初中数学《二次函数》的教学案例分
2024年浙教版数学九年级上册1.1《二次函数》教学设计

2024年浙教版数学九年级上册1.1《二次函数》教学设计一. 教材分析《二次函数》是2024年浙教版数学九年级上册的教学内容,本节课主要让学生掌握二次函数的定义、性质以及图象。
通过学习,学生能够理解二次函数在实际生活中的应用,提高解决问题的能力。
教材内容安排合理,由浅入深,逐步引导学生掌握二次函数的知识。
二. 学情分析九年级的学生已经具备了一定的函数知识,对一次函数和二次函数有一定的了解。
但学生在学习二次函数时,可能会觉得比较抽象,难以理解。
因此,在教学过程中,需要注重引导学生从实际问题中提炼出二次函数模型,培养学生的抽象思维能力。
三. 教学目标1.了解二次函数的定义及其一般形式;2.掌握二次函数的性质,包括开口方向、对称轴、顶点等;3.能够通过实际问题,建立二次函数模型,并解决相关问题;4.提高学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.二次函数的定义及其一般形式;2.二次函数的性质,特别是开口方向、对称轴、顶点的理解;3.实际问题中二次函数模型的建立和应用。
五. 教学方法1.采用问题驱动法,引导学生从实际问题中发现二次函数的规律;2.利用数形结合法,让学生直观地理解二次函数的图象和性质;3.运用讨论法,鼓励学生积极参与,培养学生的合作意识;4.采用案例分析法,使学生能够将理论知识应用于实际问题。
六. 教学准备1.准备相关的实际问题,用于引入和巩固二次函数的知识;2.制作PPT,展示二次函数的图象和性质;3.准备一些练习题,用于让学生在课堂上练习和巩固所学知识;4.准备一些拓展问题,激发学生的思考。
七. 教学过程1.导入(5分钟)利用一个实际问题,如抛物线运动,引出二次函数的概念。
让学生观察实际问题中的数量关系,引导学生发现二次函数的规律。
2.呈现(10分钟)通过PPT展示二次函数的图象,让学生直观地了解二次函数的性质。
同时,引导学生总结二次函数的一般形式。
3.操练(10分钟)让学生根据二次函数的定义和性质,解决一些相关问题。
九年级数学下册《二次函数在几何方面的应用》优秀教学案例

(一)知识与技能
1.理解二次函数的基本概念,掌握二次函数的图像特征及其性质,能准确描述其开口方向、顶点、对称轴等关键信息。
2.学会运用二次函数解决几何问题,如求抛物线与直线的交点、距离、面积等,并能将其应用于解决实际问题。
3.培养学生运用数形结合思想,通过绘制图像,直观判断二次函数与几何图形的关系,提高解决问题的准确性和效率。
4.数形结合方法,提高解题效率
本案例重视数形结合方法的运用,引导学生通过观察二次函数的图像特征,直观判断几何问题的解。这种方法有助于提高学生解决问题的效率,培养他们的几何直观和空间想象能力。
5.反思与评价,促进自我提升
案例中设置了反思与评价环节,让学生在学习过程中不断总结经验,发现自身不足,从而实现自我提升。同时,多维度评价机制也有助于学生全面了解自己的学习成果,激发他们持续学习的动力。
(二)问题导向
在教学过程中,我将采用问题导向的教学策略,引导学生围绕核心问题进行探讨。设计具有启发性和挑战性的问题,鼓励学生运用所学知识,通过分析、综合、推理等思维过程解决问题。针对二次函数在几何方面的应用,可以提出如下问题:“如何求抛物线与直线的交点?”“抛物线的顶点在几何问题中有何作用?”等。问题导向的教学策略有助于培养学生主动思考、独立解决问题的能力。
3.小结反馈:收集学生的作业,了解他们在学习过程中的困惑和问题,为下一节课的教学提供参考。
五、案例亮点
1.生活情境融入,激发学习兴趣
本教学案例将生活中的实际情境融入课堂,如建筑、体育等领域中的抛物线现象,使学生在轻松愉快的氛围中感受二次函数与几何图形的结合。这种贴近生活的教学方式,有助于激发学生的学习兴趣,提高他们的学习积极性。
4.引导学生认识到数学与现实生活的紧密联系,体会数学在解决实际问题中的价值,培养他们用数学的眼光看待世界的意识。
二次函数大单元教学设计优秀案例

二次函数大单元教学设计优秀案例二次函数大单元教学设计优秀案例一、引言在数学教学中,二次函数是一个非常重要的概念和内容。
它不仅涉及到数学知识本身,还涉及到数学应用和解决实际问题的能力。
近年来,针对二次函数的教学设计越来越受到重视,如何设计出一篇优秀的二次函数大单元教学案例成为数学教师们需要思考的问题。
在本文中,我们将根据深度和广度的要求,分享一个优秀的二次函数大单元教学设计案例,并探讨其中的教学价值和启示。
二、教学设计案例分析1. 教学内容安排本次教学设计案例的主要内容安排如下:(1)二次函数的定义与性质;(2)二次函数的图像与性质;(3)二次函数的应用:抛物线运动问题;(4)解二次方程与图象的关系。
2. 教学方法在本次教学中,我们采用了多种教学方法,包括课堂讲授、示范演示、小组合作、实践探究等。
通过多种形式的教学,可以激发学生的学习兴趣,增强他们的学习动力,提高他们的学习效果。
3. 教学环节本次教学设计案例中,我们特别设计了以下几个教学环节:引入知识、概念讲解、案例探究、综合应用等。
在案例探究环节中,我们精心设计了一些生动有趣的案例,让学生在实际问题解决中感受二次函数的魅力,培养他们的数学思维和解决问题的能力。
4. 教学资源在这次教学中,我们充分利用了多媒体教学资源,包括幻灯片、视频教学、电子课件等。
通过多媒体教学资源的运用,可以提高教学效果,激发学生的学习兴趣,加深他们对知识的理解和记忆。
5. 教学评价本次教学设计案例中,我们采用了多种教学评价方法,包括课堂练习、作业布置、小组讨论等。
通过多种形式的教学评价,可以全面了解学生的学习情况,及时发现问题,调整教学策略,提高教学效果。
三、个人观点和理解在我看来,这个优秀的二次函数大单元教学设计案例,不仅内容深度丰富,而且教学方法灵活多样,教学环节设计合理,教学资源充分利用,教学评价全面多元,对于学生的数学学习能力和解决实际问题的能力有着很好的培养作用。
数学《二次函数》教案(4篇)

数学《二次函数》教案(4篇)数学《二次函数》教案篇一教学目标(一)教学学问点1、经受探究二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)力量训练要求1、经受探究二次函数与一元二次方程的关系的过程,培育学生的探究力量和创新精神。
2、通过观看二次函数图象与x轴的交点个数,争论一元二次方程的根的状况,进一步培育学生的数形结合思想。
3、通过学生共同观看和争论,培育大家的合作沟通意识。
(三)情感与价值观要求1、经受探究二次函数与一元二次方程的关系的过程,体验数学活动布满着探究与制造,感受数学的严谨性以及数学结论确实定性。
2、具有初步的创新精神和实践力量。
教学重点1、体会方程与函数之间的联系。
2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点1、探究方程与函数之间的联系的过程。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法争论探究法。
教具预备投影片二张第一张:(记作§2.8.1A)其次张:(记作§2.8.1B)教学过程Ⅰ。
创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,争论了它们之间的关系。
当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
数学《二次函数》教案篇二教学目标(一)教学学问点1、能够利用二次函数的图象求一元二次方程的近似根。
2、进一步进展估算力量。
(二)力量训练要求1、经受用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
二次函数教学教案参考

二次函数教学教案参考一、教学目标:1. 让学生理解二次函数的概念,掌握二次函数的定义和标准形式。
2. 能够运用二次函数解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力和团队合作能力。
二、教学内容:1. 二次函数的概念和定义。
2. 二次函数的标准形式及其性质。
3. 二次函数的图像及其特点。
4. 二次函数的顶点公式及其应用。
5. 二次函数与实际问题的结合。
三、教学方法:1. 采用问题驱动法,引导学生主动探究二次函数的性质和特点。
2. 利用多媒体辅助教学,展示二次函数的图像和实际应用案例。
3. 组织小组讨论,培养学生的团队合作能力和表达能力。
4. 进行课堂练习和课后作业,巩固学生的学习成果。
四、教学准备:1. 多媒体教学设备。
2. 二次函数教学课件。
3. 练习题和课后作业。
4. 教学参考书籍和资料。
五、教学过程:1. 导入新课:通过一个实际问题,引入二次函数的概念。
2. 讲解概念:讲解二次函数的定义和标准形式。
3. 探究性质:引导学生探究二次函数的性质和特点。
4. 展示图像:利用多媒体展示二次函数的图像。
5. 应用案例:讲解二次函数在实际问题中的应用。
6. 课堂练习:进行课堂练习,巩固学生的学习成果。
7. 小组讨论:组织学生进行小组讨论,分享学习心得。
8. 课后作业:布置课后作业,让学生进一步巩固知识。
9. 总结课堂:对本节课的内容进行总结,强调重点和难点。
10. 布置课后任务:让学生预习下一节课的内容,准备课堂讨论。
六、教学评估:1. 课堂练习和课后作业的完成情况,评估学生对二次函数知识的掌握程度。
2. 小组讨论的参与度和表达能力,评估学生的团队合作和交流能力。
3. 课后任务的完成情况,评估学生的自主学习能力。
七、教学拓展:1. 引导学生在课后深入研究二次函数的图像,探索其在不同参数下的变化规律。
2. 鼓励学生尝试解决更复杂的实际问题,提高学生的数学应用能力。
3. 向学生推荐相关的数学竞赛或研究项目,激发学生的学习兴趣和挑战精神。
初中数学《二次函数》的教学案例分析

初中数学《二次函数》的教学案例分析初中数学《二次函数》的教学案例分析一、教材研读与剖析本节课内容是在学生研究了一次函数、反比例函数等基础上的研究。
本章我们研究的是二次函数,要求学生通过探究实际问题与二次函数的关系,掌握利用顶点坐标解决最大值(或最小值)问题的方法。
学生要经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何描述变量之间的数量关系,感悟新旧知识的关系,深刻的体会数学中的类比思想方法。
教学目标:1.理解和掌握二次函数的概念、性质,会做二次函数的图像,掌握二次函数的形式。
2.会建立二次函数模型,并能确定实际问题的自变量的取值范围。
3.会用待定系数法求二次函数的解析式。
4.从实际情景和实例中让学生探索分析,建立两个变量之间的二次函数,使学生能够理解如何将实际问题转化为数学问题,学会用数学符号和数学方法解决最值问题,让学生体会到研究数学的价值,从而提高学生研究数学的兴趣。
教学重点和难点:1.经历探究和表示二次函数的过程,获得二次函数的定义。
2.能够表示简单变量之间的二次函数关系。
3.探究利用二次函数解决实际生活中的最值问题。
本节难点在于如何将实际问题转化为二次函数的问题,其中“合作性研究”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。
二、教学过程与设计1.温故而知新,回顾有关函数的知识,激发兴趣。
教师在课堂的开始,可以帮助学生回忆有关函数的定义,做进一步巩固。
对“正比例函数、一次函数、反比例函数”的知识点进行总结,并在PPT上给出一次函数、正比例函数、反比例函数的形式。
2.创设问题情境,激发兴趣。
教师在PPT上给出实际问题一,例如:现有60米的篱笆要围成一个矩形场地,若矩形的长为10米,它的面积是多少?若矩形的长分别为15米、20米、30米时,它的面积分别是多少?从上两问同学们发现了什么?教师提问后,学生可独立回答。
在活动中,教师应重点关注:学生是否能准确的建立函数关系;学生是否能利用已学的函数知识求出最大面积;学生是否能准确的讨论出自变量的取值范围。
案例教学法在初中数学教学中的应用——以“二次函数”为例

教学·现场案例教学法在初中数学教学中的应用———以“二次函数”为例文|丁琳琳根据《义务教育数学课程标准(2022年版)》,初中数学课程内容可划分为“数与代数”“图形与几何”“统计与概率”“综合与实践”四个领域,其中二次函数的教学目标在于引导学生探索和理解数与代数的概念、性质和应用,认识到数学在现实生活和社会科学中的重要作用,学习如何运用数与代数的知识解决生活中的实际问题,培养学生运用数学思想分析问题、解决问题的能力。
一、教材分析北师大版九年级下册“二次函数”单元在导入阶段通过音乐喷泉、篮球入筐等现实案例引导学生发现并分析变量间存在的函数关系,进而引出本单元研究变量关系的二次函数模型,以此来引导学生初步了解二次函数的概念和作用。
随后,教材借助绘制二次函数的图象,分析图象的形状、开口方向、对称轴、顶点坐标等特征,让学生理解二次函数的性质。
此外,教材通过例题和练习,让学生巩固所学知识,并培养解决问题的能力。
最后,通过二次函数的概念、性质、应用以及与一元二次方程关系的梳理,帮助学生形成完整的知识体系,加深对二次函数的理解和掌握。
二、教学思维导图(见文末图1)三、教学目标1.探索二次函数与一元二次方程的关系,体会方程与函数之间的联系。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根。
3.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神,进一步培养学生的数形结合思想。
4.通过共同观察和讨论,培养学生的合作交流意识。
5.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
四、教学重难点(一)教学重点1.体会方程与函数之间的联系。
2.理解何时方程有两个不等的实根,两个相等的实根和没有实根。
3.理解一元二次方程的根就是二次函数与y=h (h是实数)交点的横坐标。
北师大版九年级数学下册:2.4《二次函数的应用》教案

北师大版九年级数学下册:2.4《二次函数的应用》教案一. 教材分析北师大版九年级数学下册第2.4节《二次函数的应用》主要介绍了二次函数在实际生活中的应用,包括二次函数图像的识别和利用二次函数解决实际问题。
这部分内容是学生在学习了二次函数的性质和图像后,对二次函数知识的进一步拓展,使学生能够将所学知识应用到实际生活中,提高解决实际问题的能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识和图像,对二次函数有一定的理解。
但学生在解决实际问题时,可能会对将理论知识和实际问题相结合感到困难。
因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解二次函数在实际生活中的应用;2.学会利用二次函数解决实际问题;3.提高学生的数学应用能力。
四. 教学重难点1.二次函数在实际生活中的应用;2.利用二次函数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生思考;通过案例分析,使学生理解二次函数在实际生活中的应用;通过小组合作,让学生在讨论中解决问题,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的案例和问题;2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过一个实际问题引出二次函数的应用,例如:一个农场计划种植两种作物,种植面积为固定的10亩。
如果种植苹果树,每亩收益为2000元;如果种植梨树,每亩收益为3000元。
请问如何分配种植苹果树和梨树的面积,才能使总收益最大?2.呈现(10分钟)呈现教材中的案例,让学生了解二次函数在实际生活中的应用。
例如,教材中有一个关于抛物线形跳板的问题,通过二次函数来求解跳板的长度。
3.操练(10分钟)让学生根据教材中的案例,尝试解决实际问题。
例如,教材中有一个关于二次函数图像的问题,让学生根据图像信息,求解相关参数。
4.巩固(10分钟)通过小组合作,让学生解决一些实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学《二次函数》的教学案例分析及反思
一、教材研读与剖析
1.教材分析:本节课内容是在学生学习了一次函数、反比例函数等基础上的学习. 本章我们研究的是二次函数,要求学生通过探究实际问题与二次函数的关系,掌握利用顶点坐标解决最大值(或最小值)问题的方法. 学生要经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何描述变量之间的数量关系,感悟新旧知识的关系,深刻的体会数学中的类比思想方法.
2.教学目标:第一,理解和掌握二次函数的概念、性质,会做二次函数的图像,掌握二次函数的形式;第二,会建立二次函数模型,并能确定实际问题的自变量的取值范围;第三,会用待定系数法求二次函数的解析式;第四,从实际情景和实例中让学生探索分析,建立两个变量之间的二次函数,使学生能够理解如何将实际问题转化为数学问题,学会用数学符号和数学方法解决最值问题,让学生体会到学习数学的价值,从而提高学生学习数学的兴趣.
3.教学重点和难点:第一,经历探究和表示二次函数的过程,获得二次函数的定义;第二,能够表示简单变量之间的二次函数关系;第三,探究利用二次函数解决实际生活中的最值问题. 本节难点在于如何将实际问题转化为二次函数的问题,其中“合作性学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.
二、教学过程与设计
(1)温故而知新,回顾有关函数的知识,激发兴趣. 教师在课堂的开始,可以帮助学生回忆有关函数的定义——在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量——做进一步巩固. 对“正比例函数、一次函数、反比例函数”的知识点进行总结,并在ppt上给出一次函数y=kx+b(其中k,b是常数,且k≠ 0)正比例函数y=kx(k是不为0的常数)反比例函数y=■ (x是不为0的常数)的形式.
(2)创设问题情境,激发兴趣. 教师在ppt上给出实际问题一,例如:现有60米的篱笆要围成一个矩形场地,若矩形的长为10米,它的面积是多少?若矩形的长分别为15米、20米、30米时,它的面积分别是多少?从上两问同学们发现了什么?教师提问后,学生可独立回答. 在活动中,教师应重点关注:学生是否能准确的建立函数关系;学生是否能利用已学的函数知识求出最大面积;学生是否能准确的讨论出自变量的取值范围.
问题的设计,旨在运用函数模型让学生体会数学的实际价值,学会用函数的观点认识问题,解决问题,让学生在合作学习中共同解决问题,培养合作精神. 最后,提出问题:由矩形问题你有什么收获?让学生经过短时间的讨论与思考后,师生共同归纳总结出函数解析式y=ax2+bx+c(a,b,c是常数,a≠ 0)的形式. 在ppt上给出概念:我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠ 0)的函数叫做二次函数. 称a为二次项系数,b为一次项系数,c为常数项. 通过层层设问,引导学生不断思考,积极探索,让学生感受到数学的应用价值,激发其学习的热情.
(3)利用图像激发兴趣. 学习性质最好的方法就是根据图像来探索. 例如,教师可以给出以下的问题,让学生进行自由探索:填空:根据下边已画好抛物线y=-2x2的顶点坐标是_____,对称轴是_____,在_____侧,即x_____0时,y随着x的增大而增大;在_____侧,即x_____0时,y随着x的增大而减小.当x=_____时,函数y的最大值是____. 当x____0时,y<0. 教师让学生根据问题进行探究,并归纳出:二次函数y=ax2+bx+c(a≠ 0)的图像和性质,顶点坐标与对称轴,位置与开口方向,增减性与最值.
(4)小组合作探索二次函数与一元二次方程. 教师向学生展示二次函数y=x2+2x,y=
x2-2x+1,y=x2-2x+2的图像如图所示.
教师引导学生以小组为单位,对以下问题进行合作探究:每个图像与x轴有几个交点?一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?二次函数y=ax2+bx+c的图像和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?并引导学生对二次函数y=ax2+bx+c的图像和x轴交点的三种情况进行归纳.
三、教学反思与小结
教学活动是建立在学生对已学函数理解的基础上,通过类比和探索的方式进行的. 课堂开始时,对已学过的知识进行复习和总结,然后,给出简单的实际问题. 接着笔者进一步将问题引申,加大难度,引出本节课所学习的内容,这一方法旨在激发学生的学习兴趣. 通过几个简单的问题,让学生体会两个变量的关系. 特别是在创设问题中,教师应重点关注学生是否发现变量,是否注意到取值范围,这个环节中简单问题的设计旨在激发学生的学习欲望. 利用图像进行教学,是几何教学的一个重点内容. 这个环节教师引导学生小组进行合作探究,在兴趣下去探求真知. 本节课学生对二次函数的基本概念、图像有了比较扎实的认识,但是众观整个教学过程,笔者发现还存在不合理的地方,如还缺乏一些生动的教学方式激发学生学习的兴趣,在进行图像的教授过程中,教师可以利用多媒体进行动态的教学,课堂的结尾处教师还缺乏引导学生对二次函数知识的实际运用等. 这些还需要教师不断地进行反思与发现,对教学方法进行不断改进与更新.。