紫外吸收光谱与红外吸收光谱
第十三章 紫外和红外

2
200nm以下为远紫外区。空气中的氮、氧 、二氧化碳及潮气等均对这一波段的电磁波 产生吸收,所以样品进行远紫外光测量时, 仪器的光路系统必须抽真空,以排除上述气 体干扰,因此该区段又称真空紫外区。
一、非共轭体系的简单分子
这类化合物包括饱和碳氢化合物及其有 助色团取代的衍生物、含孤立发色团的化合物
21
饱和碳氢单键只有 电子,因此只能产生 →*跃迁。由于对应能量较高,吸收带位于
远紫外区(<200nm), 需要在无氧或真空中 进行测定,目前应用较少。但这类化合物在 200 ~ 1000nm范围内几乎是紫外透明的, 可以作为优良的溶剂使用。如正己烷、环己 烷等。 饱和烃的杂原子取代物(如被助色团-NH2 、-NR2、-OH、 -OR、-SR、-Cl、
当芳环与发色团直接相连时会同时出现K、 B 两带(B带波长较长),且B 带产生红移。若 分子中含有n 电子,还会有R 带同时出现。 (4)E 吸收带
是芳香族化合物的特征吸收带,由两个吸收峰
13
在一定意义上,苯环又可以 看成三个共轭的乙烯组成, 而苯环中的这种乙烯键和共 轭乙烯键引起的紫外吸收带
分别称为E1 和E2 带,见图
Wood-Ward经验规则:用于估算共轭烯烃
化合物的最大吸收波长。规则的出发点是以
1,3-丁二烯为母体,
其最大吸收波长基
本值为214nm,再加
上各取代基的类型、
数目、位置以及溶
剂等因素引起的修
正值。
25
表13-4 计算取代共轭双烯紫外max的伍德沃德规则(乙醇溶液)
1. 开链或异环未取代共轭双烯max基本值
影响红外吸收光谱和紫外吸收谱光谱的主要因素

影响基团频率位移的因素大致可分 为内部因素和外部因素。
• 内部因素: • 1. 电子效应 包括诱导效应、共轭效应和中 介效应,它们都是由于化学键的电子分布 不均匀引起的。
(1)诱导效应
由于取代基具有不同的电负性,通过静电诱导作 用, • 引起分子中电子分布的变化。从而改变了键力常 数,使基团的特征频率发生了位移。 例如,一般 电负性大的基团或原子吸电子能力强,与烷基酮 羰基上的碳原子数相连时,由于诱导效应就会发 生电子云由氧原子转向双键的中间,增加了C=O 键 的力常数,使 C=O 的振动频率升高,吸收峰向高 波数移动。随着取代原子电负性的增大或取代数 目的增加,诱导效应越强,吸收峰向高波数移动 的程度越显著。 •
3. 振动耦合
• 3. 振动耦合 当两个振动频率相同或相近的基团相邻具有一 公共原子时,由于一个键的振动通过公共原子使另一个键的 长度发生改变,产生一个“微扰”,从而形成了强烈的振动 ! 相互作用。其结果是使振动频率发生感变化,一个向高频 移动,另一个向低频移动,谱带分裂。振动耦合常出现在一 些二羰基化合物中,如,羧酸酐。
影响红外吸收光谱和紫外吸收谱光谱的主 要因素
2011级化师 张向红 20114061004
1.5.1 立体效应
一、 顺反异构
例:顺式和反式1,2二苯代乙烯的λmax不同。
这是因为: 顺式1,2-二苯代乙烯的两个苯环由于空间位阻,使苯环和乙烯双 键的共平面性减小;而反式 1 ,2- 二苯代乙烯的两个苯环和乙烯双键 共平面。
(2)中介效应(M 效应)
(2)中介效应(M 效应)当含有孤对电子的原子(O、S、N
等)与具有多重键的原子相连时,也可起类似的共轭作用, 称为中介效应。由于含有孤对电子的原子的共轭作用,使 C=O 上的电子云更移向氧原子,C=O 双键的电子云密度平均 化,造成 C=O 键的力常数下降,使吸收频率向低波数位移。 对同一基团,若诱导效应和中介效应同时存在,则振动频率 最后位移的方向和程度,取决于这两种效应的结果。当诱导 效应大于中介效应时,振动频率向高波数移动,反之,振动 频率向低波数移动。
核磁共振波谱与紫外可见光谱及红外光谱的区别解读

核磁共振波谱与紫外可见光谱及红外光谱的区别
核磁共振波谱与紫外可见光谱及红外光谱的主要不同有两点:
①照射频率不同,引起的跃迁类型也不同。
紫外可见吸收光谱是分子吸收200~700nm的电磁波,主要是引起价电子(最外层电子)能级发生跃迁。
红外光谱是分子吸收2.5~50um(2500~50000nm)的电磁波,引起分子的振动-转动能级发生跃迁。
核磁共振波谱则是在外磁场下,吸收60cm~300m的电磁波,引起原子核的自旋能级发生跃迁。
②测定方法不同。
紫外和红外等一般光谱是通过测定不同波长下的透光率(T%=出射光强/入射光强)来获得物质的吸收光谱。
这种方法只适用于透过光强度变化较大的能级跃迁。
60cm~300m的电磁波穿透力很弱,故核磁共振无法通过测定透光率来获得核磁共振光谱,它是通过“共振吸收法”来测定核磁共振信号的。
共振吸收法是指:在一定磁场强度下,原子核在一定频率的电磁波照射下发生自旋能级跃迁时引起核磁矩方向改变进而产生感应电流,通过放大、记录此感应电流便得到核磁共振信号。
依次改变磁场强度(或电磁波的照射频率)使满足不同化学环境核的共振条件,收集共振引起的磁感应信号,经过数学处理,就获得核磁共振波谱图。
紫外-可见吸收光谱与红外光谱.

紫外-可见吸收光谱与红外光谱基本概念紫外-可见吸收光谱:让不同波长的光通过待测物,经待测物吸收后,测量其对不同波长光的吸收程度(吸光度A),以吸光度A为纵坐标,辐射波长为横坐标作图,得到该物质的吸收光谱或吸收曲线,即为紫外—可见吸收光谱。
红外光谱:又称为分子振动转动光谱,属分子吸收光谱。
样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即为红外光谱。
两者都是红分了的吸收光谱图。
区别--起源不同1.紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。
电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。
除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。
因此,紫外吸收光谱属电子光谱。
光谱简单。
2.中红外吸收光谱由振—转能级跃迁引起? 红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。
适用范围紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。
红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究。
紫外分光光度法测定对象的物态以溶液为主,以及少数物质的蒸气;而红外分光光度法的测定对象比紫外分光光度法广泛,可以测定气、液、固体样品,并以测定固体样品最为方便。
红外分光光度法主要用于定性鉴及测定有机化合物的分子结构,紫外分光光度法主要用于定量分析及测定某些化合物的类别等。
特性红外光谱的特征性比紫外光谱强。
因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。
核磁共振波谱与紫外可见光谱及红外光谱的区别

核磁共振波谱与紫外可见光谱及红外光谱的区别核磁共振波谱与紫外可见光谱及红外光谱的主要不同有两点:①原理不同紫外可见吸收光谱是分子吸收200~700nm的电磁波,吸收紫外光能量,引起分子中电子能级的跃迁,主要是引起最外层电子能级发生跃迁。
红外光谱是分子吸收2.5~50um(2500~50000nm)的电磁波,吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁。
核磁共振波谱则是在外磁场下,吸收60cm~300m 的电磁波,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁。
②测定方法不同。
紫外和红外等一般光谱是通过测定不同波长下的透光率(T%=出射光强/入射光强)来获得物质的吸收光谱。
这种方法只适用于透过光强度变化较大的能级跃迁。
60cm~300m的电磁波穿透力很弱,故核磁共振无法通过测定透光率来获得核磁共振光谱,它是通过“共振吸收法”来测定核磁共振信号的。
共振吸收法是指:在一定磁场强度下,原子核在一定频率的电磁波照射下发生自旋能级跃迁时引起核磁矩方向改变进而产生感应电流,通过放大、记录此感应电流便得到核磁共振信号。
依次改变磁场强度(或电磁波的照射频率)使满足不同化学环境核的共振条件,收集共振引起的磁感应信号,经过数学处理,就获得核磁共振波谱图。
③谱图的表示方法不同:紫外谱图的表示方法:相对吸收光能量随吸收光波长的变化。
红外谱图的表示方法:相对透射光能量随透射光频率变化。
核磁谱图的表示方法:吸收光能量随化学位移的变化。
④提供的信息不同:紫外提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息。
红外提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率。
核磁提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息。
核磁共振谱的优缺点:优点:(仪器的灵敏度和分辨率非常高,较容易解析NMR图(随着计算机技术的应用,多脉冲激发的方法的采用及由此产生的二维谱图、多维谱图等许多新技术,是许多复杂化合物的结构测定引刃而解,NMR可以说是化学研究中最有力的武器之一。
红外谱图基础知识

第一节:概述1、红外吸收光谱与紫外吸收光谱一样是一种分子吸收光谱。
红外光的能量(△E=0.05-1.0ev)较紫外光(△E=1-20ev)低,当红外光照射分子时不足以引起分子中价电子能级的跃迁,而能引起分子振动能级和转动能级的跃迁,故红外吸收光谱又称为分子振动光谱或振转光谱。
2、红外光谱的特点:特征性强、适用范围广。
红外光谱对化合物的鉴定和有机物的结构分析具有鲜明的特征性,构成化合物的原子质量不同、化学键的性质不同、原子的连接次序和空间位置不同都会造成红外光谱的差别。
红外光谱对样品的适用性相当广泛,无论固态、液态或气态都可进行测定。
3、红外光谱波长覆盖区域:0.76 mm ~ 1000mm.红外光按其波长的不同又划分为三个区段。
(1)近红外:波长在0.76-2.5mm之间(波数12820-4000cm-1)(2)中红外:波长在2.5-25mm(在4000-400 cm-1)通常所用的红外光谱是在这一段的(2.5-15mm,即4000-660 cm-1)光谱范围,本章内容仅限于中红外光谱。
(3)远红外:波长在25~1000mm(在400-10 cm-1)转动光谱出现在远红外区。
4、红外光谱图:当物质分子中某个基团的振动频率和红外光的频率一样时,分子就要吸收能量,从原来的振动能级跃迁到能量较高的振动能级,将分子吸收红外光的情况用仪器记录,就得到红外光谱图。
5、红外光谱表示方法:(1)红外光谱图红外光谱图以透光率T %为纵坐标,表示吸收强度,以波长l ( mm) 或波数s (cm-1)为横坐标,表示吸收峰的位置,现主要以波数作横坐标。
波数是频率的一种表示方法(表示每厘米长的光波中波的数目)。
通过吸收峰的位置、相对强度及峰的形状提供化合物结构信息,其中以吸收峰的位置最为重要。
(2)将吸收峰以文字形式表示:如下图可表示为,3525cm-1(m),3097cm-1(m),1637cm-1(s)。
这种方法指出了吸收峰的归属,带有图谱解析的作用。
紫外光谱与红外光谱的区别

紫外光谱与红外光谱的区别
1)定义不同、
紫外可见吸收光谱:让不同波长的光通过待测物,经待测物吸收后测量其对不同波长光的吸收程度(吸光度A),以吸光度A为纵坐标,辐射波长为横坐标作图,得到该物质的吸收曲线,即为紫外可见吸收光谱。
红外光谱:又称为分子振动转动光谱,属分子吸收光谱。
样品收到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振转能级从基态跃迁带激发态,相应于这些区域的投射光强减弱,记录百分透过率T%对波长或波数的曲线,即为红外光谱。
两者都是分子的吸收光谱图。
2)
1)
•。
核磁共振波谱与紫外可见光谱及红外光谱的区别

核磁共振波谱与紫外可见光谱及红外光谱的区别核磁共振波谱与紫外可见光谱及红外光谱的主要不同有两点:①原理不同紫外可见吸收光谱是分子吸收200~700nm的电磁波,吸收紫外光能量,引起分子中电子能级的跃迁,主要是引起最外层电子能级发生跃迁。
红外光谱是分子吸收2.5~50um(2500~50000nm)的电磁波,吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁。
核磁共振波谱则是在外磁场下,吸收60cm~300m 的电磁波,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁。
②测定方法不同。
紫外和红外等一般光谱是通过测定不同波长下的透光率(T%=出射光强/入射光强)来获得物质的吸收光谱。
这种方法只适用于透过光强度变化较大的能级跃迁。
60cm~300m的电磁波穿透力很弱,故核磁共振无法通过测定透光率来获得核磁共振光谱,它是通过“共振吸收法”来测定核磁共振信号的。
共振吸收法是指:在一定磁场强度下,原子核在一定频率的电磁波照射下发生自旋能级跃迁时引起核磁矩方向改变进而产生感应电流,通过放大、记录此感应电流便得到核磁共振信号。
依次改变磁场强度(或电磁波的照射频率)使满足不同化学环境核的共振条件,收集共振引起的磁感应信号,经过数学处理,就获得核磁共振波谱图。
③谱图的表示方法不同:紫外谱图的表示方法:相对吸收光能量随吸收光波长的变化。
红外谱图的表示方法:相对透射光能量随透射光频率变化。
核磁谱图的表示方法:吸收光能量随化学位移的变化。
④提供的信息不同:紫外提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息。
红外提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率。
核磁提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息。
核磁共振谱的优缺点:优点:(仪器的灵敏度和分辨率非常高,较容易解析NMR图(随着计算机技术的应用,多脉冲激发的方法的采用及由此产生的二维谱图、多维谱图等许多新技术,是许多复杂化合物的结构测定引刃而解,NMR可以说是化学研究中最有力的武器之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共轭烯烃(不多于四个双键)p p*跃迁吸收峰位置可由伍德
沃德——菲泽 规则估算。 max= 基+nii 基-----是由非环或六环共轭二烯母体决定的基准值; 无环、非稠环二烯母体: 基=217 nm
2020/10/25
异环(稠环)二烯母体:
基=214 nm
同环(非稠环或稠环)二烯母体:
基=253 nm
niI : 由双键上取代基种类和个数决定的校正项
(1)每增加一个共轭双键 +30
(2)环外双键
+5
(3)双键上取代基:
酰基(-OCOR) 0 卤素(-Cl,-Br) +5
烷基(-R)
+5 烷氧基(-OR) +6
2020/10/25
(3)羰基化合物共轭烯烃中的 p → p*
1.紫外—可见吸收光谱
有机化合物的紫外—可见吸收光谱是三种电子跃迁的结果:
σ电子、π电子、n电子。
s*
HC O
s
Hp
n
p*
K
R
E
E,B
n
p
分子轨道理论:成键轨道—反键轨道。
s
当外层电子吸收紫外或可见辐射后,就从基态向激发态(反
键轨道)跃迁。主要有四种跃迁所需能量ΔΕ大小顺序为:
n→π* < π→π* < n→σ* < σ→σ*
① Y=H,R n → s* 150-160nm p → p* 180-190nm
p* KR K
ห้องสมุดไป่ตู้
n → p* 275-295nm
②Y= -NH2,-OH,-OR 等助色基团 p
K 带红移,R 带兰移;
p*
R带max =205nm ;e10-100
p*
p*
③不饱和醛酮 K带红移:165250nm R 带红移:290310nm
3 n→σ*跃迁
所需能量较大。 吸收波长为150~250nm,大部分在远紫外区,近紫外区 仍不易观察到。 含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原
子)均呈现n→σ* 跃迁(生色团、助色团、红移、蓝移)。
2020/10/25
4 π→π*跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或近
紫外区,εmax一般在104L·mol-1·cm-1以上,属于强吸收。 (1) 不饱和烃π→π*跃迁 乙烯π→π*跃迁的λmax为171nm,εmax为: 1×104
在选择紫外吸收光谱分析的溶剂时,应注意如下几点: (1)在溶解度允许的范围内,应尽量选用极性较小的 溶剂;
(2)对试样有良好的溶解能力和选择性,并且形成的 溶液具有良好的化学和光化学稳定性;
(3)在测定光谱区域,溶剂本身无明显吸收。
2020/10/25
7.生色团与助色团
生色团: 最有用的紫外—可见光谱是由π→π*和n→π*跃迁产生的
互变异构: 酮式:λmax=204 nm 烯醇式:λmax=243 nm
2020/10/25
6. 溶剂的影响 异
丙
n<p
叉
p*
酮
p*
的
n
p
n
溶 剂
效
非极性 极性
应
n → p*跃迁:兰移; ;e
n >p
p*
p*
n
p
p p
非极性 极性 p → p*跃迁:红移; ;e
pp* np*
max(正己烷)
230 329
L·mol-1·cm-1。 K带——共轭非封闭体系的p p* 跃迁 C=C 发色基团, 但 p p*200nm。
max=171nm 助色基团取代 n p*发生红移。
2020/10/25
(2)共轭烯烃中的 p → p*
具有共轭双键的化合物,相间的p 键与p 键相互作用,生 成大p 键。由于大p 键各能级的距离较近电子容易激发, 所以吸收峰的波长就增加,生色作用加强发生深色移动。
①入射狭缝:光源的光由此进入单色器; ②准光装置:透镜或返射镜使入射光成为平行光束; ③色散元件:将复合光分解成单色光;棱镜或光栅;
④聚焦装置:透镜或 凹面反射镜,将分光 后所得单色光聚焦至 出射狭缝;
⑤出射狭缝。
2020/10/25
3.样品室
样品室放置各种类型的吸收池 (比色皿)和相应的池架附件。吸 收池主要有石英池和玻璃池两种。 在紫外区须采用石英池,可见区一 般用玻璃池。
1. 光源
在整个紫外光区或可见光谱区可以发射连续光谱,具 有足够的辐射强度、较好的稳定性、较长的使用寿命。
可见光区:钨灯作 为光源,其辐射波长范 围在320~2500 nm。
紫外区:氢、氘灯 。发射185~400 nm的 连续光谱。
2020/10/25
2.单色器
将光源发射的复合光分解成单色光并可从中选出一任 波长单色光的光学系统。
2.双光束
自动记录,快速全波段 扫描。可消除光源不稳定、 检测器灵敏度变化等因素的 影响,特别适合于结构分析 。仪器复杂,价格较高。
2020/10/25
3.双波长
将不同波长的两束单色光(λ1、λ2) 快束交替通过同一 吸收池而后到达检测器。产生交流信号。无需参比池。△=
1~2nm。两波长同时扫描即可获得导数光谱。
大吸收波长λmax
②不同浓度的同一种物质,其吸收曲
线形状相似λmax不变。而对于不同物质 ,它们的吸收曲线形状和λmax则不同。
③吸收曲线可以提供物质的结构信息,并作为物质定性分析的 依据之一。
2020/10/25
对吸收曲线的说明:
④不同浓度的同一种物质,在某一定波长下吸光度 A 有差异,在λmax处吸光度A 的差异最大。此特性可作为
max(氯仿)
238 315
max(甲醇)
237 309
max(水)
243 305
2020/10/25
溶剂的影响
1 2
1:乙醚 2:水
苯酰丙酮
极性溶剂使精细结构 消失;
250 300
非极性 → 极性 n → p*跃迁:兰移; ;e p → p*跃迁:红移; ;e
2020/10/25
选择溶剂的原则
紫外吸收光谱与红外吸收光 谱
2020/10/25
第一部分 紫外吸收光谱分析法
• 第一节 紫外吸收光谱分析基本原理 • 一、 紫外吸收光谱的产生
• 二、 有机物紫外吸收光谱
2020/10/25
一、紫外吸收光谱的产生
formation of UV
1.概述
紫外-可见吸收光谱:分子价电子能级跃迁。
波长范围:100-800 nm.
254
200
甲苯
261
300
含取代基时, B带简化, 间二甲苯 红移。
263
300
1,3,5-三甲苯 266
305
六甲苯
272
300
2020/10/25
乙酰苯紫外光谱图
羰基双键与苯环共扼: K带强;苯的E2带与K带合 并,红移; 取代基使B带简化; 氧上的孤对电子: R带,跃迁禁阻,弱;
C H3
C
物质定量分析的依据。
⑤在λmax处吸光度随浓度变化的幅度最大,所以测定
最灵敏。吸收曲线是定量分析中选择入射光波长的重要 依据。
2020/10/25
3.电子跃迁与分子吸收光谱
物质分子内部三种运动形式: (1)电子相对于原子核的运动; (2)原子核在其平衡位置附近的相对振动; (3)分子本身绕其重心的转动。
M + h → M *
M +热
基态
激发态
M + 荧光或磷光
E1 (△E) E2
E = E2 - E1 = h 量子化 ;选择性吸收
吸收曲线与最大吸收波
长 max
用不同波长的单色光 照射,测吸光度;
2020/10/25
对吸收曲线的说明:
①同一种物质对不同波长光的吸光度 不同。吸光度最大处对应的波长称为最
n p* ; R带
O
p p* ; K带
2020/10/25
苯环上助色基团对吸收带的影响
2020/10/25
苯环上发色基团对吸收带的影响
2020/10/25
5. 立体结构和互变结构的影响
顺反异构: 顺式:λmax=280nm; εmax=10500 反式:λmax=295.5 nm;εmax=29000
(1) 远紫外光区: 100-200nm
(2) 近紫外光区: 200-400nm
(3)可见光区:400-800nm
可用于结构鉴定和定量分析 e
1 2
4
。
电子跃迁的同时,伴随着振
3
250 300 350 动转动能级的跃迁;带状光谱。
λ 400nm
2020/10/25
2.物质对光的选择性吸收及吸收曲线
2020/10/25
红移与蓝移
有机化合物的吸收谱带 常常因引入取代基或改变溶
剂使最大吸收波长λmax和吸
收强度发生变化:
λmax向长波方向移动称
为红移,向短波方向移动称 为蓝移 (或紫移)。吸收强度
即摩尔吸光系数ε增大或减
小的现象分别称为增色效应 或减色效应,如图所示。
紫外吸收光谱 分析法
ultraviolet spectrometry
2020/10/25
2 σ→σ*跃迁
所需能量最大;σ电子只有吸收远紫外光的能量才能发
生跃迁;
饱和烷烃的分子吸收光谱出现在远紫外区;
吸收波长λ<200 nm;
例:甲烷的λmax为125nm , 乙烷λmax为135nm。
只能被真空紫外分光光度计检测到;