转座子(transposon,简称Tn), 又称易位子,是指存在 于 染 色 体 DNA 上 可 以 自 主 复 制 和 移 位 的 一 段 DNA 序 列 。
转座子可以在不同复制子之间转移,以非正常重组方式 从一个位点插入到另外一个位点,对新位点基因的结构与表 达产生多种遗传效应。
dSpm(defective Spm): 非自主性因子,所有dSpm都是功能性Spm的缺失突变体; Spm-dSpm系统在功能上与Ac-Ds系统相似,也可以引入基因的
插入突变,影响结构基因表达,还能导致染色体断裂。
Spm/En有两个基因,tnpA 有11 个外显子,经转录拼接产生2500bp 的 mRNA,tnpB 的6000bpmRNA中包含ORF1和ORF2。
第七章 微生物遗传试题及答案

第七章微生物遗传试题一.选择题:71085.71085.已知DNA的碱基序列为CATCATCAT,什么类型的突变可使其突变为:CTCATCATA.A.缺失B.B.插入C.C.颠换D.D.转换答:()71086.71086.已知DNA的碱基序列为CATCATCAT,什么类型的突变可产生如下碱基序列的改变:CACCATCAT?A.缺失B.插入C.颠换D.转换答:()71087.71087.不需要细胞与细胞之间接触的基因重组类型有:A.接合和转化B.转导和转化C.接合和转导D.接合答:()71088.71088.转化现象不包括A.DNA的吸收B.感受态细胞C.限制修饰系统D.细胞与细胞的接触答:()71089.71089.将细菌作为实验材料用于遗传学方面研究的优点是:A.生长速度快B.易得菌体C.细菌中有多种代谢类型D.所有以上特点答:()71090.71090.转导噬菌体A.仅含有噬菌体DNAB.可含有噬菌体和细菌DNAC.对DNA酶是敏感的D.含1至多个转座子答:()71091.71091.在Hfr菌株中:A.F因子插入在染色体中B.在接合过程中,F因子首先转移C.在接合过程中,质粒自我复制D.由于转座子是在DNA分子间跳跃的,因此发生高频重组答:()71092.71092.以下碱基序列中哪个最易受紫外线破坏?A.AGGCAAB.CTTTGAC.GUAAAUD.CGGAGA答:()71093.71093.对微生物进行诱变处理时,可采用的化学诱变剂是:A.青霉素B.紫外线C.丫啶类染料D.转座子答:()71094.71094.在大肠杆菌(E.coli)的乳糖操纵子中,基因调节主要发生在__________水平上。
A.转化B.转导C.转录D.翻译答:()71095.71095.转座子___________。
A.能从DNA分子的一个位点转移到另一个位点B.是一种特殊类型的质粒C.是一种碱基类似物D.可引起嘌呤和嘧啶的化学修饰答:()71096.71096.当F+F-杂交时A.F因子几乎总不转移到F+细胞中B.F-菌株几乎总是成为F+C.基因重组的发生频率较高D.F因子经常插入到F-细胞染色体上答:()71097.71097.在U形玻璃管中,将一滤片置于二株菌之间使之不能接触,在左臂发现有原养型菌出现,这一现象不是由于:A .接合B.转化C.普遍转导D.专性转导答:()71098.71098.F因子和λ噬菌体是:A.与寄主的生活能力无关B.对寄主致死C.与染色体重组后才可复制D.仅由感受态细胞携带答:()71099.71099.细菌以转化方式进行基因转移时有以下特性:A.大量供体细胞的基因被转移B.包含有F质粒参加C.依靠噬菌体感染受体细胞D.可通过从供体细胞中提取DNA片段来完成答:()71100.71100.一个大肠杆菌(E.coli)的突变株,不同于野生型菌株,它不能合成精氨酸,这一突变株称为:A.营养缺陷型B.温度依赖型C.原养型D.抗性突变型答:()71101.71101.转导子是指:A.供体菌B.转导噬菌体C.转导前供体菌D.转导后受体菌答:()71102.71102.以下不是专性转导特点的是:A.必须是原噬菌体状态B.供体细胞中的任何染色体基因片段都有机会被转移到受体细胞中C.通常包括了一个基因如半乳糖(gal)基因的重组D.原噬菌体转导导致噬菌体某些基因留在了细菌的基因组中答:()71103.71103.当Hfr F-时,A.进入到F-细胞中的第一个基因随Hfr菌株的不同而不同B.采用在不同时间中断杂交的方法来作基因图C.单链DNA链的5 '端首先进入F-细胞D.所有上述特点全正确答:()71104.71104.抗药性质粒(R因子)在医学上很重要是因为它们:A.可引起某些细菌性疾病B.携带对某些抗生素的特定抗性基因C.将非致病细菌转变为致病菌D.可以将真核细胞转变为癌细胞答:()71105.71105.在普遍性转导中,同源DNA分子的交换要求:A.转座子B.插入序列C.DNA链的断裂和重新连接D.反转录答:()71106.71106.F+F-杂交时,以下哪个表述是错误的?A.F-细胞转变为F+细胞B.F+细胞转变为F-细胞C.染色体基因不转移D.细胞与细胞间的接触是必须的答:()71107.71107.以下突变中哪个很少有可能产生回复突复:A.点突变B.颠换C.转换D.染色体上三个碱基的缺失答:()71108.71108.准性生殖:A.通过减数分裂导致基因重组B.有可独立生活的异核体阶段C.可导致高频率的基因重组D.常见于子囊菌和担子菌中答:()71109.71109.流产转导不具有_________的特性。
转座子(真核)概论

•反转录病毒基因组RNA的长度为5~8 kb。
•基因组RNA的中部带有gag,Pol与env 三个“基因”,“基因” 这一术语在这里表示为编码区,每一编码区通过加工实际上产 生出多种蛋白质。
•一个含3个基因的反转录病毒其基因的排列方式为gag-pol-env。 其中gal基因编码病毒粒子核心结构蛋白成份,包括核酸结合蛋 白;pol基因编码反转录酶、整合酶和蛋白酶;env基因编码病毒 外膜蛋白。
丝状真菌中的这些反转座子大多都属于gypsy组,具有pol和 gag两个阅读框架。
如尖孢镰刀菌中的Skippy,长度为7846 bp,末端有2个正 向重复的LTR (429 bp),在靶位点产生5 bp的正向重复。中间 有2个ORF,第1个ORF的长度为2562 bp,与反转录病毒的 gag基因有同源性,第2个ORF的长度为3888 bp,与反转录病 毒pol基因编码的反转录酶、蛋白酶和RNase H有同源性,其 排列顺序与Gypsy组相同。其它一些真菌LTR-反转座子见表 4。
表4 一些真菌中的LTR-反转座子
LTR-反转座子 长度(bp) LTR 靶序列重复 拷贝数 寄主来源
Gypsy组: Foret ~8000 不详 不详 多拷贝 尖胞镰刀菌(F. oxysporum) Skippy 7846 429 5 多拷贝 尖胞镰刀菌(F. oxysporum) CfT-1 6968 427 5 25 黄枝胞菌(Cladosporium fulvum) Maggy 5638 253 ? 多拷贝 稻瘟病菌(Magnaporthe grisea) Boty ~6000 596 ? 多拷贝 灰葡萄孢菌(Botrytis cinerea) Afult1 6914 282 5 多拷贝 烟曲霉(Aspergillus fumigatus) Mars4 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷落的原因和启示
1.
2.
3.
从转座子理论和经典遗传学的关系来看,转座子理论 推翻了经典遗传学关于基因是稳定的这一传统观念, 是一种革命性的理论,因而不为经典遗传学家所接受。 从转座子理论和分子遗传学的关系来看,是由于前者 走在了时代前面,是一种超时代发现。科学界还没有 做好接受它的准备。因而遭到分子遗传学家的冷落。 从转座子理论赖以建立的实验材料看,是由于它离开 了分子生物学的主流。麦克林托克虽然身在冷泉港生 物学实验室,但她所采用的材料,与该室中极大多数 科学家不同。她没采用病毒和细菌作材料,研究基因 的拼接、剪切和重组,而是采用玉米这样的高等植物 作为研究对象。
转座作用的机制
转座时发生的插入作用有一个普遍的特 征,那就是受体分子中有一段很短的 (3-12bp)、被称为靶序列的DNA会被 复制,使插入的转座子位于两个重复的 靶序列之间。不同转座子的靶序列长度 不同,但对于一个特定的转座子来说, 它所复制的靶序列长度都是一样的,如 IS1两翼总有9个碱基对的靶序列,而Tn3 两端总有5bp的靶序列。
30岁那年,麦克林托克在某些玉米籽粒 中发现了玉米色素显现着一些稀奇古怪 的模式。她观察到玉米籽粒颜色的遗传 很不稳定,有时籽粒上还出现一些斑斑 点点。 她通过耐心的记录和仔细的分析,发现 使籽粒着色的色素基因是在某一特定代 上“接上”或“拉断”的。
1951年,在冷泉港生物学专题讨论会上,麦克 林托克递交了自己的学术论文,向科学界同行 报告了她的新理论。她提出遗传基因可以转移, 能从染色体的一个位置跳到另一个位置,甚至 从一条染色体跳到另一条染色体上。她把这种 能自发转移的遗传基因称为“转座因子” 。 “转座因子”除了具有跳动的特性之外,还具 有控制其他其因开闭的作用,因此“转座因子” 又可叫做“控制因子”。
转座理论不被接受
在当时,占统治地位的染色体遗传学理论认为, 生物细胞内的遗传物质比较稳定,遗传基因以 一定的顺序在染色体上作线性排列,彼此之间 的距离也非常稳定。常规的交换和重组只发生 在等位基因之间,并不扰乱这种距离。除了在 显微镜下可见的、发生频率极为稀少的染色体 倒位和相互易位等畸变可以改变基因的位置外, 人们还从未认识到,也难以设想出基因会从一 处跳跃到另一处。
转座子的分类和结构特征
简单转座子 转座子(transposon,Tn)是存在于染色体 DNA上可自主复制和移位的基本单位。 最简单的转座子不含有任何宿主基因而常被 称为插入序列(insertion sequence,IS),它 们是细菌染色体或质粒DNA的正常组成部分。 一个细菌细胞常带有少于10个IS序列。转座子 常常被定位到特定的基因中,造成该基因突变。 IS序列都是可以独立存在的单元,带有介导自 身移动的蛋白。
实验原理
DNA的转座,或称移位(transposition), 是由可移位因子(transposable element) 介导的遗传物质重排现象。 已经发现"转座"这一命名并不十分准确, 因为在转座过程中,可移位因子的一个 拷贝常常留在原来位置上,在新位点上 出现的仅仅是拷贝。因此,转座有别于 同源重组,它依赖于DNA的复制。
值得庆幸的是,尽管麦克林托克采用了 孟德尔式的工作方式,利用了大体相同 的实验材料(都是高等植物),得出了 相同性质的超时代发现,也遭受了大体 相同的命运,但她毕竟在晚年看到了自 己理论的胜利,并获得了科学界的最高 奖励—— 诺贝尔奖。
实验目的
通过实验进一步认识转座子的遗传学效 应之一——转座时可引起插入突变
实验五 转座子引起的插入突变
厦门大学生命科学学院
冷落巴巴拉.麦克林托 克(B.McClintock)由于发现了可移动 的遗传物质,被授予诺贝尔医学奖。 人们把麦氏的成就比之为一百年前另一 位伟大的遗传学家孟德尔的成就。
研究玉米
玉米是经典遗传学研究中采用的一个理想 的供试对象。因为它的籽粒和叶子有颜色 变化。这种颜色变化是由遗传结构的基本 改变引起的。 为了探究遗传机构变化的内在机制,麦克 林托克年复一年地在田间仔细地观察玉米 籽粒和玉米叶子的颜色发生的一代又一代 的复杂变化;然后,将采下的材料带回实 验室,观察玉米染色体的断裂和重组情况。
转座子的分类和结构特征
复合式转座子(composite transposon) 是一类带有某些抗药性基因(或其他宿 主基因)的转座子,其两翼往往是两个 相同或高度同源的IS序列,表明IS序列 插入到某个功能基因两端时就可能产生 复合转座子。一旦形成复合转座子,IS 序列就不能再单独移动,因为它们的功 能被修饰了,只能作为复合体移动。
60年代中期,关于遗传物质的转移,人 们在细菌中发现了转化和转导现象。 60年代后期,当人们运用遗传工程这种 强有力的新工具时,终于在细菌中发现 了“转座子” ,从而开始激起人们对麦 克林托克研究工作 的兴趣。许多研究很 快与麦氏的早期研究所提出的相似现象 联系起来。
终被接受
整个70年代,分子遗传学家找到了愈来愈多的 可移动的或可转移的遗传因子, 又称之为“跳 跃基因” 。这些因子不仅存在于细菌中,同时 也存在于较高等的动物中。麦氏的理论又得到 了进一步的验证。 麦克林托克30年代初做出的发现、40年代提出 的理论,到60年代末终于被重新提起,80年代 初为科学界普遍接受。她走在时代前面四十年, 同时也为此冷落奋斗了四十年。
Ac/Ds转座系统
例如SG是一个产生紫色色素的结构基因,它 附近的一个控制因子Ds(称为离解因子或分 化变异因子)以一定的速率关闭SG,使玉米 籽粒不能产生紫色色素,而成为黄色。DS从 SG附近跳开,SG所受的控制作用即被解除, 玉米籽粒又变成紫色。而DS跳到远离AC处, 或者AC本身跳开,DS即不受AC的控制,它又 可以发挥对结构基因SG的抑制作用,使玉米 籽粒成为黄色。这些控制因子跳动得如此之快, 使得受它们控制的颜色基因时关时开,于是玉 米籽粒便出现了斑斑点点。